
International Journal of Future Generation Communication and Networking

Vol. 9, No. 5 (2016), pp. 49-62

http://dx.doi.org/10.14257/ijfgcn.2016.9.5.06

ISSN: 2233-7857 IJFGCN

Copyright ⓒ 2016 SERSC

Research on Conflict Resolution and Consistency Maintenance

Supporting Intention Combination in Real-time Collaboration

Environment

Qiongqiong Fu1, Liping Gao1* and Naixue Xiong2

1School of Optical-Electrical and Computer Engineering, University of Shanghai

for Science and Technology, Shanghai, 200093, China;2Shanghai Key Lab of

Modern Optical System, and Engineering Research Center of Optical Instrument

and System, Ministry of Education, University of Shanghai for Science and

Technology, Shanghai 200093, China

lipinggao@fudan.edu.cn and xiongnaixue@gmail.com

Abstract

With the real-time group editing system, a group of users can view and edit the shared

document by communication networks anytime and anywhere. Under the circumstance, it

is surely inevitable that many operations from different users are going to conflict. Thus,

two issues, the conflict resolution and the consistency maintenance, are the most

important for designing and completing the system. In the past, the address space

transformation algorithm, invented from the research about the real-time text editing

system, could maintain consistency among more sites. The Multi Version conflict

resolution approach could preserve users’ intentions but not all when conflicts occur.

This paper proposes a new solution of conflict resolution, named Intention Combination

Conflict Resolution strategy with the document model of AST based on the idea of Multi

Version approach. This solution can not only preserve all users’ editing consistency by

intention combination, but also keep all versions of operational objects including conflict

operations’ combination effects. In addition, the effectiveness of related algorithms is

analyzed, and the availability of the strategy is described by a case and proved by our

experiment.

Keywords: Real-time Collaboration, Address Space Transformation, Multi Version,

Intention Combination, Conflict Resolution, Consistency Maintenance

1. Introduction

With the development of globalization, the phenomenon that one project is completed

by cross-regional and cross-field cooperation, becomes more and more common. The

demand of collaborative work in online social network becomes increasingly urgent. The

groupware systems or the real-time collaborative systems [1-9] provide one possible

platform with the increase of the demand about collaborative work in online social

network [10]. People from different fields and different areas can edit the same shared

document [2, 3, and 8] synergistically in the cooperation editing platform. It can largely

improve the work efficiency. In order to hide the effect of network delay and reduce the

response time of local operations, a replicated architecture [1-6, 8, 9, 11] has been widely

adopted. In this architecture, local operations get responses immediately, then multicast to

remote sites, and concurrent operations, whether local operations or remote, will be

transformed before executed to keep the consistency of the document replicas. The whole

process is the consistency maintenance [2-9, 11] of the document states.

At present, the consistency maintenance strategies are mainly divided into two

categories: one is based on Operational Transformation (OT-based) [1-4, 8, 11] and the

International Journal of Future Generation Communication and Networking

Vol. 9, No. 5 (2016)

50 Copyright ⓒ 2016 SERSC

other is based on Address Space Transformation (AST-based) [3, 6, 9, 11]. The OT-based

method is to compare remote operations with all operations in the local history buffer

(HB)[2, 4,1 1], and then convert concurrent operations in the HB by comparing the

timestamps of each operation, for that operations can be executed correctly under the

current document state. OT has been applied to many collaborative text editors, including

Grove [1], REDUCE [11], etc. AST is a technique different from OT for consistency

maintenance and group undo [3-5, 8]. It can preserve operational intentions by

transforming the address space, but not the operation itself and support the consistency

maintenance of Insert, Delete and Update operations in a text editing field. Because it

doesn’t need to transform users’ operations, the algorithm efficiency is higher than OT.

Now AST has been an alternative of consistency maintenance and Undo/Redo [2, 4, and 9]

technique for some real-time collaborative text editors.

