
International Journal of Future Generation Communication and Networking

Vol. 9, No. 7 (2016), pp. 87-100

http://dx.doi.org/10.14257/ijfgcn.2016.9.7.09

ISSN: 2233-7857 IJFGCN

Copyright ⓒ 2016 SERSC

Steerable Name Lookup based on Classified Prefixes and Scalable

One Memory Access Bloom Filter for Named Data Networking

Sheng Huang, Jianghua Xu, Xiaofei Yang, Zhen Wu and Cuicui Niu

Key Laboratory of Optical Communication and Networks, Chongqing University

of Posts and Telecommunications, Chongqing, 400065, China

huangs@cqupt.edu.cn; xujiang_hua@163.com;Xiaofyang@163.com;

wuzhen_mail@163.com; 916781121@qq.com

Abstract

Name Data Networking (NDN) is an entirely new network architecture, in which data

packet forwarding rely on content names instead of fixed-length IP addresses. Under the

new naming system, content names are hierarchical structure and have variable length,

these pivotal features bring new challenges to meet line speed at large scale. In this paper,

we propose Steerable Name Lookup based on Classified Prefixes and Scalable One

Memory Access Bloom Filter for Named Data Networking (SNLBF) that prefixes are

classified by the number of components and the length of prefix to reduce the size of

collection and reduce the expansion rate of the Bloom filter by relieving the rate of

collection growth. Then prefixes with different length and component numbers are mapped

into different Bloom filter. In order to reduce unnecessary probes, we design the number

of component steerable structure (NCS). One memory access Bloom filter and scalable

Bloom filter are combined to solve scalability of name lookup engine and speed up name

lookup. Because H3 in scalable Bloom filter is no longer applicable, we design new hash

modular arithmetic. Our evaluation results show that SNLBF can achieve high lookup

speed and exhibit good scalability to large-scale prefixes table.

Keywords: Name Data Networking (NDN) Scalable Bloom filter(SBF) One Memory

Access,The number of component steerable structure(NCS)

1. Introduction

NDN is proposed recently as a new network architecture for future network and

becomes research hotspot quickly, which directly regards content as core object. NDN no

longer concentrate on “where” the content (information) is located, but pay more

attentions to the content itself, such as content quality and security[1-2]. At the same time,

NDN can solve problems that can‟t be solved completely in IP network. The name of

requested content is treated as the sole basis in the process of requesting data，router

forwarding relies upon the longest prefix matching (LPM) of content names. Because of

the new naming system, the name are hierarchical, which consists of a series of delimited

components and the length of prefix is the number of characters to be contained. For

examples, “/uk/co/inventorysoftware” has three components, namely uk, co and

inventorysoftware and the length of it is 24. Compared to IP prefix lookup, these

emerging features of NDN names bring several unprecedented challenges for LPM name

lookup in a practical large scale. These challenges are shown as below:

1) The change of matching granularity. NDN names, unlike IP address, have a series of

delimited components. It is different from IP match that LPM in NDN must match prefix

at the end of component, rather than at any digit in IP.

2) High update rate. When the Content Stores (CS) around the current node changes, it

has to update the forwarding table in the router to ensure efficient routing immediately.

International Journal of Future Generation Communication and Networking

Vol. 9, No.7, (2016)

88 Copyright ⓒ 2016 SERSC

New content is published and old one is replaced frequently, which must bring high

update rate.

3) Variable prefix length. NDN name consists of a series of delimited component which

has variable length. It is difficult to organize prefix effectively and needs to consume

more computing resources when executing the longest prefix match.

Recently, some researchers have proposed many algorithms on name lookup in order to

speed up packet forwarding. These algorithms can be roughly divided into two categories.

One is based on Trie, an ordered tree data structure, which related solutions have been

conceived. Recently, Wang et al. proposed an effective name component encoding (NCE)

to accelerate component matching and developed the State Transition Arrays(STA) to

speed up name lookup[3]. However, the whole structure of name still keep Trie, the

performance of NCE may degraded with depth of Trie increased. In additional the STA

uses pointer to indicate location of the node and the memory cost is relatively high. Zhang

et al. proposed Component-Trie whose depth goes down compared to Traditional

Character Trie (TCT). But Component-Trie is only allowed to allocate character pointer

to store component because component has different length [4].The performance of

Component-Trie will decline greatly because more memory access is needed.

