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Abstract 

In the high-speed backbone network, with the increasing speed of network link, the 

number of network flows increase rapidly. Meanwhile, with restrictions on hardware 

computing and storage resources, so, how to identify and measure large flows timely and 

accurately in massive data become a hot issue in high speed network flow measurement 

area. In this paper, we propose a new algorithm based on double hash algorithm to 

realize large flow frequent items identification, according to the defect of MF algorithm 

which produces false positive easily and frequent updates to bring the huge pressure to 

the system. The complexity and false positive rate of the algorithm was analyzed. The 

effect of large flow frequent items statistical accuracy and discard rate for parameter 

configuration was analyzed through simulation. The theoretical analysis and the 

simulation result indicate that compare to MF algorithm, our algorithm can identify large 

flow frequent items more accurately, and satisfies the need of actual measurement. 
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1. Introduction 

For the past few years, with the rapid development of the internet and the emergence of 

new network applications, the trend of computer network is developing towards high 

speed, large scale and complexity [1]. The notable feature is that the large amount of data 

generates, and the data packet arrival rate becomes higher. This will result in data packet 

processing unit time is getting shorter, and present a great challenge for storage capacity, 

processing power and transmission capability of the system. Currently on the high-speed 

backbone network, the average time to process each packet must be completed in the 

nanosecond [2]. For example, the average time to process each packet in OC-192 link is 

32ns approximately, and it will be down to 8ns in OC-768 link. So, for mass data, how to 

mining frequent items in the stream network timely and accurately become a hot issue in 

network flow measurement area. However, the measurement method based on network 

flow has opened up a new way for high speed network traffic measurement. By merging 

the data packets to the corresponding flow, it reduced the amount of data greatly, and 

made the storage, processing and transmission of network data more easily. 

In fact, not all applications need to know the information of each flow. Studies have 

shown that the heavy-tailed distribution of network traffic is an important feature of flow 

distribution, which means that a few flows have numerous packets account for most 

traffic, while the rest of the traffic consists of a large number of smaller flows which have 

few packets [3]. Usually, the flows which make larger contribution to the network traffic 

referred to as large flow. Most of the actual applications need only to know the 

information of large flows. Large flow identification is an important foundation of 

network monitoring, network management and network accounting. By identifying these 

large traffic flows, network managers can clearly grasp the distribution of network traffic, 
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find denial of service attacks timely, control the traffic growth trend and allocate network 

resources and the link capacity reasonably. Therefore, using the limited hardware 

resources to focus on large flows becomes a better choice. So, large flow identification 

problem in high speed network monitoring area is equivalent to the frequent item mining 

problem in data stream which means that monitoring network flows and finding the 

frequency of a packet that contains some features is higher than the given threshold. 

At present, there are three kinds of mining algorithms for network traffic: sampling, 

hash and counting [4]. Sampling method is to select the part of large data sets from data 

entry to approximate statistical frequent item in the entire dataset. Hashing method is to 

map the large range of data sets to a small range of the target data set, the data set used to 

generate frequent target item as an approximate solution for the entire data set. Counting 

method is to use a finite number of counting unit to carry out the cooperative count to 

maintain the entire data set frequent items. 

 

2. Definition of Network Flow and Frequent Items 

Flow can be defined as a call or connection of logic correspondence. Property values 

associated with the flow having a polymeric nature which reflects the events occurred 

between the start and stop time, such as source/destination address, packet count, byte 

count etc.  

Frequent item is the flow which length exceeds a predefined threshold T for a 

period of time. 

Network flow frequent items mining algorithm constraints: (1) Limited storage 

space. The storage space required to maintain summary statistics is much smaller 

than the size of the complete data set, usually only store small amounts of data entry 

summary information. (2) Real time processing. The processing time for each data 

item is very short, small and easy to operate. (3) Linear scan at a time. The order of 

arrival of each data item is completely random, therefore should read the data steam 

from first to last sequentially [5]. 