In some applications, for one thing, the operational object may have rich types of

attributes; for another users often not only insert or delete one object, but also update

some attributes of one object. Moreover, this demand perhaps is inevitable for the

collaborative editing. Thus, the collaborative system should gain the ability to update

synergistically to serve the group work better. In [2], OT strategy is extended to support

Update operations; however, this strategy requires traversing the whole historical

sequence, which is going to lower the algorithm efficiency. Multi-Version Single-Display

(MVSD) [2] is a typical technique to solve the conflict [2, 8] of concurrent Update

operations. Update operation just modifies one object’s attribution and conflicting Update

operations will produce multiple versions for an attribute of one object. But Multi Version

(MV) [2] technique just takes single operation effect into consideration and cannot

preserve users’ combined intentions. Therefore, in this paper, we propose a new conflict

resolution strategy. It adopts the idea of AST’s internal document management, and

increase the algorithm efficiency due to reduce the comparison times of operations in HB.

The strategy can not only make the document states consistent but also preserve

combination effects of conflict operations.

The rest of this paper is organized as follows. In Section 2, the basic AST method, the

conflict concept and the MVSD technique are introduced briefly. Then, a new conflict

resolution approach is discussed and the algorithm efficiency is analyzed in Section 3. In

Section 4, an example is described in detail. A prototype system called Co-NotePad is

depicted in section 5. Finally, major contributions as well as shortages of this work are

summarized in Section 6.

2. Related Work

2.1. AST

AST is originally proposed for synergistically editing the plain text document based on

the linear structure. Given one site with the kind of document and the State Vector

(SV)[1,3,4,8] based on Timestamp, an operation generated by the local site will be

attached with the current SV and broadcasted to other sites. Now, we give the formats of

three primitive operations.

1） Insert (p, obj)

2） Delete (p, obj)

3） Update (p, attribute, new-value, old-value)

In representations above, obj indicates the goal object of an operation. We need to note

in this paper one operation is limited to cover only one object for the sake of simplicity

although in the real cooperative system an operation can cover more than one object. p

refers to the logical address of obj in the linear address space. attribute donates the goal

attribute of Update.obj. old-value refers to the original value of this attribute, then

new-value refers to new value of the attribute.

International Journal of Future Generation Communication and Networking

Vol. 9, No. 5 (2016)

Copyright ⓒ 2016 SERSC 51

In a document based on linear structure, every operation has only one target object and

the type of the target object just can be characters, while every character may be related

with several operations. Besides, the address space transformation is achieved by

Retracing procedure in which a few steps are needed, such as scanning all nodes and

using effective / ineffective [3,9] to mark the effectiveness of the character of a node. The

mark decides that the character is visible or not on the user interface. In [3] the AST

document model is shown as in Figure 1.

a b c

O2:
Insert(2,b,[1,1])

<1,1>

O1:
insert(1,a,[1,1])

<1,0>

O3:
Insert(3,c,[1,1])

<2,1>

effective effective effective

Figure 1. The Linear Document Structure and Model of AST

2.2. Conflict Relation

Every site in one group works on the same document in which every user in local site

can see others’ operation effects as soon as possible. However, some incompatible

situations perhaps appear. For example, when two users’ operations are concurrent and

their target objects as well as the goal attributions are the same, and before that they don’t

know each other’s operational intention, executing these two operations is bound to result

in the conflict. The definition of conflict between Updates is given as follows.

Definition 1 Conflict Relation [2]: Given two Update Ua and Ub, they have a conflict

relation, denoted as
ba UU  , iff: (1) Ua and Ub are concurrent; (2) their operational objects

are the same, namely, pUpU ba ..  ; (3) attributeUattributeU ba ..  . If a relation cannot

meet these three conditions, it must not be the conflict relation, but the compatible

relation for these Updates.

Here is an example to explain it. Suppose that there is a sentence “I am a student.”.

site1 sends an Update operation U1 aiming at ‘a’ on the third position to change its color

from Black to Red. Meanwhile, site2 sends U2 aiming at ‘a’ on the third position to change

its color to from Black to Green. Hence the U1 and U2 are conflict, which is denoted as

21 UU  .

2.3. Multi-Version Single-Display (MVSD)

Each site generates an Update at the same time. If they conflict with each other, the

possible effects of the operations can be divided into three categories:

1) Null-effect：none of the operations has any final effect on the target object.