Another family of approaches relies on hash functions. CCNX, achieves LPM as

follows: The FIB is a hash table consisting of prefixes [5]. Firstly, the full name is used as

key retrieves in the hash table. If the full name is detected, matching is successful.

Otherwise we retrieve new name by removing the last component until the name is empty

or matching is successful. The number of probe times equals to the number of component

to be contained in the prefix at the worst case to make difficult cope with data packet.

Wang et .al proposed two-stage Bloom filter, in the first stage it determines the greatest

number of components of name and in the second stage it looks up the prefix in a group

of Bloom filter[6]. Prefixes are mapped into different Bloom filter depending on

forwarding port, which significantly reduced the memory cost. Its performance, however,

depends on the distribution of prefix length and the number of ports in the router. With

unfavorable prefix distribution and large number of ports, the performance of Name Filter

may decrease. Unfortunately, it didn‟t propose effective measures to solve false

forwarding because of the false positive rate of Bloom filter, which causes false packet

forwarding and wastes bandwidth resource in the network.

After analyzing existing schemes, we propose Steerable Name Lookup based on

Classified Prefixes and Scalable One Memory Access Bloom Filter for Named Data

Networking, which can achieve high throughput and high update rate. The main

contributions are as follows:

(i) we firstly put forward to classify the prefix by the number of components and length of

prefix to degrade the size of the collection and reduce the expansion rate of the Bloom

filter by relieving the rate of collection growth. At the same time, prefix with the same

number of components and length is stored in each hash table, so each node in hash table

can be allocated memory with specific size.

(ii) we design NCS to optimize the number of components when longest prefix matching

is performed to avoid unnecessary probe and speed up name lookup. Fortunately NCS is

memory-efficient because of high aggregation of the first three components in prefix.

(iii)One memory access Bloom filter and scalable Bloom filter are combined successful.

We design new hash modular arithmetic to ensure just one index of the last Bloom filter

to be calculated. If the other index is needed, it can be obtained just only by bit shift

operation to avoid hash calculation, meanwhile one memory access can greatly speed up

name lookup.

The rest paper is organized as follows: Section 2 introduces Steerable Name Lookup

based on Classified Prefixes. We describe scalable one memory access Bloom filter in

Section 3 and theory analysis for proposed solution are presented in Section 4. In Section

5, we conduct extensive experiment to evaluate the performance of SNLBF, then we

International Journal of Future Generation Communication and Networking

Vol. 9, No.7, (2016)

Copyright ⓒ 2016 SERSC 89

conclude the paper in Section 6.

2. Steerable Name Lookup based on Classified Prefixes

2.1. 3M Prefix Table

The prefix table using in experiment, “3M prefix table”, contains 2,739,587 entries.

The distribution of components number and the average length of prefix are shown in

Table 1. Fig. 1 shows the distribution length of prefix with different component numbers.

The 3M prefix table is obtained mainly by following steps:

Step 1. The domain name and URL widely used in academic community are

downloaded from DMOZ [7], then domain name is extracted from URL.

Step 2. Hash table is built and chain is used to handle hash conflicts. All domain names

are inserted into hash table. If the inserting domain name has already been existed in hash

table, the domain name shouldn‟t be inserted. When all prefixes are completed, all names

in hash table are extracted to construct prefix table to realize remove duplicate.

Step 3. The delimiter „.‟ in the domain name is modified as „/‟. We arrange the domain

name in reverse order to meet NDN naming convention. For example, “www.baidu.com”

is modified as “/com/baidu/www”.

