
International Journal of Future Generation Communication and Networking

Vol. 9, No. 5 (2016), pp. 75-82

http://dx.doi.org/10.14257/ijfgcn.2016.9.5.08

ISSN: 2233-7857 IJFGCN

Copyright ⓒ 2016 SERSC

Frequent Items Mining Algorithm Over High Speed Network

Flows Based on Double Hash Method

Lei Bai and Chao Chen

Computer Department, North China Institute of Science and Technology

leib_cn@163.com

Abstract

In the high-speed backbone network, with the increasing speed of network link, the

number of network flows increase rapidly. Meanwhile, with restrictions on hardware

computing and storage resources, so, how to identify and measure large flows timely and

accurately in massive data become a hot issue in high speed network flow measurement

area. In this paper, we propose a new algorithm based on double hash algorithm to

realize large flow frequent items identification, according to the defect of MF algorithm

which produces false positive easily and frequent updates to bring the huge pressure to

the system. The complexity and false positive rate of the algorithm was analyzed. The

effect of large flow frequent items statistical accuracy and discard rate for parameter

configuration was analyzed through simulation. The theoretical analysis and the

simulation result indicate that compare to MF algorithm, our algorithm can identify large

flow frequent items more accurately, and satisfies the need of actual measurement.

Keywords: network measurement; massive data; data mining; frequent item; hash

method

1. Introduction

For the past few years, with the rapid development of the internet and the emergence of

new network applications, the trend of computer network is developing towards high

speed, large scale and complexity [1]. The notable feature is that the large amount of data

generates, and the data packet arrival rate becomes higher. This will result in data packet

processing unit time is getting shorter, and present a great challenge for storage capacity,

processing power and transmission capability of the system. Currently on the high-speed

backbone network, the average time to process each packet must be completed in the

nanosecond [2]. For example, the average time to process each packet in OC-192 link is

32ns approximately, and it will be down to 8ns in OC-768 link. So, for mass data, how to

mining frequent items in the stream network timely and accurately become a hot issue in

network flow measurement area. However, the measurement method based on network

flow has opened up a new way for high speed network traffic measurement. By merging

the data packets to the corresponding flow, it reduced the amount of data greatly, and

made the storage, processing and transmission of network data more easily.

In fact, not all applications need to know the information of each flow. Studies have

shown that the heavy-tailed distribution of network traffic is an important feature of flow

distribution, which means that a few flows have numerous packets account for most

traffic, while the rest of the traffic consists of a large number of smaller flows which have

few packets [3]. Usually, the flows which make larger contribution to the network traffic

referred to as large flow. Most of the actual applications need only to know the

information of large flows. Large flow identification is an important foundation of

network monitoring, network management and network accounting. By identifying these

large traffic flows, network managers can clearly grasp the distribution of network traffic,

International Journal of Future Generation Communication and Networking

Vol. 9, No. 5 (2016)

76 Copyright ⓒ 2016 SERSC

find denial of service attacks timely, control the traffic growth trend and allocate network

resources and the link capacity reasonably. Therefore, using the limited hardware

resources to focus on large flows becomes a better choice. So, large flow identification

problem in high speed network monitoring area is equivalent to the frequent item mining

problem in data stream which means that monitoring network flows and finding the

frequency of a packet that contains some features is higher than the given threshold.

At present, there are three kinds of mining algorithms for network traffic: sampling,

hash and counting [4]. Sampling method is to select the part of large data sets from data

entry to approximate statistical frequent item in the entire dataset. Hashing method is to

map the large range of data sets to a small range of the target data set, the data set used to

generate frequent target item as an approximate solution for the entire data set. Counting

method is to use a finite number of counting unit to carry out the cooperative count to

maintain the entire data set frequent items.

2. Definition of Network Flow and Frequent Items

Flow can be defined as a call or connection of logic correspondence. Property values

associated with the flow having a polymeric nature which reflects the events occurred

between the start and stop time, such as source/destination address, packet count, byte

count etc.

Frequent item is the flow which length exceeds a predefined threshold T for a

period of time.

Network flow frequent items mining algorithm constraints: (1) Limited storage

space. The storage space required to maintain summary statistics is much smaller

than the size of the complete data set, usually only store small amounts of data entry

summary information. (2) Real time processing. The processing time for each data

item is very short, small and easy to operate. (3) Linear scan at a time. The order of

arrival of each data item is completely random, therefore should read the data steam

from first to last sequentially [5].

3. Multistage Filters Algorithm

Multistage Filters (MF) algorithm is put forward by Eestan[6]. The basic principle is

that the algorithm uses a series of counting bloom filters and filter with multiple different

hash spaces and hash functions, so as to be able to filter out all the frequent items. The

executing procedure of MF algorithm is shown in Figure 1.

