
International Journal of Future Generation Communication and Networking

Vol. 9, No. 8 (2016), pp. 9-22

http://dx.doi.org/10.14257/ijfgcn.2016.9.8.02

ISSN: 2233-7857 IJFGCN

Copyright ⓒ 2016 SERSC

Proactive-LRU: An Efficient Flow Table Management Scheme in

SDNs

Dongryeol Kim and Byoung-Dai Lee


Kyonggi University, Department of Computer Science, Suwon, Republic of Korea

{kdr, blee}@kyonggi.ac.kr

Abstract

A Software Defined Network (SDN) separates an existing network structure into a

control plane and a data plane and centrally manages the network at the control plane.

SDN is able to control the network in detail and operate efficiently by managing the

traffic by flow unit. However, if the performance of the switches comprising the SDN

varies greatly from one to another, it has a problem of delayed handling of traffic due to

the bottleneck caused by an overhead concentration at the controller when the message

exchanges between the low performance switch and the controller for flow table

replacement increase in number. This research paper suggests a flow table management

scheme, called Proactive-LRU, to alleviate this problem and compares its performance to

that of the existing replacement algorithms such as LRU, LFU, and FIFO. Proactive-LRU

scheme is a flow table management scheme that deletes the flow from all switches

available within the forwarding path when a flow is deleted and reduces the number of

message exchanges and the controller overhead. In order to compare the performance of

the suggested scheme against that of the existing algorithms (FIFO, LRU, LFU), video

traffic and web browsing traffic have been mixed in certain ratios in an SDN environment

for the experiment. The analysis of the results showed that the number of message

exchanges as well as the overhead and table overflow of switches in the suggested scheme

were significantly reduced.

Keywords: SDN, Table Overflow, Controller Overhead, Flow table Replacement

1. Introduction

Software defined networking is a technology that provides flexibility to the network by

separating the existing network structure into a control plane handling the network

intelligence and a data plane handling data transfer, and by centralizing the control of the

overall network in the control plane. [1][2]. Packets are managed by flow unit in an SDN

and information of the flow is saved and managed in the flow table at the switch level.

When a packet arrives at a switch, the switch searches the flow table, finds a matching

flow for the packet and takes a relevant action (transfer, modify, terminate) for that flow

or creates a new flow for the packet through communication with the controller. The flow

table is created and processed within the limited memory capacity of the switch and this

capacity is different from one switch vendor to another. If the scale of a network becomes

large, the switches used can be from various vendors and this may create a problem of

packet transmission delay and increase of the controller overhead because of the switches

with relatively poor performance used in the packet transfer process. This can result in a

performance drop in the overall network. For example, flow table replacements occur

frequently in a network consisting of switches with different performances, when the

number of flows is greater than the flow table size of the switch. The time required for

message exchanges and for the controller to determine which flow to delete when


 Corresponding Author

International Journal of Future Generation Communication and Networking

Vol. 9, No.8, (2016)

10 Copyright ⓒ 2016 SERSC

changing a flow table can increase the network’s overhead and hence result in a

performance drop of the entire network [3]. Therefore, it is very important to reduce the

number of flow replacements and the controller’s overhead.

Hence, a flow table management scheme to reduce the overhead of the controller as

well as the number of flow replacements is suggested in this paper. This paper is

structured as follows: Section 2 introduces the flow management scheme and a number of

related studies in reducing the overhead of the controller. Section 3 explains the problems

occurring from the performance differences between the switches that comprise the

network environment with SDN technology applied. Section 4 suggests the flow table

management scheme that can minimize the packet transfer delay caused by the problems

mentioned in Section 3. Section 5 compares the performance of the suggested flow table

management scheme to that of a number of representative replacement algorithms like

FIFO, LRU and LFU and conducts a performance review. Finally, Section 6 describes the

conclusions and future research directions.