Table 1. The Distribution of 3M

0 20 40 60 80

0

40000

80000

120000

160000

200000

N
u
m

 o
f

p
re

fi
x
es

The length of prefix

one component

two component

three component

four component

five component

 six component

seven component

eight component

nine component

Figure 1. The Distribution Length of Prefix with different Component
Numbers

2.2. Classified Prefixes

The general idea of classifying prefixes is that prefixes is classified by components

numbers and the length of prefix to reduce the size of the collection.

As shown in Table 1, 2,104,478 prefixes consist of two components and 544,249

prefixes consist of three components, which occupy 76.80% and 19.9% of 3M prefix table

respectively. For the prefixes with same components number, the length distribution of

prefix approximately is normal distribution, which means that the length of most prefixes

Components 1 2 3 4 5
6 7 8 9

Prefixes 64 2104478 544249 83316 7138
310 26 5 1

Average

length
3.69 16.38 19.34 22.81 26.48

32.21 34.7 37 47

Percentage 0 76.80% 19.9% 3．03% 0.26%
0.01% 0 0 0

International Journal of Future Generation Communication and Networking

Vol. 9, No.7, (2016)

90 Copyright ⓒ 2016 SERSC

is limited within in a certain range. The number of the prefixes that have one and more

than five components is relatively less, so these prefixes are no longer divided and

mapped to Bloom filter. For the prefixes whose components numbers between two and

five are normal distribution, prefixes with different length in a certain range and

component numbers are mapped to different Bloom filter. Then these prefixes that are

mapped to different Bloom filter are stored in different hash tables. The number of

prefixes that its length beyond a certain range is small, so they don‟t be mapped to Bloom

filter and are stored in the corresponding hash table to reduce the number of Bloom filter.

The prefixes that are stored in each hash table have same length so that each node in hash

table can be allocated memory with specific size to avoid character pointer, therefore the

number of memory access times is reduced to one when lookup is executed in hash node.

Fox example, prefixes with two components whose length is between six and forty-six

are mapped to different Bloom filter according to the length of prefix, then they are stored

in hash table. The rest of prefixes that length beyond six and forty-six are stored in

corresponding hash table directly.

2.3. The Structure of Hash Table and NCS

It is obvious that the Bloom filter can only query whether an element belongs to the set

or not, so hash table is needed to store prefix and forwarding port[8-9]. Here, prefixes that

mapped to a Bloom filter stored in a hash table have same length. The structure of hash

table is presented in Fig. 2. The first part is used to store prefix. The second part

represents forwarding port. The third part is the pointer to the next node, and chain is used

to solve hash conflicts.

prefix port next

0

1

2

...

...

...

...

n-2

n-1

 /edu/buffalo/classics 1103 /uk/cool/amtraxdesign 13 NULL

NUll/br/com/hotelcaruarue 1103

Figure 2. The Structure of Hash Table

Prefixes with the same length is stored in each hash table, so each node in hash table

can be allocated memory with specific size avoiding character pointer.

In order to speedup name lookup, prefix that its component numbers is greater than

three is used as management object to construct the number of component steerable

structure to avoid unnecessary probes. The reason why we choose prefix with greater than

three components is that the prefixes that contains two component makes a large

proportion to bring difficulty to mange. The prefixes that the number of component is

greater than three are mapped to hash table to build component steerable structure. The

structure of NCS is presented in Fig. 3. The first part is character pointer. The second part

has six bits, because the prefix has nine components at most, after removing the first three

components, the number of the rest has six components at most. The third part is pointer

to the next node. For example, “/com/itgo/te/sch”, “/es/co/blogs/xuven/new” and

“/au/edu/nsw/schools/birrongboy/source” are stored in NCS as shown in Fig .3.

International Journal of Future Generation Communication and Networking

Vol. 9, No.7, (2016)

Copyright ⓒ 2016 SERSC 91

ia

The first
three components 6 bit next

0

1

2

...

...

...