Figure 1. The Executing Procedure of MF Identify Frequent Items

MF algorithm is divided into multistage sequential filtration and parallel multistage

filtration. In multistage sequential filtration mode independent hash functions are stored at

each filter stage which is used to calculate the hash value for each packet corresponding to

the flow tag, then add it to the corresponding space. All packets of the same flow are

hashed to the same address space. Each address space has a counter to count the total

length of the flow which hashed into this position and initialized to 0. The storage

position which all counters are greater than T/d considered as a large space. Frequent

items will be mapped to the large spaces. Parallel multistage filtration is the use of

International Journal of Future Generation Communication and Networking

Vol. 9, No. 5 (2016)

Copyright ⓒ 2016 SERSC 77

multiple stages in parallel. Each stage has an independent hash function. When a packet

which belongs to a flow identified as F arrives, each stage calculates its hash value, and

find out the corresponding position in the hash table. The counter for this position is

initialized to 0. This counter is incremented every time the hash packet length size. For

the reason of all packets of the same flow are hashed to the same location, thus if the total

packet length size of flow F exceeds the threshold of T, then the counter of each stage

must also exceed the threshold T, At this moment can identify the large flow F.

However, there are some restrictions on the use of MF algorithm in large scale network

links. Firstly, for the reason of traffic burstiness and massiveness, the number of packets

will fill the whole hash space in a very short period of time, thereby resulting in false

positive which means mistake multiple small flows for a frequent item. If take the method

updated filters frequently and regularly, not only will lose the previous stage measurement

information, but also bring great pressure to the system hardware. Secondly, MF

algorithm can only identify the information of several overlarge flows. For the length of

the relatively small flows, identification accuracy is not high. Thirdly, MF algorithm uses

multiple filters which lead to the algorithm takes up more space.

4. Double Hash Algorithm

Because of the number of small flows in network account for the total flow volume of

80%-90% [7], so how to filter out most of the small stream becomes the key to identify

the frequent item in the network. In this paper, we propose a double hash algorithm which

composed by the Time-out Bloom filter (TBF) and Counting Bloom Filter (CBF). By

using TBF to filter small streams and using CBF to Statistics and identify frequent items,

our algorithm can identify large flow frequent items more accurately.

4.1. Time Bloom Filter

Time Bloom Filter (TBF) is modified by BF. Different from BF is that TBF

maintains the packet's timestamp instead of 0 or 1. When a packet arrives, using k

hash functions to calculate the packet tag and hash to the corresponding k units.

TBF will determine whether the difference between the two timestamps of the k

corresponding units is greater than the predetermined timeout period t0. If there is

any unit which time difference is larger than t0, the packet will be discarded.

Regardless of whether or not the packet is discarded, TBF will update the timestamp

of k units to the current timestamp of arriving packet. Thus TBF update operation

only updates timestamp, without the need to reset as frequently as BF. Figure 2

describes the process.

Figure 2. A TBF with 3 Hash Function

The researches show that the longer the flow length, the higher the frequency of

the frequent items, and the average packet arrival time interval is smaller [8, 9].

h3(c)

h2(c)

h1(c)

TBF

packet c

arrive
Anyone time

out with t0?

International Journal of Future Generation Communication and Networking

Vol. 9, No. 5 (2016)

78 Copyright ⓒ 2016 SERSC

Since all packets of the same flow are hashed to the same address space, for frequent

items belong to a large flow, the time interval is less than the threshold value t0, therefore

as long as the hash space is not occupied by other flows within the time interval of

two packets, this part of the packets will not be discarded. For a large number of

small flow packets, because of the packets of different flows are hashed to different

spaces, it will inevitably lead to the timestamp difference of some unit is larger than

interval t0. This part of the packets will be filtered. However, in extreme cases,

when the hash spaces of the frequent items are frequently occupied by other flows,

TBF will discard a large number of packets belong to some frequent items. This will

reduce the recognition accuracy of frequent items. So we need to use another

filtering technology to reduce the number of discarded packets.

4.2. Counting Bloom Filter

Counting Bloom filter is modified by standard BF. Unlike the BF, the m unit of

CBF maintains a counter rather than a bit. In this way, CBF not only has the add

operation and query operation just as BF, but also has the delete operation. By using

k independent hash functions, the add operation is to put the counter plus 1 for k

corresponding storage space. Delete operation is to subtract a value from the counter

for k units.

4.3. Double Hash Algorithm

Double hash algorithm is composed by the TBF and CBF. The basic structure is

shown in Figure 3. Algorithm allocates a memory size of M unit of storage space A1

and A2 respectively for TBF and CBF module. Each unit of TBF module maintains

packets arrive timestamp, and each unit of CBF module maintains a counter. The

initial value of all units is set to 0. TBF and CBF use different hash functions of

hash function set
1 2, kH H H to function for the arrival of packets, making mapped

into memory space A1 and A2.