2) Single-effect：only one operation has a final effect on the target object.

3) Combined-effect：more than one operations have the final effect on the target

 object.

International Journal of Future Generation Communication and Networking

Vol. 9, No. 5 (2016)

52 Copyright ⓒ 2016 SERSC

The core idea of MVSD is as follows: when an object is updated by conflict operations,

multiple versions of the object should be maintained internally, but only one version is

displayed on the user interface.

Definition 2 Combination Version: Two or more operations update the same object’s

same attribute, which can lead to produce not only one possible effect of this attribute but

also the combined effect formed by new values of conflict operations. Therefore, it can be

called the combination version of the operations. For example, the original value of the

color attribute of a character is Black, but if there are two new values, Red and Green, the

combination version of the character object or to say mixed effect of the two operations is

Yellow.

3. Conflict Resolution Approach

3.1. Primitive Operation

In order to apply the MV technique to collaborative editors with the linear document

structure, the formats of these three primitive operations should be modified accordingly

to preserve different intentions of conflict operations. The new definitions of them are

given to support new document structure and maintain combination version conveniently.

Also, each operation is attached with SV. However, another parameter of an operation

should be mentioned - the source site number. The source site has own number, called

siteId, where an operation is generated.

1） Insert (p, obj, [level,id])

2） Delete (p, [level,id])

3） Update (p, attribute, new-value, old-value, [level,id])

Where [level, id] indicates the position of an operation in the operation sequence of a

character object. Level is the corresponding layer where the operation lies in, and id refers

to a serial number of the operation in the layer. Apparently, the position indication

[level,id] of an Insert operation for any object node shall be [1,1]. Specially, id in [level,

id] of Update operation refers to the version ID for any attribute of one object. The order

of version IDs is sorted by the siteIds. In addition, level depends on whether operations

conflict or not by comparing SVs. old-value is the original value of an attribute effect of

one object and new-value is the new value. Every new effect may be one of three types

mentioned above. Suppose that the effect depends on one or more Update operations from

{U1, U2, …, Un}. If it is determined by only one operation, new-value is the value of

single effect. If it is determined by more than one operation, new-value is the value of

combined effect of these operations. But if null, it will keep original effect unchangeable

(Null-effect is not described in the following because Undo can support this kind of

effect). Other parameters’ definitions are still remained. We can understand these concepts

further combining with the document model in Figure1.

For simplicity, each site is defined as an integer {1, 2, ..., N}. The siteId mentioned at

the beginning of this section can be regarded as a sequence of Numbers in order, from

smaller to bigger. Such assumption is reasonable because Single-effect is corresponding

to only one site, whereas Mixed-effect is corresponding to several sites. The comparison

rules of siteIds should be given as follows. If there are two siteIds, siteId_i and siteId_j,

three comparison results are that:

1) jsiteIdisiteId __  : when the length of siteId_i is less than that of site_j, i.e., the

sequence of siteId_i is part of siteId_j, or more than one parameter of siteId_j is larger

than that of of siteId_i; when their lengths are equal or the former is longer than the latter,

more than one parameter of siteId_j is larger than any one of siteId_i.

2) jsiteIdisiteId __  : each version has only one siteId and the corresponding version

ID is unique, so this case must not exist because i is not equal to j.

International Journal of Future Generation Communication and Networking

Vol. 9, No. 5 (2016)

Copyright ⓒ 2016 SERSC 53

3) jsiteIdisiteId __  : the conditions of this case are opposite of those in case 1).

3.2. Document Storage Structure for Combined-effect

In AST document model, the execution effect of an Update operation can be visible on

the users’ interface, because the operational object is marked as effective. And Update

operation must be behind Insert operation in the operation sequence related to one node.

Besides, Update just aims at attributes of an object, while Insert and Delete aim at the

position of an object in the linear address space. In sum, Update can’t conflict with Insert

or Delete.