...

n-2

n-1

Char * 1 0 0 0 0 0

Char * 0 1 0 0 0 0

NULL

/com/itgo/te

/es/co/blogs

Char * 0 010 0 0 NULL

/au/edu/nsw

Figure 3. The Structure of NCS

As shown in Fig. 3, the first prefix has four components, so the first bit is set one. The

second prefix has five components, so the second bit is set one. The third prefix has six

components, so the third bit is set one. When longest prefix matching is executed on the

“/es/co/blogs/xuven/new/video/version2.0”, it is no longer to find the whole name. The

first three components is used as key to obtain index in hash table. According to the index

of hash table, we find the string that the first part in the first node points to equals to the

first three components “/es/co/blogs” and the second bit is set one, so the first five

components is extracted to form new name. If there is no NCS, the number of probe times

is three. Luckily, the number of probe times is reduced to once according to NCS.

2.4. The Aggregation of Prefixes in NCS

We define prefix aggregation as , represents the number of prefixes

whose number of component is greater than three, represents the number of

prefixes that the first three component is different in
i

s

prefixes. The aggregation change

is shown in Fig. 4.

0.5 1.0 1.5 2.0 2.5

56

58

60

62

64

66

68

 A
g
g
re

g
at

io
n
 r

at
io

(%
)

Num. of prefixes(M)

Figure 4. Aggregation of the First Three Components

As shown in Fig. 4, aggregation will be increased along with the size of router table

increased, but the growth rate of aggregation becomes slow gradually. Obviously, the first

three components can be reused, so the memory cost of NCS should be small.

1 /
i i i

d s 
is

International Journal of Future Generation Communication and Networking

Vol. 9, No.7, (2016)

92 Copyright ⓒ 2016 SERSC

3. Scalable One Memory Access Bloom Filter

Most of existing Bloom filter with fixed parameters represent static collection, which

the vector length of Bloom filter are calculated by maximum false of positive rate

tolerated in practical application and the number of hash functions, so the number of

prefixes that can be inserted into Bloom filter has upper limit[10]. The Bloom filter is not

available when the number of prefixes that has been stored in Bloom filter beyond its

upper limit. In practice the routing table needs to update frequently, such as insertion and

deletion. When the number of prefixes that has already existed in Bloom filter is greater

than its upper limit, the scalability of search engine suffers severely restriction because

inserting prefixes into Bloom filter make it unavailable, which no longer suit for routing

and forwarding.

Scalable Bloom Filter (SBF) was firstly proposed by Xie to solve scalability [11],the

main idea of SBF is that keeping a low false positive rate by adding Bloom filter vectors

with double length when necessary. When the number of prefixes existed in Bloom filter

has achieved the upper limit, double vector length of Bloom filter are generated to ensure

scalability. Because the length of prefix in NDN is variable and no externally imposed

upper bound, which brings great difficulty to choose hash transformation matrix H3, the

new hash modular arithmetic is designed to achieve that it only need to calculate one

index of the last Bloom filter. If the other index is needed, it can be obtained just by bit

shift operation to avoid unnecessary hash calculation. The index of the SBFi and SBFi-1

are originated from i and i-1 bit left shift operation basing on hash value modular

arithmetic by m, so the index of SBFi-1 can be obtained only by one bit shift operation

basing on SBFi. The details are shown in Algorithm 1.

Algorithm 1 The hash modular arithmetic of Scalable Bloom filter

Step 1. The vector length of initialization Bloom filter SBF0 is m, which the index of

vector from 0 to m-1. The hash value with modular arithmetic by m can be correspond

to the index of SBF0 vector.

Step 2. After the first expansion, the vector length of SBF1 is twice as long as SBF0 .

The hash value is executed modular arithmetic by m firstly and then one bit left shift

operation, which can be correspond to the index of SBF1 vector.

Step 3. After the i expansion, the vector length of SBFi is i times as long as SBF0 . The

hash value is executed modular arithmetic by m firstly and then i bit left shift

operation, which can be correspond to the index of SBFi vector.

The corresponding bit of Bloom filter is set one according to Algorithm 1. The index of

vector of SBFi-1 is (hashvalue%m)<<2
i-1

 and the index of vector of SBFi is

(hashvalue%m)<<2
i
. Obviously, the index of vector of SBFi-1 can be obtained that it

only need to execute one bit left shift operation based on SBFi .So only k hash functions

need to be calculated to save computation resources.