2. Related Work

The network where SDN technology is applied may have large overheads within many

processes such as packet handling or switch management of the controller. [4] describes a

framework utilizing a flow-based monitoring scheme and it uses a wild card scheme to

process newly arrived packets without PacketIn messages to the controller. When there

exists a flow matching the packet arrived at the switch, the flow counter increases in

number and when this count reaches the pre-set threshold, it is categorized as an elephant

flow and is sent to the controller for flow processing. This process has reduced the

number of PacketIn message transfers from the switch to the controller as well as the

overhead. However, using a wild card has the disadvantage that the limited ternary

content-addressable memory (TCAM) of the switch can be used up thoughtlessly. [5]

shows how the switches managed by a controller with large overhead are moved to other

controllers to reduce the overhead and balance out. [6] suggests a Kandoo framework.

This is a method to reduce the overhead of the controller caused by frequent network

events. In this method, the control plane is separated into a root controller and multiple

sub-controllers, where any request regarding the overall network condition is handled by

the root controller whereas the other events are handled by the sub-controllers, thereby

distributing the overhead of the controller. [7] suggests a NOX Controller application that

aims at a distributed platform by distributing the controllers and letting each controller

manage the network locally. This method has achieved an overhead distribution by

spreading the controllers over the network, but is not practical due to handover problems

between multiple controllers and an absence of a standard east-west bound API that is the

interface between the controllers. [8] suggests a tag-in-tag scheme. This is a method to

reduce the flow table size by routing multiple flows via specific paths. [9] describes a

similar method where a busy core network is loosened up through label switching and the

number of flow entries is decreased at the TCAM.

3. Problem Description

SDN can allow users to operate a network as desired by keeping the network

management at the controller to centrally manage various switches and virtual switches.

However, if there are large differences in performance between the switches that

constitute the network, a problem like the following may occur.

International Journal of Future Generation Communication and Networking

Vol. 9, No.8, (2016)

Copyright ⓒ 2016 SERSC 11

3.1. Table Overflow

Figure 1. An SDN Network with Heterogeneous Switches

Figure 1 shows a linear topology SDN network consisting of the switches with

different flow table sizes. When a packet arrives at a switch and there is no flow matching

the arrived packet in the flow table, a communication with the controller is made and a

new flow is created and added to the table. When many packets arrive and create flows,

the table becomes full. At this stage, any additional flow created by newly arriving

packets cause table overflow. When a packet arrives at the switch and there is no

matching flow for that packet, the switch and the controller exchange messages and create

a new flow. If the table is already full at that moment, it causes table overflow. In order to

create space within the table, the switch and the controller exchange messages further to

determine which flow to delete, delete that flow from the table and add a new flow. For

example, when a network is configured as in Figure 1 and 100 packets matching all

different flows are transmitted from the source, 100 flows are created and any switch with

table size less than 100 will see an occurrence of table overflow.

3.2. Controller Overhead

Figure 2. Flow Table Update Process

Figure 2 shows a flow table update process to explain how overhead occurs at the

controller.

International Journal of Future Generation Communication and Networking

Vol. 9, No.8, (2016)

12 Copyright ⓒ 2016 SERSC

① When the table is full and a packet arrives, the switch looks for a relevant flow

matching that packet in the table. If there is no such flow, it sends a PacketIn message to

the controller to query flow entry generation.

② The controller then computes the path and sends out a FlowModify message to the

switch to order a new flow entry to be created.

③ The controller also sets the destination of the arrived packet, adds it to a

PacketOut message and sends it out to the switch.

④ However, since the table is already full, the switch sends out a FlowRemoved

message to the controller to determine which flow to delete.

⑤ The controller decides which flow to delete according to the flow table

replacement algorithm and sends out a FlowModify message to the switch again.

In this process, the controller updates the flow table by exchanging messages 5 times

with one switch and runs the flow table replacement algorithm to determine which flow to

delete. Thus, five message exchanges occur between a switch and the controller and a

process to determine which flow to delete from the flow table is executed in every switch

having a smaller flow table than the number of packets transferred. In this process, there

is a lot of overhead. In Figure 2, if more packets than the flow table sizes of switches 1

and 2 are transferred, message exchanges and controller computation processes take place

at both switches. In a large scale network, such processes will occur more frequently

resulting in larger overhead at the controller and the performance of the overall network

drops due to the impact on packet transmission speed.