 

3. Multistage Filters Algorithm 

Multistage Filters (MF) algorithm is put forward by Eestan[6]. The basic principle is 

that the algorithm uses a series of counting bloom filters and filter with multiple different 

hash spaces and hash functions, so as to be able to filter out all the frequent items. The 

executing procedure of MF algorithm is shown in Figure 1. 

 

 

Figure 1. The Executing Procedure of MF Identify Frequent Items 

MF algorithm is divided into multistage sequential filtration and parallel multistage 

filtration. In multistage sequential filtration mode independent hash functions are stored at 

each filter stage which is used to calculate the hash value for each packet corresponding to 

the flow tag, then add it to the corresponding space. All packets of the same flow are 

hashed to the same address space. Each address space has a counter to count the total 

length of the flow which hashed into this position and initialized to 0. The storage 

position which all counters are greater than T/d considered as a large space. Frequent 

items will be mapped to the large spaces. Parallel multistage filtration is the use of 
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multiple stages in parallel. Each stage has an independent hash function. When a packet 

which belongs to a flow identified as F arrives, each stage calculates its hash value, and 

find out the corresponding position in the hash table. The counter for this position is 

initialized to 0. This counter is incremented every time the hash packet length size. For 

the reason of all packets of the same flow are hashed to the same location, thus if the total 

packet length size of flow F exceeds the threshold of T, then the counter of each stage 

must also exceed the threshold T, At this moment can identify the large flow F.  

However, there are some restrictions on the use of MF algorithm in large scale network 

links. Firstly, for the reason of traffic burstiness and massiveness, the number of packets 

will fill the whole hash space in a very short period of time, thereby resulting in false 

positive which means mistake multiple small flows for a frequent item. If take the method 

updated filters frequently and regularly, not only will lose the previous stage measurement 

information, but also bring great pressure to the system hardware. Secondly, MF 

algorithm can only identify the information of several overlarge flows. For the length of 

the relatively small flows, identification accuracy is not high. Thirdly, MF algorithm uses 

multiple filters which lead to the algorithm takes up more space. 

 

4. Double Hash Algorithm 

Because of the number of small flows in network account for the total flow volume of 

80%-90% [7], so how to filter out most of the small stream becomes the key to identify 

the frequent item in the network. In this paper, we propose a double hash algorithm which 

composed by the Time-out Bloom filter (TBF) and Counting Bloom Filter (CBF). By 

using TBF to filter small streams and using CBF to Statistics and identify frequent items, 

our algorithm can identify large flow frequent items more accurately. 

 

4.1. Time Bloom Filter 

Time Bloom Filter (TBF) is modified by BF. Different from BF is that TBF 

maintains the packet's timestamp instead of 0 or 1. When a packet arrives, using k 

hash functions to calculate the packet tag and hash to the corresponding k units. 

TBF will determine whether the difference between the two timestamps of the k 

corresponding units is greater than the predetermined timeout period t0. If there is 

any unit which time difference is larger than t0, the packet will be discarded. 

Regardless of whether or not the packet is discarded, TBF will update the timestamp 

of k units to the current timestamp of arriving packet. Thus TBF update operation 

only updates timestamp, without the need to reset as frequently as BF. Figure 2 

describes the process. 

 

 

Figure 2. A TBF with 3 Hash Function 

The researches show that the longer the flow length, the higher the frequency of 

the frequent items, and the average packet arrival time interval is smaller  [8, 9]. 
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Since all packets of the same flow are hashed to the same address space, for frequent 

items belong to a large flow, the time interval is less than the threshold value t0, therefore 

as long as the hash space is not occupied by other flows within the time interval of 

two packets, this part of the packets will not be discarded. For a large number of 

small flow packets, because of the packets of different flows are hashed to different 

spaces, it will inevitably lead to the timestamp difference of some unit is larger than 

interval t0. This part of the packets will be filtered. However, in extreme cases, 

when the hash spaces of the frequent items are frequently occupied by other flows, 

TBF will discard a large number of packets belong to some frequent items. This will 

reduce the recognition accuracy of frequent items. So we need to use another 

filtering technology to reduce the number of discarded packets. 