Compare with hash calculation, memory access wastes much more time. So the

number of access memory times should be reduced as far as possible. One memory access

of Bloom filter is firstly proposed by Yan [12] .The main idea is that one hash value is

used as index of Bloom filter, the rest k-1 hash value are stored in a single word, which

can be obtained in one memory operation for all k hash values, thus the memory access

times is reduced to one from k.

IP address is used as core object in IP-based network, which consume a relatively low

computation resources, but one hash calculation requires at last one traverse of the whole

prefix which make the hash computation the dominated consuming task in the name

lookup operation in NDN. Algorithm 2 makes only one hash function to be calculated to

speed up name lookup:

International Journal of Future Generation Communication and Networking

Vol. 9, No.7, (2016)

Copyright ⓒ 2016 SERSC 93

Algorithm 2 The lookup in one memory scalable Bloom filter

1: Procedure Lookup(name, i, SBF)

2: hash[0….k] 0;

3: ws strlen(name);

4: hashvalue hash(prefix)%m;

5: hash[0] hashvalue<<i;

6: word 0;

7: while(i)

 8: for j 1 to k do

 9: location hash[j-1]%ws;

10: hash[i] (name[location]+hash[j-1])%w;

11: word word|(1<<hash[j])

12: end for;

13: if((SBFi[hash[0]]&word)!=word)

14: hash[0] hash[0]>>1;

15: i i-1;

16: else return true;

17: end if;

18: end while

19: End Procedure

Hash[0] is calculated from line 4 to 5 to used as the index of Bloom filter, the line 8 to

11 present that the rest k-1 hash values combined offset and old hash values are mapped

to a single word by shifting operation, thus the k-1 hash values are stored in a word. The

new word1 is obtained by executing „and‟ which are based on word and the word that is

stored in the index of hash [0] in Bloom filter. If word1 is equal to word, the match is

successful. Otherwise the next new index Hash [0] of Bloom filter can be obtained by

simple bit shift operation until matching successful or all Bloom filter are checked .

 When the packet arrives, the content name is extracted from the packet to lookup the

next forward port. First, the new name that has more than three components is formed

according to NCS. Then the Algorithm 2 is executed to test new name whether or not. If

the new name has existed in Bloom filter, the next forward is looked in the corresponding

hash table.

4. Theory Analysis

For convenience, we summarize the main notions used in this section in Table 2.

Table 2

symbol The meaning of symbol

k The number of hash functions in Bloom filter

m The vector length of initialization Bloom filter

w The length of word, 32 bits.

h The number times of extension

li The number of words in SBFi, li=mi/w

n The number of prefixes in collection

n0 The number of prefixes can be inserted in SBF0

ni The number of prefixes be inserted in SBFi

ni-max The maximum prefixes can be inserted in SBF

t The number of prefixes in the last Bloom filter

International Journal of Future Generation Communication and Networking

Vol. 9, No.7, (2016)

94 Copyright ⓒ 2016 SERSC

f The false positive rate of Bloom filter

ws The length of prefix

a Load factor in hash table

4.1. The False Positive Rate of SBF Analysis

The false positive rate of one memory access Bloom filter [11] is show in formula (1)

 0

1 1 1
(, ,) () (1) (1 (1))

i

i

i

j n

n jj j jk k

i i n

j i i

f i k n C
l l w







    (1)

Suppose the dynamic set with n prefixes are mapped to scalable Bloom filter

(SBF),which need to expand h times, and t represents the elements in the last Bloom

filter:

2 0
log (/ 1)h n n    (2)

 
0

)1/(log
)12(2 nnt

nn



 (3)

The maximum number of prefixes in SBFi (i<h) ni can be replaced by 2

i
 n0 , formula (1)

can be translated as follow:
0

0

0

2

2

2
0 0 0

1
(,) () (1) (1 (1))

2 2

i

i

i

n

n jj j jk k

i i in
j

w w
f i k C

m m w





   
 (4)

So the false positive rate of SBF can be calculated by:
1

0(, ,) 1 (1 (,))(1 (, ,))i h

i i hf h k n f i k f h k t 

   
(5)

Miscarriage of justice of Bloom filter only lead to extra lookup in hash table in SNLBF,

which don‟t lead to packet false forwarding. Because miscarriage of justice means that the

prefixes out of Bloom filter will be judged in it, lookup will be executed in the

corresponding hash table. Luckily, prefixes has been stored in hash table to make

matching fail, no forwarding port is looked.