Figure 3. Double Hash Algorithm Process Schematics

Figure 4 shows the basic process of the double hash algorithm: When a packet

arrives, handled by TBF firstly. TBF determine whether the difference of timestamp

between the two of the k corresponding to units is greater than the predetermined

timeout period
0t . If there is a unit of time difference greater than

0t , and the hash

position in the CBF module is less than
0n , then the packet will be discarded,

otherwise will be updated by CBF module. The timestamp of the k unit in the TBF

will be updated regardless of whether the time interval is greater than
0t . CBF

module adds 1 to the counter of the k units. If all of the counters of the k unit are

greater than the preset threshold value
0n , the stream is a large flow frequent item. If

any cell count is less than
0n , the stream may be a small stream, or it may be the first

part of the large current frequent item. Meanwhile, if the flow in the TBF timeout, it

will be discarded also. In order to reduce the number of small streams to the same

location, CBF counter minus one at corresponding position while discard the packet

data item. When the counters of k hash positions of CBF module are greater than a

>T

<n0
Packet x Discard

TBF

CBF

>t0

Record

International Journal of Future Generation Communication and Networking

Vol. 9, No. 5 (2016)

Copyright ⓒ 2016 SERSC 79

preset threshold T, algorithm will establish a new large flow frequent item records,

and the calculation of the k location minus T.

Figure 4. Double Hash Algorithm

From the above analysis we can know that the algorithm discard packets only when

TBF time out and the counter of CBF is less than
0n , which means the algorithm only

discard small flow packets or the time out packets of first
0n packets of large flow frequent

item. By doing so, most of the large flow frequent items are counted statistically, so as to

identify the frequent items of network flow.

4.4. Performance Evaluation

Similar to BF, our algorithm also will bring a false positive error probability which is

caused by TBF and CBF. Giving a set S={
nxxx, 21

}, the probability of hash position

is empty in TBF is mkk emp /'))/11(,

then kmkkk

TBF eppf)1()1()1(/' .For single CBF, the probability of m

counters is increased
0n times is

0

0

00

000

0

11
1

1
})({

n

n

nnkn

mn

enk

mn

nk

mmn

nk
nicP

 .When the algorithm used i CBF, so

the false positive error probability of CBF is
in

CBF
mn

enk
f

0

0

 .Because the condition of our

algorithm sample the packets is that satisfy both the requirement of TBF and CBF, so the

false positive error probability of our algorithm is
in

kmk

CBFTBF
mn

enk
efff

0

0

/)1(*

 .

Since the algorithm uses the same hash function set , the cost of TBF and CBF

visit hash memory is ()O k . To update the k timestamp of TBF and update the k

counters of CBF cost ()O k . For the reason of flow tag is unique, and the storage

location of the flow has a strong correlation with the hash functions, so the cost of

our algorithm is (3)
kn

O k
c

 , in which c is a constant.

x=Packet Label;

initialize (TBF,CBF) //initialize TBF and CBF

compute(h(x),g(x)) //TBF and CBF hash function value

if (any location of TBF[hi(x)]i=1..k > t0) { //if TBF time out

add(min(CBF[hi(x)]i=1..k)); //update CBF

if (any location of CBF[hi(x)]i=1..k<n0){

//if any counter of CBF unit is less than n0

discard(x); //discard this packet

sub((CBF[hi(x)]i=1..k)) //CBF count minus 1

}

else

// all counters of CBF are greater than n0

 add(min(CBF[hi(x)]i=1..k));

//update CBF

else{

//if TBF no time out

 add(min(CBF[hi(x)]i=1..k));

// update CBF

}

update timestamp (TBF[hi(x)]i=1..k);

// updated TBF timestamps regardless whether discard or not

International Journal of Future Generation Communication and Networking

Vol. 9, No. 5 (2016)

80 Copyright ⓒ 2016 SERSC

5. Experimental Analysis

In order to verify the validity of the proposed algorithm in this paper, we use the trace

collected from CAIDA to simulation test [10, 11]. There are a total of 6187376 packets

and 68367original flows. The algorithm uses k = 6 hash functions. Storage space

m=
162 =65536. The hash space is [0...65535]. Figure 5 shows the distribution of original

flows. As can be seen from the figure the distribution of network flow demonstrates

heavy-tailed distribution.

Figure 5. Original Flows Distribution

The parameters which need to configure in double hash algorithm are described

as follow: TBF timeout interval
0t , CBF filtering threshold

0n , frequent item packet

threshold T . We use absolute error re as measurement criteria to verify the

measurement accuracy, where %100

'

N

NN
er

,which N indicates the actual number

of frequent item, and 'N denotes the number of frequent item that we identified in

the experiment.