According to the idea of AST and MVSD techniques, both the operation sequence

andmultiple versions of the target object should be maintained. Consequently the

document model is shown as in Figure 2. A linear sequence called Version_list is added to

store the version ID, relevant siteIds and the operation_list of each version. Among them,

the operation_list consists of a few operations that can form a version. The document

structure model can be illustrated through an example in Figure 2. obj1 has

Insert(1,obj1,[1,1]) called O1. obj2 has Insert(2,obj2,[1,1]) called O2,

Update(2,color,red,black,[2,1]) called O4, Update(2,color,green,black,[2,2]) called O5 and

Update(2,color,yellow,black,[2,3]) called O6. obj3 has Insert(3,obj3,[1,1]) called O3.

obj1 obj2 obj3

O2 :
Insert(2,obj2,[1,1])

<1,1>

O1 :
insert(1,obj1,[1,1])

<1,0>

O3 :
Insert(3,obj3,[1,1])

<2,1>

O4 :
Update(2,color,
red,black,[2,1])

<3,1>

O5 :
Update(2,color,

green,black,[2,2])
<2,2>

O6 :
Update(2,color,

yellow,black,[2,3])
<2,2>

2 3

effective effective effective

Version_list

1

3

siteId[0,1]
Operation_list

{O4,O5}

2

siteId[1]
Operation_list

{O5}

1

siteId[0]
Operation_list

{O4}

Figure 2. The Document Structure Model

If the relation between two operations, O4 and O5, is conflict relation, i.e.
54 OO  , a

combined effect should be formed by them. Correspondingly O6 is generated for the

combined effect of O4 and O5. Because the position indication of O5 is behind O4’s, the

SV and siteId of O6 should be the same with O5’s. That is to say, the obj2 has a

combination version attached with O6.new-value. Then, these versions produced by three

Updates operations O4,O5,O6 should be added to the version_list in order, respectively

called versions No.1,2,3. At the same time, siteId and operation_list of each version also

should be recorded into the version_list. Specially, if the relation is compatible relation,

every compatible operation should be recorded into the operation_list of all existing

versions. Now we discuss the total number of versions among conflict operations. For

example, two Update operations conflict, the total number is 3; three Update operations

conflict, the total number is 7. That is to say, if N is the number of conflicting Update

operations, the total number of operation versions should be 2N-1.

International Journal of Future Generation Communication and Networking

Vol. 9, No. 5 (2016)

54 Copyright ⓒ 2016 SERSC

3.3. Conflict Resolution Strategy Supporting Intention Combination

The procedure of the conflict resolution strategy supporting intention combination is

shown as below. When an Update is generated, it can be immediately executed at local

site. But at the remote sites it will be received to compare with all operations attached to

the target node. Then, check if there exist other operations concurrent with the operation.

The Update operation should be added to the layer of the operation sequence related to the

node as long as operations match the definition of conflict relation. Meanwhile, the

current document state should be retraced to the state that the operation wasn’t executed

by using the Retracing process in [3]. Then, compare site IDs to keep all versions

consistent and ordered at all sites. Next, new combination versions are created by conflict

operations in this layer. Finally, these versions need be added to version list, including

record site Id and add corresponding operations to operation list accordingly.

Especially, there is no need to discuss how to solve the conflict between Insert and

Delete because it can be solved by transforming address space, and the conflict is not in

accordance with the conflict relation mentioned above. Hence, this paper just focuses on

the conflict relation between Update operations. Just the relation between operations can

satisfy the conditions of conflict relation in Section 2.2, the conflict can be solved

reasonably by ICCR (Intention Combination Conflict Resolution) strategy we proposed in

Procedure 1. Otherwise, the Retracing process and Range-Scan process [3] can be

adopted to solve it.

Procedure 1: ICCR(U)

// U is a remote Update operation. SVu means SV attached to U when it’s generated. Uorg

is the first operation in the operation sequence of the same object and conflict with U. i is

the level layer the conflicting Update operation lies in. j is the version ID (1<=j<=n, n is

the current total number of versions of Updates that conflict with each other in the current

layer)

1. Find all operations concurrent with U in the Node of U.obj which is effective by

scanning the list of operations according to SVs.