4.2. Time Complexity Analysis

ws represents the length of prefix, one hash computation has (w)sO complexity, the

average complexity of SBF can be expressed 2 0
(log (/))O k n n and SBF which is used in

string computation has 2 0(log (/))sO k w n n  complexity in average case. One memory

access of Bloom filter can reduce the number of memory access times, the average

complexity can be reduced to))/(log)1((02 nnwkO s  in algorithm 2. Meanwhile, the

number of access memory times is reduced to one from k in one query.

The length of successful lookup and unsuccessful lookup in hash table can be

respectively represented as 1
2

nc
s


  and

nc
u e





  .The length of lookup is constant

which is related with the number of items in hash table. The length of extra lookup in

hash table which caused by miscarriage of justice in Bloom filter can be shown as follow:

1

0
()(1 (1 (,))(1 (, ,)))

i h

extra i i h
l e f i k f h k t




  


     (6)

The average length of lookup in hash table, combining successful and unsuccessful

lookup, can be denoted as follows:

1 1

0 0(1)((1 (,))(1 (, ,))) ()(1 (1 (,))(1 (, ,)))
2

i h i h

average i i h i i hl f i k f h k t e f i k f h k t
    

          

(7)

The algorithm proposed in this paper can bring improvement compared to traffic waste

in network which caused by false forwarding.

International Journal of Future Generation Communication and Networking

Vol. 9, No.7, (2016)

Copyright ⓒ 2016 SERSC 95

5. Simulation Results and Analysis

In this section, we evaluate the performance of SNLBF and compare it with other name

lookup mechanisms in terms of lookup throughput, memory consumption, and update.

TCT, CCNX and BH are used as contrast algorithm.

5.1. Experimental Setup

The name lookup engine is implemented on Linux operating system with the version

number Ubuntu13.10. The engine is developed by C++ program language. Relevant

hardware configuration is listed in Table 3.

Table 3. Hardware Configuration

Item Specification

Motherboard LENOVO (Intel H81 (Lynx Point))

CPU Intel Core-3300 (4 cores)

RAM 8 G Bytes

5.2. Name Trace

The name traces are used to test the lookup performance of our proposed methods.

Two types of name traces, average and heavy workload, are generated to measure the

lookup performance that are used to simulate name lookup under average and heavy

workload. As for average workload traces, a name is formed by connecting a prefix with

suffix which choose from suffix table randomly. As for heavy workload trace, using the

same method, but the length of suffix is greater than constant length. So the average

length of name in heavy workload trace is greater than the average workload trace.

Compare to average workload, the heavy workload will consume much more

computation.

5.3. Experimental Result

5.3.1. Memory

The memory cosumption in SNLBF include three parts: (1) SBF (2) Hash table (3)

NCS. The comparison with SNLBF, TCT, CCNX and BH is shown as Fig. 5.

0.5 1.0 1.5 2.0 2.5

0

50

100

150

200

250

300

M
em

o
ry

 c
o
st

(M
B

y
te

)

Num of prefixes(M)

 TCT

 BH

 CCNx

 SNLBF

 NCS

 Figure 5. The Memory Consumption of Methods on Different Prefix Table
Sizes

International Journal of Future Generation Communication and Networking

Vol. 9, No.7, (2016)

96 Copyright ⓒ 2016 SERSC

Because only one character of prefix is stored in one node of TCT which will cause a

great deal of nodes to be generated .Worst, extra memory in one node is used to store

other information. Compared to other three methods, TCT consume the most memory. In