 

4.2. Counting Bloom Filter 

Counting Bloom filter is modified by standard BF. Unlike the BF, the m unit of 

CBF maintains a counter rather than a bit. In this way, CBF not only has the add 

operation and query operation just as BF, but also has the delete operation. By using 

k independent hash functions, the add operation is to put the counter plus 1 for k 

corresponding storage space. Delete operation is to subtract a value from the counter 

for k units. 

 

4.3. Double Hash Algorithm 

Double hash algorithm is composed by the TBF and CBF. The basic structure is 

shown in Figure 3. Algorithm allocates a memory size of M unit of storage space A1 

and A2 respectively for TBF and CBF module. Each unit of TBF module maintains 

packets arrive timestamp, and each unit of CBF module maintains a counter. The 

initial value of all units is set to 0. TBF and CBF use different hash functions of 

hash function set 
1 2, ...... kH H H  to function for the arrival of packets, making mapped 

into memory space A1 and A2. 

 

 

Figure 3. Double Hash Algorithm Process Schematics 

Figure 4 shows the basic process of the double hash algorithm: When a packet 

arrives, handled by TBF firstly. TBF determine whether the difference of timestamp 

between the two of the k corresponding to units is greater than the predetermined 

timeout period
0t . If there is a unit of time difference greater than

0t , and the hash 

position in the CBF module is less than
0n , then the packet will be discarded, 

otherwise will be updated by CBF module. The timestamp of the k unit in the TBF 

will be updated regardless of whether the time interval is greater than
0t . CBF 

module adds 1 to the counter of the k units. If all of the counters of the k unit are 

greater than the preset threshold value
0n , the stream is a large flow frequent item. If 

any cell count is less than
0n , the stream may be a small stream, or it may be the first 

part of the large current frequent item. Meanwhile, if the flow in the TBF timeout, it 

will be discarded also. In order to reduce the number of small streams to the same 

location, CBF counter minus one at corresponding position while discard the packet 

data item. When the counters of k hash positions of CBF module are greater than a 
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preset threshold T, algorithm will establish a new large flow frequent item records, 

and the calculation of the k location minus T. 

 

 

Figure 4. Double Hash Algorithm 

From the above analysis we can know that the algorithm discard packets only when 

TBF time out and the counter of CBF is less than 
0n , which means the algorithm only 

discard small flow packets or the time out packets of first 
0n packets of large flow frequent 

item. By doing so, most of the large flow frequent items are counted statistically, so as to 

identify the frequent items of network flow. 

 

4.4. Performance Evaluation 

Similar to BF, our algorithm also will bring a false positive error probability which is 

caused by TBF and CBF. Giving a set S={
nxxx ......, 21

}, the probability of hash position 

is empty in TBF is mkk emp /' ))/11(   , 

then kmkkk

TBF eppf )1()1()1( /'    .For single CBF, the probability of m 

counters is increased
0n times is 

0

0

00

000

0

11
1

1
})({

n

n

nnkn

mn

enk

mn

nk

mmn

nk
nicP 

















































 .When the algorithm used i CBF, so 

the false positive error probability of CBF is 
in

CBF
mn

enk
f

0

0












 .Because the condition of our 

algorithm sample the packets is that satisfy both the requirement of TBF and CBF, so the 

false positive error probability of our algorithm is  
in

kmk

CBFTBF
mn

enk
efff

0

0

/ )1(* 







  . 

Since the algorithm uses the same hash function set , the cost of TBF and CBF 

visit hash memory is ( )O k . To update the k timestamp of TBF and update the k 

counters of CBF cost ( )O k . For the reason of flow tag is unique, and the storage 

location of the flow has a strong correlation with the hash functions, so the cost of 

our algorithm is (3 )
kn

O k
c

 , in which c is a constant. 