2. If there exists Uorg[level, id] Upd_Conflict with U{

3. If(the id version has not existed in Version_list){

4. Add Uorg[level, id] to Version_list[Uorg.id];

5. }Else{

6. m=n;

7. U.level=Uorg.level;

8. U.id=++n;

9. Add U to HB of the obj in the position of No. U.id, Level U.level;

10. Add U[level, id] to Version_list[U.id];

11.),(Re us SVDoctrace ; // Retrace to the state of the operation not

executed.

12. for(j=n-1; (U.siteId<U[i, j].siteId) && (j>0); j--){ // Maintain the layer

mark of each site

consistency.

13.)].,[,.(idjiUidUExchange ;

14.])].,[[_],.[_(idjiUlistVersionidUlistVersionExchange ;

15. }

16. for(i=level, j=id; j<=m; j++){ // Consider the case of Updates conflicted

with each other in the same layer.

17. U’=Create_newVersion(U[i, j], U); // U’ is an operation

corresponding to the Mixed Version created by existing conflicting

Update operations.

International Journal of Future Generation Communication and Networking

Vol. 9, No. 5 (2016)

Copyright ⓒ 2016 SERSC 55

18. Add U’ to HB of the obj in the position of No. U’.id, Level U’.level;

19. Add U’[level, id] to Version_list[U’.id];

20. }

21. }

22. }

One of the most important steps in the conflict resolution strategy is to create the

combination version. In other words, a new Update operation for the same attribute of the

same object will be generated. So Function 1 is designed to solve this problem. To

generate the new version, all parameters of the operation should be set properly according

to the definition of the Update operation.

Function 1: Create_newVersion(U[i, j], U): U’

// Create combined Version U’: U is a remote operation; U[i, j] is the j operation in the i

layer of operation sequence conflicting with U; U’ is a new operation to return.
1. If(j!=U.id && U[i, j] and U are Upd_conflict) {

2. U’.obj=U.obj;

3. U’.p=U.p;

4. U’.attribute=U.attribute;

5. U’.new_value=)_].,[,_.(_ valuenewjiUvaluenewUeffectCombined ;

6. U’.old_value=U.old_value;

7. U’.level=level;

8. U’.id=++n;

9. If (U.siteId > U [i, j].siteId) { // U’.siteId is produced by the siteIds of the

operations that will generate combined effect.

10. U’.siteId ={U[i, j].siteId, U.siteId};

11. SV=SVu;

12. }Else{

13. U’.siteId ={U.siteId, U[i,j].siteId};

14. SV=SVui,j ;

15. }

16. for(k=n-1; (U.siteId<U[i, k].siteId) && (k>0); k--){

17.)].,[,'.(idkiUidUExchange ;

18. }
19. }

According to the ICCR strategy, the conflict case between two sites, as shown in

Figure 3, can be used to explain the procedure above. At first, site0 sends an Insert

operation O1, and its purpose is to insert a character ‘a’ in the first position of a plain text.

O1 is executed at once in local site, whose SV is <1, 0> and added to the operation

sequence of the object, with the position mark [1, 1]. Then it will be broadcasted to site1,

and executed at once because there are not concurrent operations. Then, it is also added to

the HB of the object at site1, with the same mark as [1, 1].

Next, site1 sends operation O2 to insert ‘b’ to the second position in the document. The

executing process is the same with that of the above. Its SV is <1, 1> and position mark is

[1, 1]. Then it will be broadcasted to the remote site, with the mark of [1, 1]. The current

document states at two sites are consistent (“ab”) and their default original color is Black.

Afterwards, site0 generates Update O3 to update the color of ‘b’ in the second position

to Red, SV<2, 1>. At the same time, site1, which does not receive O3 from site0, also

generates an Update O4 to update the color of ‘b’ in the same position to Green, SV<1,2>.