CCNx, only character pointer is used to point to the name prefix which will cause extra

memory that used to store the prefix. In SNLBF, the prefixes stored in most hash tables

have the same length so that memory can be allocated with specific size to void character

pointer. SNLBF requires a little more memory than BH and CCNx under the case of small

scale route table. With the size of route table increased, the three methods consume nearly

equal memory between 1.5M and 2.0M, and BH and CCNx need a little more memory

compare to SNLBF when the scale of router table achieves 2.5M. The result demonstrates

that SNLBF can save memory and has good scalability. NCS is designed to accelerate the

name of lookup speed, but NCS only require a little memory because the aggregation of

the first of three component of prefixes compressed the memory consumption.

5.3.2. Lookup Speed

First of all, we compare lookup speed on 3M prefix with other four methods under

average workload and heavy workload. In order to get the average name lookup speed, we

input name with scale correspond to the prefix table each time and get the total execution

time, so the average name lookup speed can be obtained. The experiment result is shown

as Fig .6.

0.5 1.0 1.5 2.0 2.5

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

L
o
o
k
u
p
 s

p
ee

d
(M

S
P

S
)

Num of prefixes(M)

 SNLBF:Average Workload

 SNLBF:Heavy Workload

 CCNx: Average Workload

 CCNx: Heavy Workload

 BH: Average Workload

 BH: Heavy Workload

 TCT: Average Workload

 TCT: Heavy Workload

Figure 6. The Speed of Name Lookup on Different Prefix Table Sizes

Fig .6 presents that the average lookup speed slightly decline with the scale of router

table increased. TCT has the worst performance because the depth of TCT is very great to

lead more memory access. Obviously, the performance of SNLBF is better than BH and

CCNx, because BH must conduct complex hash computing and cope with a number of

conflicts. Compared to SNLBF, CCNx needs many probes and to handle hash conflicts. In

SNLBF, the number of probe times in longest prefix matching can be reduced by NCS.

SNLBF can speedup name lookup because only one hash function need to calculate in

one query and the number of memory access times is reduced greatly.

5.3.3. Update

Fig .7 shows the update rate with the prefix table increased. Obviously, CCNx has best

update performance because the update of CCNx is relatively simple. SNLBF and BH

need to update forwarding plane and data plane. Counter Bloom filter will be update

firstly. Counter Bloom filter are mapped to forwarding plane to generate standard Boolean

International Journal of Future Generation Communication and Networking

Vol. 9, No.7, (2016)

Copyright ⓒ 2016 SERSC 97

Bloom filter. In additional, NCS need to be update. But the update rate of SNLBF can

achieve one third of the average lookup speed that can meet the actual application. TCT

has worst performance because executing name lookup need more memory access and the

update process is very complex.

0.5 1.0 1.5 2.0 2.5

0.5

1.0

1.5

2.0

2.5

3.0

3.5

U
p
d
at

e
ra

te
(M

/s
)

Num of prefixes(M)

 SNLBF

 CCNx

 BH

TCT

Figure 7. The Update Speed of Methods on Different Prefix Table Sizes

6. Conclusion

In this paper, we propose SNLBF, a fast name lookup method with low memory. We

put forward to classifying the prefix by the number of components and length of prefix to

degrade the size of the collection and reduce the expansion rate of the Bloom filter by

relieving the rate of collection growth. We design NCS to reduce the unnecessary probe.

One memory access Bloom filter and scalable Bloom filter are combined successful and

we design hash modular arithmetic because H3 is invalid. Extensive experiments

demonstrate that SNLBF can reduce memory cost effectively while guaranteeing

high-speed of longest prefix matching in name lookup. In the future, memory

consumption should be reduced as soon as possible while keeping high performance.

Especially, the number of memory access and hash function should be pay more

attentions.

Acknowledgements

This paper is supported by 973 project (2012CB315803), the National Natural Science

Foundation of China (61371096, 61171158, 61275077),the Natural Science Foundation

Project of CQ CSTC (cstc2013jcyjA40052,cstc2012jjA40060), the Scientific and

Technological Research Program of Chongqing Municipal Education Commission (Grant

No.KJ130515).