4. Proactive-LRU Scheme

In the Proactive-LRU (P-LRU) flow table management scheme suggested in this paper,

when a flow due to overflow at the flow table of a switch is deleted, the same flow as the

deleted one is also deleted at any switch with a full flow table. With this scheme, it is

possible to secure sufficient flow table space in advance without message exchanges at all

switches other than the one with table overflow and this can also reduce the overhead like

packet transmission delays.

Figure 3. Flow Chart for P-LRU Scheme

International Journal of Future Generation Communication and Networking

Vol. 9, No.8, (2016)

Copyright ⓒ 2016 SERSC 13

Figure 3 is a flowchart displaying the actions of switches and the P-LRU scheme. The

overall flow is as follows: When a packet arrives at a switch, the switch searches for a

flow matching the arrived packet. If there is a matching flow, it runs an action relevant to

the flow. Otherwise, a PacketIn message is sent out to the controller in order to create a

flow. The controller creates a flow matching the packet and sends out a FlowModify

message to the switch and designates the destination of the packet with a PacketOut

message. Since overflow occurs when the flow table of the switch is full, the switch sends

out a FlowRemoved message to the controller for flow table replacement. Upon receiving

the message, the controller determines which flow to delete by using the LRU algorithm.

After that, a FlowModify message is sent out to the switch with overflow to delete the

existing flow and add a new flow. When the flow tables of other switches having the same

flow as the one to be deleted are full, the same FlowModify message is also sent out to

those switches to delete the flow and secure space. Flow tables are updated during this

process.

In order to review the actions of P-LRU in a real network, Figure 4 assumes that there

is a network composed of a number of switches with different performances and the

moving path of a packet is set as (1). The size of each flow table supported by these

switches varies from one table to another.

Figure 4. An SDN Network Composed of Switches with Different
Performances

Source → Switch #1 → Switch #4 → Switch #3 → Switch #2 → Destination (1)

Among the switches in the path (1), all flow tables except that of switch 3 are full.

Since switch 1 is already full, flow generation and flow table modification are needed in

order to transmit the packet. Therefore, there are 5 message exchanges between the switch

and the controller in order to create and insert a flow as well as to update the flow table,

as mentioned in Section 3-2. Such message exchange processes are also run at switch 4

and switch 2 and hence add up to 15 message exchanges in total. There is some spare

space in flow table of switch 3 so it will only exchange messages for flow generation and

insertion 3 times. Therefore, if a network’s configuration is the same as in Figure 4 and

the moving path of packets are the same as (1), there will be a total of 18 message

exchanges.

International Journal of Future Generation Communication and Networking

Vol. 9, No.8, (2016)

14 Copyright ⓒ 2016 SERSC

Figure 5. Network Condition after P-LRU Scheme is Applied

Figure 5 shows how spare space is secured at the flow table of switches within path (1)

by applying the suggested P-LRU scheme. When a packet arrives at switch 1, it looks for

a flow matching the packet. If there is no matching flow, it sends out a PacketIn message

to the controller to query flow entry generation. The controller computes the path and

sends a FlowModify message to switch 1 to order the addition of a new flow entry. It also

sends a PacketOut message to designate the packet’s destination. However, since switch

1’s table is already full, switch 1 converts the flow deletion request into a FlowRemoved

message and sends it out to the controller. The controller then determines which flow to

delete according to the LRU algorithm and sends out a FlowModify message to switch 1

as well as to switches 2 and 4 at the same time. After that, the flows are deleted from

switches 1, 2, and 4 resulting in spare space for additional flows in all switches within the

path (1). Since switch 3 already has spare space, its flow is maintained.