The local sites respond to the operations and put them into the operation sequence

International Journal of Future Generation Communication and Networking

Vol. 9, No. 5 (2016)

56 Copyright ⓒ 2016 SERSC

respectively, marked as [2, 1] and broadcast them to others except themselves. site0 finds

the conflict relation between O3 and O4 from site1, then invoke the ICCR strategy to solve

this conflict. By comparing the siteIds, O4 should be marked as [2, 2]. In order to solve

the conflict, the document state need be retraced; then, the combination version of these

conflict operations is created with SV<1, 2>, namely, O’; finally, the whole versions are

recorded to Version_list. The process is also applied to site1. The implement procedure,

including add SV to an operation and change the document state, can be seen in Figure 3.

Site 0 Site 1

O1: insert(1,’a’)

<1,0>

O2 : insert(2,’b’)

<1,1>

 O3 :

Update(2,color,red,black)

<2,1>

 O4 :

Update(2,color,green,black)

<1,2>

a b

O1[1,1] O2[1,1]

O3[2,1] O4[2,2] O’ [2,3]

1

siteId[0]

 {O3}

2

siteId[1]

 {O4}

3

siteId[0,1]

{O3,O4}

a b

O1[1,1] O2[1,1]

Figure 3. Conflict Resolution between Two Sites

3.4. Analysis of the Algorithm Effectiveness

The Procedure 1 can complete the conflict resolution among Update operations, which

has been proved effective to a certain extent in the previous section. Then provided that

there are M objects in the document and N Update operations conflict with each other. On

one hand, the average time complexity of the searching process for a node in the linear

sequence is O ((1+M)/2). And as for creating the combination version, suppose that there

are N conflict operations, the total number of versions is 2N-1 and the average times of

invoking Create_newVersion function is (2N-1-N)/N. On the other hand, Procedure1 and

Function1 both have a loop to realize sorting the versions. And the best case is that the

siteId of an operation is the biggest and ranked at the last, then the time complexity is

O(1). The worst case is that the former N-1 operations have already been sorted, but the

siteId of the last operation is smallest, then the loop comparison needs 2N-1-1 times. So,

the average time complexity of the sorting is O (2N-3).

The overall time complexity of the algorithm can be computed as O

((1+M)/2+(2N-1-N)/N+2N-3). It should consider the whole execution procedure including

find the target object, add new versions and sort version ID etc. If there are a large amount

of operations, M can be considered as a constant. Also, the number of concurrent

operations of one node can be considered as a constant.

In fact, for one thing, what happens not frequently in one collaborative editing work is

that Update operation from each site with the same object and the same attribute conflict

with each other. For another, setting the linear sequence to store versions can be very easy

International Journal of Future Generation Communication and Networking

Vol. 9, No. 5 (2016)

Copyright ⓒ 2016 SERSC 57

for searching and selecting, and exactly save time to some extent. In addition, one version

should contain just some necessary information. Based on the above reasons, the

algorithm is feasible in theory and its time cost is within acceptable range.

4. The Example Analysis

The conflict resolution strategy ICCR is not only suitable for the case of two sites, but

also for the case of more sites. The following example is a case of the Update_Conflict

resolution applied to three sites. As shown in Figure 4, O1 is Insert(1,a,[1,1]), O2 is

Insert(2,b,[1,1]), and O3 is Insert(3,c,[1,1]). These three operations are causally before one

by one. Thus the document state is “abc” after the Insert operations are executed. Then

the three object nodes are all marked effective, namely, they can be visible to users. Next,

site0, site1, and site2 generate an Update operation O4(Update(2,color,red,black)),

O5(Update(2,color,blue,black,)), and O6(Update(2,color,green,black)) concurrently which

aim at changing the color attribute of the object ‘b’ to Red, Blue, Green respectively.

According to the definition of the conflict relation, the relations of three operations are

easily known, namely that O4  O5, O5  O6 and O4  O6. That is to say, these three

operations conflict with each other. Therefore, the conflict should be solved by ICCR

strategy proposed previously.