 

x=Packet Label; 

initialize (TBF,CBF) //initialize TBF and CBF 

compute(h(x),g(x))          //TBF and CBF hash function value 

if (any location of TBF[hi(x)]i=1..k > t0) { //if  TBF time out 

add(min(CBF[hi(x)]i=1..k));         //update CBF 

if  (any location of CBF[hi(x)]i=1..k<n0){   

//if any  counter of CBF unit is less than n0 

discard(x);  //discard this packet 

sub((CBF[hi(x)]i=1..k))  //CBF count minus 1 

} 

else       

// all counters of CBF are greater than n0 

 add(min(CBF[hi(x)]i=1..k));        

//update CBF 

else{       

//if TBF no time out 

 add(min(CBF[hi(x)]i=1..k));        

// update CBF 

} 

update timestamp (TBF[hi(x)]i=1..k);    

// updated TBF timestamps regardless whether discard or not 
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5. Experimental Analysis 

In order to verify the validity of the proposed algorithm in this paper, we use the trace 

collected from CAIDA to simulation test [10, 11]. There are a total of 6187376 packets 

and 68367original flows. The algorithm uses k = 6 hash functions. Storage space 

m=
162 =65536. The hash space is [0...65535]. Figure 5 shows the distribution of original 

flows. As can be seen from the figure the distribution of network flow demonstrates 

heavy-tailed distribution. 

 

 

Figure 5. Original Flows Distribution 

The parameters which need to configure in double hash algorithm are described 

as follow: TBF timeout interval
0t , CBF filtering threshold

0n , frequent item packet 

threshold T . We use absolute error re as measurement criteria to verify the 

measurement accuracy, where %100

'





N

NN
er

,which N  indicates the actual number 

of frequent item, and 'N  denotes the number of frequent item  that we identified in 

the experiment. 

Figure 6 displays TBF discard rate when timeout interval 
0t changed. When 

0t =0, 

all packets will be discarded, 
0t =+∞, none packet will be discarded. So the value of 

the threshold
0t  can determine the number of packets discard. 

 

 

Figure 6. Relationship between Packet Discard Rate and Timeout Interval 
Threshold T0 in TBF 
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Figure 7 displays CBF takes a fixed value threshold
0n , the impact on the 

measurement accuracy when time out threshold 
0t  changed. 

 

 

Figure 7. Accuracy Effect between T0 and Large Flow Frequent Items 
Threshold T 

The measurement error decreases with the increase of
0t , as shown in Figure 7, 

when the threshold is less than 0.1 seconds, the measurement error decreases with 

the increase of
0t . This is because most of the packets are discarded when 

0t  takes a 

small value. However, when 
0t is bigger than 0.1 seconds, measurement error 

increases with the increase of
0t . This is because when the 

0t takes a large value, the 

number of discarded packets is gradually reduced, most of the small streams are not 

filtered out, so as to increase the false positive rate of the algorithm, and result in 

error increases. 

Figure 8 displays when TBF takes a fixed value, the measurement accuracy and 

discard packet ratio along with n0 changed. 

 

 

Figure 8. Measurement Accuracy and Discard Packet Ratio  
Influence of N0 

As Figure 8 shown, with the increase of the value of n0, the discard packet ratio 

increases linearly. This is due to when n0 increases, the packets that belong to the 

flows which length are less than n0 will be filtered out. Meanwhile, when n0 

increases to a certain value, measurement error will increase gradually. This is 

because of part of the packets that belong to large flows are discarded when n0 takes 

a larger value. Accordingly increase the measurement error. 
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Figure 9 displays comparison between double hash algorithm when, 

0 0.1t  ,
0 16n  and MF algorithm in frequent items mining. As can be seen, the 

measurement accuracy of our algorithm is higher than the MF algorithm both in 

frequent item measurement and frequent item packets number measurement. 

Furthermore, when the large flow frequent item T takes a small value, our algorithm 

has the more obvious advantages. This is due to the double hash algorithm can filter 

out most of the small flows, so as to reduce the effect of small flow on the large 

flow mapping space, and reduce the false positive rate of the algorithm. 

 

 

Figure 9. Comparison between our Algorithm and MF Algorithm in Frequent 
Items Mining 
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