Table 1. Overhead Comparison with P-LRU

Scheme
Switch 1 Switch 4 Switch 3 Switch 2 Total

Overhead M.O C.O M.O C.O M.O C.O M.O C.O

Current 5TX 1TC 5TX 1TC 3TX 0TC 5TX 1TC 18TX + 3TC

P-LRU 5TX 1TC 4TX 0TC 3TX 0TC 4TX 0TC 16TX + 1TC

Table 1 is an overhead comparison table between the existing process and P-LRU. The

overhead created when a message is transmitted once between the controller and switch is

assumed to be 1TX and the overhead created when the controller calculates the flow to

delete is assumed to be 1TC. M.O. is the overhead occurring when messages are

exchanged and C.O. is the controller overhead occurring when determining the flow to be

deleted. In the existing process, there are 5 message exchanges (5TX) for flow generation

and table replacement and there is 1 flow computation (1TC) to determine which flow to

delete from the table at switches 1, 4, and 2 where the flow table is full. At switch 3, there

are only 3 message exchanges needed for flow generation and insertion. Hence the total

overhead of 18TX+3TC occurs. On the other hand, with P-LRU, messages for flow

generation and table replacement are exchanged 5 times(5TX) and the flow computation

for flow deletion is done once (1TC) at switch 1. At switches 4 and 2, there is one flow

deletion message (1TX) and 3 message exchanges (3TX) needed for flow generation and

insertion. In total, 4 message exchanges are made (4TX). Since spare space is already

secured by deleting flows, there is no need for computation to be done to determine which

International Journal of Future Generation Communication and Networking

Vol. 9, No.8, (2016)

Copyright ⓒ 2016 SERSC 15

flow to delete (0TC). Since switch 3 also has space in the table, it only needs 3 message

exchanges (3TX) needed for flow generation and insertion.

When P-LRU is applied as shown in Table 1, the overhead created from message

exchange and controller computations decreases and is proven to be more efficient than

the existing method where the flow table is updated every time by message exchanges

between a switch and the controller.

5. Performance Evaluation

5.1. Experiment Setup

In order to evaluate the performance of P-LRU suggested in this paper, an SDN

composed of linear technology having N sources and P destinations, as shown in Figure 6,

was constructed by utilizing the Mininet Emulator [10] and a simulation was performed

with this architecture. Sources worked as video and web servers while the destinations

worked as clients. A Pox Controller [11] was used for the SDN controller.

Figure 6. Test Topology Configuration

The packet data set needed for algorithm performance evaluation was generated by the

Ostinato Packet Generator Tool [12].

Table 2. Data Set Configuration

Traffic V1W9 V3W7 V5W5 V7W3 V9W1

Number of

packets
3.3K 3.3K 3.3K 3.3K 3.3K

Video

Server
10% 30% 50% 70% 90%

Web

Server
90% 70% 50% 30% 10%

Table 2 represents the configuration of the packet data set. Each data set is composed

of 3300 packets. In each data set, the video and web servers are composed of 10 sources

at the ratios given in table 2. For example, the server configuration of the V1W9 data set

is one video server and 9 web servers where 1 video server sends packets to 1 client only

while 9 web servers send packets to 9 clients randomly.

Table 3 is the table size, the number of video servers, the number of web servers, and

the number of clients set up during the test using data sets. The table size represents

switches 1, 2, and 3 in chronological order.

International Journal of Future Generation Communication and Networking

Vol. 9, No.8, (2016)

16 Copyright ⓒ 2016 SERSC

Table 3. Configurable Parameters for Data Sets

 V1W9 V3W7 V5W5 V7W3 V9W1

Table Size 10, 13, 16 10, 13, 16 10, 13, 16 10, 12, 14 10, 13, 16

Number of

video servers
1 3 5 7 18

Number of

web servers
9 7 5 3 2

Number of

clients
10 10 10 10 20

For example, the table size of V1W9 is set as 10, 13, and 16, so the table size of

switches 1, 2, and 3 are 10, 13, and 16, respectively. The reason why V7W3’s table size is

set as 10, 12, and 14 is because there will not be any flow table replacement at switch 3

since only 16 flows are created. Tests were done with different flow table sizes of the

switches in order to verify the low table replacement value. The number of video servers,

web servers, and clients were determined according to the ratio from the Table 2. The

reason why the number of video servers and web servers were set as in Table 3 is because

it is not possible to check the number of replacements if we set the number of video

servers as 9 and web servers as 1, since there would only be 10 flows created and no flow

table replacement would take place. The data set used for the experiment was created by

referring to Table 3 and Table 4 [13].