Figure 6 displays TBF discard rate when timeout interval
0t changed. When

0t =0,

all packets will be discarded,
0t =+∞, none packet will be discarded. So the value of

the threshold
0t can determine the number of packets discard.

Figure 6. Relationship between Packet Discard Rate and Timeout Interval
Threshold T0 in TBF

International Journal of Future Generation Communication and Networking

Vol. 9, No. 5 (2016)

Copyright ⓒ 2016 SERSC 81

Figure 7 displays CBF takes a fixed value threshold
0n , the impact on the

measurement accuracy when time out threshold
0t changed.

Figure 7. Accuracy Effect between T0 and Large Flow Frequent Items
Threshold T

The measurement error decreases with the increase of
0t , as shown in Figure 7,

when the threshold is less than 0.1 seconds, the measurement error decreases with

the increase of
0t . This is because most of the packets are discarded when

0t takes a

small value. However, when
0t is bigger than 0.1 seconds, measurement error

increases with the increase of
0t . This is because when the

0t takes a large value, the

number of discarded packets is gradually reduced, most of the small streams are not

filtered out, so as to increase the false positive rate of the algorithm, and result in

error increases.

Figure 8 displays when TBF takes a fixed value, the measurement accuracy and

discard packet ratio along with n0 changed.

Figure 8. Measurement Accuracy and Discard Packet Ratio
Influence of N0

As Figure 8 shown, with the increase of the value of n0, the discard packet ratio

increases linearly. This is due to when n0 increases, the packets that belong to the

flows which length are less than n0 will be filtered out. Meanwhile, when n0

increases to a certain value, measurement error will increase gradually. This is

because of part of the packets that belong to large flows are discarded when n0 takes

a larger value. Accordingly increase the measurement error.

International Journal of Future Generation Communication and Networking

Vol. 9, No. 5 (2016)

82 Copyright ⓒ 2016 SERSC

Figure 9 displays comparison between double hash algorithm when,

0 0.1t ,
0 16n and MF algorithm in frequent items mining. As can be seen, the

measurement accuracy of our algorithm is higher than the MF algorithm both in

frequent item measurement and frequent item packets number measurement.

Furthermore, when the large flow frequent item T takes a small value, our algorithm

has the more obvious advantages. This is due to the double hash algorithm can filter

out most of the small flows, so as to reduce the effect of small flow on the large

flow mapping space, and reduce the false positive rate of the algorithm.

Figure 9. Comparison between our Algorithm and MF Algorithm in Frequent
Items Mining

Acknowledgements

The research work was supported by National Natural Science Foundation of

China (61472137), and the Fundamental Research Funds for the Central Universities

(3142014085, 3142014100, 3142014125, 3142015022, 3142013098, and

3142013070).

References

[1] A. P. Zhou, G. Cheng and X. J. Guo, “High-Speed network traffic measurement method”, Journal of

Software, vol. 1, no. 25, (2014).

[2] H. Wu, J. Gong and W. Yang, “Algorithm based on double counter bloom filter for large flows

identification”, Journal of Software, vol. 5, no. 21, (2010).

[3] J. Xia and X. Zhao, “Frequent items mining algorithm over network flows based on time and flow

length constraints”, Journal of University of Science and Technology of China, vol. 10, no. 43, (2013)

[4] M. Tatsuya, U. Masato and K. Ryoichi. “Identifying elephant flows through periodically sampled

packets”, Proceedings of ACM SIGCOMM, USA, (2004).

[5] N. G. Duffield, C. Lund and M. Thorup, “Estimating flow distributions from sampled flow statistics”,

Proceedings of the ACM SIGCOMM Conference on Applications, Karlsruhe, Germany, (2003).

[6] C. Estan and G. Varghese, “New directions in traffic measurement and accounting”, ACM Transactions

on Computer Systems, vol. 3, no. 21, (2003).

[7] G. Cheng and Y. N. Tang, “Estimation algorithms of the flow number from sampled packets on

approximate approaches”, Journal of Software, vol. 2, no. 24, (2013).

[8] Z. Zhang and B. Q. Wang, “Traffic measurement algorithm based on least recent used and Bloom filter”,

Journal on Communications, vol. 1, no. 34, (2013).

[9] H. Dong, G. L. Sun and D. D. Li, “Application Layer Traffic Classification Based on Link Homophily.

Journal of Harbin University of Science and Technology, vol. 4, no. 18, (2013).

[10] F. Y. Wang and S. Q. Guo, “A method of extracting heavy-hitter flows efficiently”, Journal of Computer

Research and Development, vol. 4, no. 50, (2013).

[11] H. Wang and Z. H. Gong, “Hits and Holds: Two algorithms for identifying the large flows”, Journal of

Software, vol. 6, no. 21, (2010).