Site 0 Site 1 Site 2

 O1

<1,0,0>

 O2

<1,1,0>

 O3

 <1,1,1>

 O4

<2,1,1>

O5

 <1,2,1> O6

 <1,1,2>

a b c

O1[1,1] O2[1,1] O3[1,1]

O7[2,3] O6[2,4] O8[2,5] O9[2,6] O10[2,7]

1

[0]

{O4}

 effective effective

 effective

O5[2,2]O4[2,1]

2

[1]

{O5}

3

[0,1]

{O4,O5}

4

[2]

{O6}

5

[0,2]

{O4,O6}

6

[1,2]

{O5,O6}

7

[0,1,2]

{O4,O5,O6}

Version_list

Figure 4. Conflict Resolution among Three Sites

In Figure 4, the conflict resolution procedure of Update operations at each site is very

similar, so it can be depicted in detail by explaining the procedure at one of the sites, such

as site0.

1) At site0, the local operation O4 is executed immediately. Hence, the color of ‘b’ is

Red. O4 is in the first position, the second layer of operation sequence of the object ‘b’

International Journal of Future Generation Communication and Networking

Vol. 9, No. 5 (2016)

58 Copyright ⓒ 2016 SERSC

and is marked as [2, 1]. Then, the version information is added to Version_list.

2) When site0 receives the remote operation O5, O5 is detected as conflict with O4 by

comparing SV of O5 with that of each operation in the second node. Retrace the document

state to timestamp <1, 2, 1>, cancel the operation effect of O4 and put O5 to the position [2,

2] since the siteId of O5 is bigger than that of O4. Then, the version information is added

to Version_list.

3) At the same time, since they are conflict operations, a combination version O7

consisted of O4 and O5 is added, and its position mark should be [2,3] as well as

SV<1,2,1>. Then, add the version to Version_list and its siteId is [0, 1] which combines

the siteId of O4 and O5.

4) Next, when O6 arrives at site0, another two combination versions should be created

besides the version of O6 itself because O6 conflicts with O4, O5 and O7. First, the

document state is retraced and O6 is put to the position of [2, 4] in the second node. Then,

a combination version of O8 marked with [2, 5] and attached with SV<1, 1, 2> will be

created by O6 and O4 in the layer and be added to Version_list. In the same way, the

combination version of O9 marked with [2, 6] as well as SV<1, 1, 2> will be created by

O6 and O5, and be added to Version_list. Another combination version of O10 marked with

[2, 7] as well as SV<1, 1, 2> will be created by O6, O4 and O5, and be added to

Version_list.

On one side, there are seven versions totally, which is in accordance with the previous

conclusion. The conclusion indicates that the number of N operations’ versions is 2N-1.

On the other side, the final version ID and the order of versions at site1 and site2 is the

same as those at site0. To sum up, the case can prove that ICCR strategy can solve the

kind of conflict and maintain the document consistency.

5. Co-NotePad Text Editing System

We have developed the Co-NotePad system supporting collaborative editing under

Android development platform. Three operations (Insert, Delete, and Update) of the

collaborative system, are realized. The Update operation in the system can only support

the color modification of characters and ICCR strategy can be realized to preserve

multiple intentions. More functions in the system will be added and improved in the

future. To develop the Co-NotePad system, we has utilized the development tools of

Eclipse, Java SDK, Android SDK, ADT etc. In addition, the editor can support two

communication modes: GSM and WIFI.

First of all, the Co-NotePad system should be installed on multiple mobile devices.

Then, each site starts to login in the server and select to download the same file or start an

empty file. Here we select the same text file. Figure 5 shows the process that two clients,

site 1 and site 2, want to update the color attribute of the first character H in the title

simultaneously. From the figure we can see that site 1 has chosen the attribute of Red

while site 2 has chosen the attribute of Green. Apparently, these two Update operations

conflict with each other. Figure 6 shows the ICCR process result that the character H has

three versions including the version of intention combination. The first version is from

site 1, the second one is from site 2 and the last one is the combined effect.