Table 4. Some of the Video Traffic Model Parameters

Information

Types

Number of packets

in a frame
Packet size

Inter-arrival time

between packets

Distribution Deterministic

Truncated Pareto

(Min = 50bytes,

Max = 125bytes)

Truncated Pareto

(Min = 6ms,

Max = 12.5ms)

Table 5. Parts of HTTP Traffic Model Parameters

Component Distribution Parameters PDF

Number of

embedded objects

per page (Nd)

Truncated Pareto
Mean = 5.64

Max = 53

Note: Subtract k

from the generated

r.v. to get Nd

Reading time

(DPC)
Exponential Mean = 30 sec

Parsing time (TP) Exponential Mean = 0.13 sec

Table 4 represents the parameters of the video traffic model. The size and Inter-arrival

Time of the packets sent out of the video servers follow a truncated Pareto distribution

and have a characteristic of having a constant number of packets.

Table 5 represents the HTTP Traffic Model parameters. Web browsing traffic has its

objects per page following a truncated Pareto distribution and has a characteristic of its

International Journal of Future Generation Communication and Networking

Vol. 9, No.8, (2016)

Copyright ⓒ 2016 SERSC 17

Reading Time following the exponential distribution [13] [14]. The video traffic and web

browsing traffic data set was created according to such characteristics and the data set

created by using the Bit-Twist packet replay engine [15] was made to replay on the

Mininet topology. Src IP address, Dst IP address, Src MAC address, and Dst MAC

address that are all parts of the flow table were used as the matching fields to compare the

packet arriving at the switch with the flow. Table 6 shows some parts of the flow table.

Table 6. Parts of Flow Table Header Information in OpenFlow

Flow

Number

Match Fields

Src IP Dst IP Src MAC Dst MAC

1 10.0.0.1 10.0.0.2 00:00:00:00:00:01 00:00:00:00:00:02

2 10.0.0.1 10.0.0.3 00:00:00:00:00:01 00:00:00:00:00:03

3 10.0.0.1 10.0.0.4 00:00:00:00:00:01 00:00:00:00:00:04

4 10.0.0.1 10.0.0.5 00:00:00:00:00:01 00:00:00:00:00:05

If a flow table like Table 6 exists and a packet arrives at the switch, Src IP address, Dst

IP address, Src MAC address and Dst MAC address of the packet are compared to check

whether any flow within the table has the same field values. If they do, they are

considered as the same flow and processed accordingly. For example, if a packet has

information of Src IP address:10.0.0.1, Dst IP address:10.0.0.4, Src MAC

address:00:00:00:00:00:01, Dst MAC address:00:00:00:00:00:04, it is processed as the

same as the flow number 3 of the flow table.

5.2. Experiment Results

In order to evaluate the performance of the P-LRU algorithm suggested in this paper,

the FIFO, LRU and LFU algorithms, which are the existing flow replacement algorithms,

were configured as controller applications and applied to the virtual SDN network for

performance comparison.

V1W9 V3W7 V5W5 V7W3 V9W1
0

50

100

150

200

250

300

350

400

450

T
h
e

n
u
m

b
er

 o
f

fl
o
w

 t
ab

le
 r

ep
la

ce
m

en
ts

DataSet

 LRU

 LFU

 FIFO

 P-LRU

Figure 7. The Number of Flow Table Replacements for each Algorithm

International Journal of Future Generation Communication and Networking

Vol. 9, No.8, (2016)

18 Copyright ⓒ 2016 SERSC

Table 7. The Number of Flow Table Replacements of LRU and P-LRU

 V1W9 V3W7 V5W5 V7W3 V9W1

LRU 283 245 148 72 414

P-LRU 101 96 61 36 141

Reductio

n

Ratio

64.4% 60.9% 58.8% 50% 66%

Figure 7 is a comparison of the number of table replacements. The number of table

replacements refers to the number of occurrences of deleting a flow and inserting a new

flow. This is more efficient if the number is smaller. Since the table size of the switch was

set as 10, 13 and 16, flow table replacement of switch 1 was more frequent than that of

switches 2 or 3. In P-LRU, there was spare space in the tables of switches 2 and 3 even

though the flow table of switch 1 was replaced and hence there were no table

replacements in switches 2 and 3. However, if the tables of switches 2 and 3 were full, the

flows at switches 2 and 3 were also deleted when a table replacement took place at switch

1. Since the flow table replacement only occurred at switch 1, and switches 2 and 3 only

had flow deletions, P-LRU’s flow table replacement was much smaller than that of the

other algorithms.