References

[1] L. Zhang, D. Estrin, V. Jacobson and B. Zhang, “Named data networking (ndn) project”, (2010).

[2] V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass, N. H. Briggs and R. L. Braynard, “Networking

Named Content”, CoNEXT09, (2009), pp. 1-12.

[3] Y. Wang, K. Q. He, H. C. Dai, W. Meng, J. C. Jiang and B. Liu, “Scalable name lookup in NDN using

effective name component encoding”, Computing Systems (ICDCS), 2012 IEEE 32nd International

Conference on. IEEE, (2012), pp. 688-697.

[4] T. Zhang, Y. Wang, T. Yang, J. Y. Yu and B. Liu. “NDNBench:A Benchmark for Named Data

Networking Lookup”, Next Generation Networking Symposium, (2013), pp. 2152-2157.

International Journal of Future Generation Communication and Networking

Vol. 9, No.7, (2016)

98 Copyright ⓒ 2016 SERSC

[5] CCNx project.http://www.CCNx.org/.

[6] Y. Wang, T. Pan, Z. Mi, H. C. Dai, X. Y. Guo, T. Zhang and B. Liu, “NameFilter: achieving fast name

lookup with low memory cost via applying two-stage Bloom filters”, IEEE INFOCOM

Mini-Conference, (2013).

[7] DMOZ-open directory project [EB/OL], (2011), http://www.dmoz.org/.

[8] S. Dharmapurikar, P. Krishnamurthy, D. E. Taylor, “Longest preifx matching using Bloom filter”,

IEEE/ACM Trans. Netw, vol. 14, (2006), pp. 397-409.

[9] W. So, A. Narayanan, D. Oran and Y. G. Wang, “Toward fast NDN software forwarding lookup engine

based on Hashed tables”, ACM ANCS, (2012).

[10] B. H. Bloom, “Space/time trade-offs in hash coding with allowable errors”, Communications of the Acm,

vol. 13, no. 7, (1970), pp. 422-426.

[11] K. Xie, Y. H. Min, D. F. Zhang, J. G. Wen and G. G. Xie, “A scalable Bloom filter for Membership

Queries”, IEEE, (2007), pp. 543-547.

[12] Y. Qiao, T. Li and S. Chen, “One memory access Bloom filters and their generalization”, INFOCOM,

Proceedings IEEE. IEEE, (2011), pp. 1745–1753.

Authors

Sheng Huang, she received his M.S. degree in communication

and information system from Huazhong University of Science and

Technology in 2003, received his Ph.D. degree in Electrical Circuit

and system from Chongqing University in 2008. He is now a

professor at School of Communication and Information Engineering,

Chongqing University of Posts and Telecommunications. His

research interests includeoptical communication system, channel

coding and networks.

Jianghua Xu, he is currently pursuing the M.S. degree with the

Department of Information and Communication Engineering in

Chongqing University of Posts and Telecommunications (CQUPT).

His main research interests include name lookup in Name Data

Networking and IP lookup.

Xaofei Yang, he is now a vice professor at School of

Communication and Information Engineering, Chongqing

University of Posts and Telecommunications. His research interests

include signal and systems.

Zhen Wu, he is currently pursuing the M.S. degree with the

Department of Information and Communication Engineering in

Chongqing University of Posts and Telecommunications (CQUPT).

His main research intersts include Routing and Forwarding strategy

in NDN.

http://www.dmoz.org/

International Journal of Future Generation Communication and Networking

Vol. 9, No.7, (2016)

Copyright ⓒ 2016 SERSC 99

Cuicui Niu, she has got master of engineering degree in

chongqing university of posts and telecommunications.Her main

research interests include the future Internet architecture and

mechanism, efficient transport mechanism in Content-Centric

Networking.

International Journal of Future Generation Communication and Networking

Vol. 9, No.7, (2016)

100 Copyright ⓒ 2016 SERSC