As mentioned in Section 5-1, if 9 video servers transmit packets 1-on-1 to 9 clients and

1 web server transmits 1-on-1 to one client, there will be 10 flows created. However, the

test environment of this paper has set the table size of the switches as 10, 13, and 16 so

when there were only 10 flows created, table replacement did not take place. Hence, the

topology was changed to allow more flows than the table size.

The table replacement numbers of V9W1 showed an overall increase since the

topology was changed to 1 video server, 1 web server and 20 clients where the video

servers transmitted packets to 18 clients, the web server transmitted to 2 clients so as to

create 20 flows in total.

The reason why the number of flow table replacements increased overall in V9W1 is

because more flows were created by adjusting the number of video servers to be 18 and

web servers to be 2, as shown in Table 3. This data set repeats transmitting video traffic to

18 clients and transmitting web traffic to 2 clients. Other data sets repeat transmitting to

10 clients with different flows but the V9W1 data set transmits the traffic with 20

different flows. In other words, the V9W1 data set creates more flows than the other data

sets when their flow table sizes are the same and hence results in more frequent changes

of the flow table and an increased number of flow table replacements. Nonetheless, the

reason why the number of P-LRU replacements did not increase greatly is because spare

space at flow tables was secured when a flow at one switch was deleted, the same flow

was also deleted from all other switches that had full flow tables.

Table 7 shows numeric comparisons between the number of table replacements of the

LRU algorithm and the P-LRU scheme. In each data set, P-LRU showed approximately

50-65% reduction in table replacements compared to LRU.

International Journal of Future Generation Communication and Networking

Vol. 9, No.8, (2016)

Copyright ⓒ 2016 SERSC 19

V1W9 V3W7 V5W5 V7W3 V9W1
0

250

500

750

1000

1250

1500

1750

2000

2250

2500
 LRU

 LFU

 FIFO

 P-LRU

T
h
e

n
u
m

b
er

 o
f

m
es

sa
g
e

ex
ch

an
g
es

DataSet

Figure 8. The Number of Message Exchanges between Controller and
Switches for Each Algorithm

Table 8. The Number of Message Exchanges between Controller and
Switches in LRU and P-LRU

 V1W9 V3W7 V5W5 V7W3 V9W1

LRU 1546 1368 888 468 2187

P-LRU 1354 1293 750 405 1462

Reduction

Ratio
12.5% 5.5% 15.6% 13.5% 33.2%

Figure 8 is a comparison of the number of message exchanges between the controller

and switches when transmitting each data set. If a flow related to the packet does not exist

in the table, the controller and the switch exchange 3 messages: PacketIn, FlowModify,

and PacketOut. Two additional messages, namely FlowRemoved and FlowModify, are

further exchanged when the flow is replaced. Hence, 5 messages are exchanged in total.

In existing algorithms, each switch manages its own flow table separately but in P-LRU,

when a flow is deleted at the switch with the smallest flow table size, the same flow is

also deleted from the flow tables of all other switches that have full flow tables. Therefore,

table replacement only occurs at the switch with the smallest table size and this results in

reduced number of message exchanges in P-LRU.

The reason why there were more message exchanges in the V9W1 data set than other

data sets is because the flow table size of the switch was the same but more flows were

created and resulted in more flow table replacements.

Table 8 numerically compares the number of message exchanges between controller

and switch in LRU algorithm and P-LRU. In each data set, P-LRU displayed 5-33%

reduction compared to LRU.

International Journal of Future Generation Communication and Networking

Vol. 9, No.8, (2016)

20 Copyright ⓒ 2016 SERSC

V1W9 V3W7 V5W5 V7W3 V9W1
9000

9200

9400

9600

9800

10000
 LRU

 LFU

 FIFO

 P-LRU

T
h
e

n
u
m

b
er

 o
f

fl
o
w

 m
at

ch
in

g

DataSet

Figure 9. The Number of Flow Matching for each Algorithm

Figure 9 compares the flow matching numbers of existing algorithms against P-LRU.

The reason why the number of flow matching increases as the ratio of video traffic

increases in the data sets except V9W1 is because the cycle of video traffic becomes

smaller and reduces the number of video traffic flows being deleted from the flow table.

The reason why the number of each algorithm’s flow matching decreased in the V9W1

data set was because the number of video servers increased to 18, as shown in Table 3.

The number and period of video traffic flow increased because the number of video

servers increased while the flow table sizes of other switches stayed the same as the other

data sets. Therefore, the video traffic flow maintained at the flow table was not constant

and the overall number of flow matching decreased.

The reason why the flow matching numbers of LRU and P-LRU are similar in other

data sets except V9W1 is because the operating method of P-LRU is based on the LRU

method. However, the reason why the flow matching numbers of P-LRU is higher than

that of LRU with V9W1 is because P-LRU deletes the flow from all switches with full

flow table when deleting the flow at one switch. Figure 10 and 11 display the process of

LRU and P-LRU when the table size of the switches is 5, 6, and 7 each. S1, S2, and S3 in

the figure represent switches 1, 2 and 3, respectively, whereas F1 to F9 represent the

flows. LRU deletes the oldest one after matching at each switch every time, but P-LRU

deletes the oldest ones after matching at all other switches as well. By deleting the same

flow deleted at switch 1 from all other switches, the flow created previously can be

maintained in the flow table. For example, V9W1 is a data set that repeatedly sends out

18 video transmissions and 2 web transmissions in such a way that packets belonging to

individual transmissions are interleaved sequentially. In other words, all packets

belonging to the 18 video transmissions are sent in sequence, followed by the packets

pertaining to the two web transmissions in sequence. The sequence is then repeated with

18 video packets sent in sequence, and so on. Furthermore, V9W1 has a long cycle of

video traffic transmission. That is, the time interval between consecutive packets

International Journal of Future Generation Communication and Networking

Vol. 9, No.8, (2016)

Copyright ⓒ 2016 SERSC 21

belonging to the same video traffic is long, so the LRU algorithm works like FIFO as

shown in Figure 10. But for P-LRU, Figure 11 shows that when 6, 2, 3, 4, 5 flows within

the flow table of switch 1 are replaced by 6, 7, 8, 4, 5, flow number 3 is deleted at switch

1 as well as at switch 2 and switch 3. At this stage, flow 1 is maintained at switch 2 while

flows 1 and 2 are maintained at switch 3. Since the flows maintained without deletion at

the flow tables can be re-matched when video packets are once transmitted and begin

transmitting again, the number of flows matched by LRU is larger than that by P-LRU

when there are large video transmissions.

Figure 10. Flow Table Replacement by the LRU Algorithm

Figure 11. Flow Table Replacement by the P-LRU Algorithm

6. Conclusion and Future Work

This paper has explained the problem of flow table overflow and the controller

overhead increase when an SDN network is composed of a number of switches with

different performances. The study has also suggested a Proactive-LRU flow table

management scheme in order to reduce this problem. Proactive-LRU is a flow table

management method wherein when a flow is deleted at a switch and the flow tables of

other switches having the same flow are full, that flow is also deleted at all those switches.

The existing replacement algorithms, namely LRU, LFU, and FIFO were configured as

controller applications and the performance of all algorithms were compared to evaluate

the performance of P-LRU. When P-LRU was compared against LRU, which performs

the best among the LRU, LFU, and FIFO algorithms, it showed reductions in the number

of flow table replacements by 50-65%, in controller computation by 50-65% and in the

number of message exchanges for flow creation and flow table replacements by 5-33%.

As future work, a method to increase flow table matching numbers and to decrease the

overhead of the controller within the P-LRU algorithm will be investigated. Furthermore,

an efficient flow table management scheme according to traffic pattern will be researched

and the performance of all these techniques will be evaluated against previous studies.

International Journal of Future Generation Communication and Networking

Vol. 9, No.8, (2016)

22 Copyright ⓒ 2016 SERSC

Acknowledgments

This work is supported by Kyonggi University Research Grant 2015.

References

[1] ONF, “Software-Defined Networking: The New Norm for Networks,” ONF White Paper, (2012), pp. 7.

[2] S. Sezer, S. S. Hayward, P. K. Chouhan, B. Fraser, D. Lake, J. Finnegan, N. Viljoen, M. Miller and N.

Rao, “Are we ready for SDN? Implementation challenges for software-defined networks”, IEEE

Communications Magazine, vol. 51, no. 7, (2013), pp. 36-43.

[3] P. Dely, A. Kassler and N. Bayer, “Openflow for wireless mesh networks”, Computer Communications

and Networks (ICCCN), (2011).

[4] A. R. Curtis, J. C. Mogul, J. Tourrilhes, P. Yalagandula, P. Sharma and S. Banerjee, “DevoFlow: scaling

flow management for high-performance networks”, ACM SIGCOMM Computer Communication

Review, vol. 41, (2011), pp. 254-265.

[5] A. Dixit, F. Hao, S. Mukherjee, T. V. Lakshman and R. Kompella, “Towards an elastic distributed SDN

controller”, ACM SIGCOMM Computer Communication Review, (2013).

[6] S. H. Yeganeh and Y. Ganjali, “Kandoo: a framework for efficient and scalable offloading of control

applications”, Proceedings of the first workshop on Hot topics in software defined networks, (2012), pp.

19-24.

[7] A. Tootoonchian and Y. Ganjali, “HyperFlow: A distributed control plane for OpenFlow”, Proceedings

of the 2010 internet network management conference on Research on enterprise networking, (2010), pp.

3-3.

[8] S. Banerjee and K. Kannan, “Tag-in-tag: Efficient flow table management in sdn switches”, Network

and Service Management (CNSM), (2014), pp. 109-117.

[9] K. Agarwal, “Shadow macs: Scalable label-switching for commodity ethernet”, Proceedings of the

Third Workshop on Hot Topics in Software Defined Networking, (2014), pp. 157–162.

[10] B. Lantz, B. Heller and N. McKeown, “A network in a Laptop: Rapid Prototyping for Software-Defined

Networks”, HotNets, (2010).

[11] POX, Python Network Controller. http://www.noxrepo.org/pox/about-pox/.

[12] ostinato.org. Ostinato: Packet/traffic generator and analyzer. Technical report, (2011).

[13] “802.20 Evaluation Methodology Strawman-00”, Project of IEEE 802.20 Working Group on Mobile

Broadband Wireless Access, C802.20-03/43, 2003.

[14] B. Chandrasekaran, “Survey of network traffic models”, Washington University in St. Louis CSE, 567,

(2009).

[15] Bit-Twist. http://bittwist.sourceforge.net/.

Authors

Dongryeol Kim, he was born in Ansan, Korea, in 1990. He

received the B.S. degree in Computer Science from the Kyonggi

University, Suwon, Korea, in 2015, and He is working on a master’s

degree in computer science. His current research interest includes

SDN and OpenFlow protocol.

Byoung-Dai Lee, he is an associate professor at the department

of Kyonggi University, Korea. He received his B.S. and M.S.

degrees in Computer Science from Yonsei University, Korea in

1996 and 1998 respectively. He received his Ph.D. degree in

Computer Science and Engineering from University of

Minnesota, Minneapolis, U.S.A. in 2003. Before joining the

Kyonggi University, he worked at Samsung Electronics, Co. , Ltd

as a senior engineer from 2003 to 2010. His research interests

include digital broadcast systems, multimedia streaming systems,

and networked multimedia communications systems. He is the

corresponding author of this paper.

http://www.noxrepo.org/pox/about-pox/