International Journal of Future Generation Communication and Networking

Vol. 9, No. 5 (2016)

Copyright ⓒ 2016 SERSC 59

Figure 5. Concurrent Update Operations of Two Clients

Figure 6. Different Versions Produced by Conflict Update Operations

6. Conclusions and Future Work

This paper proposes a conflict resolution strategy called ICCR strategy, mainly for

consistency maintenance in the real-time collaborative editing environment. And in order

to support all users’ intentions of update operations, we define the combined effect and

extend MVSD technique to adapt to the internal document model of AST. In this way the

idea of Multi Version can be applied to the conflict solution of Update operations under

the new document structure model.

In the approach the primitive operation formats should be redefined and a new

document model presented need integrate MVSD to AST document structure in which a

linear sequence should be added to save all versions for searching conveniently.

Meanwhile, we study further on the document consistency maintenance technique. The

advantages of the approach lie in reducing times of operation comparison, in other words,

saving time of conflict resolution, and taking account of combined versions produced by

the conflict relation to maintain all operation intentions.

The conflict solution approach has a few disadvantages, such as it is not suitable for all

situations and may be not well used in different collaborative editors. Moreover, we will

International Journal of Future Generation Communication and Networking

Vol. 9, No. 5 (2016)

60 Copyright ⓒ 2016 SERSC

make further research on the conflict resolution issues based on AST in other real-time

collaborative systems. The current prototype system is functionally tested and just

verified the availability of the strategy, but still in the debugging. One of our work is to

continue improving the system, including more attributes selection of Update operation

and better consistency maintenance of combination version, which is also the direction of

our future work.

Acknowledgments

The work is supported by the National Natural Science Foundation of China

(NSFC) under Grant No. 61202376 and No.61572325, Shanghai Natural Science

Foundation under Grant No. 15ZR1429100, Innovation Program of Shanghai

Municipal Education Commission under Grant No. 13YZ075, Shanghai Key Science

and Technology Project in Information Technology Field under Grant No.

14511107902, Shanghai Leading Academic Discipline Project under Grant No.

XTKX2012, and Shanghai Engineering Research Center Project under Grant No.

GCZX14014 and C14001.

References

[1] C. A. Ellis and S. J. Gibbs, “Concurrency control in groupware systems”, Proceedings of the 1989 ACM

SIGMOD International Conference on the Management of Data, ACM, (1998), pp. 59-68.

[2] D. Sun, S. Xia, C. Z. Sun and D. Chen, “Operational transformation for collaborative word processing”,

Proceedings of the 2004 ACM conference on Computer Supported Cooperative Work, (2004), pp.

437-446.

[3] N. Gu, J. M. Yang and Q. W. Zhang, “Consistency maintenance based on the Mark & Retrace technique

in groupware systems”, Proceedings of the 2005 international ACM SIGGROUP conference on

Supporting Group Work, (2005), pp. 264-273.

[4] D. Sun and C. Z. Sun, “Operation context and context-based operational transformation”, Proceedings

of the 2006 20th anniversary conference on Computer Supported Cooperative Work, (2006), pp.

279-288.

[5] L. P. Gao and T. Lu, “Maintaining semantic consistency of compound Undo operations replicated

collaborative graphical editing environments”, Application Research of Computers, vol. 27, no. 9,

(2010), pp. 3434-3438.

[6] L. P. Gao, “Consistency maintenance of reference operations based on Add Space Transformation

Strategy in replicated collaborative design environments”, Journal of Chinese Computer Systems, vol. 2,

no. 4, (2011), pp. 599-605.

[7] H. F. Shen and C. Z. Sun, “Achieving data consistency by contextualization in web-based collaborative

applications”, ACM Transactions on Internet Technology, vol. 10, no. 4, (2011), pp. 1-37.

[8] Agustina, C. Z. Sun and D. Xu, “Operational Transformation for dependency conflict resolution in

real-time collaborative 3D design systems”, Proceedings of the 2012 ACM Conference on Computer

Supported Cooperative Work, (2012), pp. 715-728.

[9] L. P. Gao, S. S. Wang, S. X. Guo, Q. Q. Chen, Y. B. Zhang and T. Lu, “Solving two special dependency

conflicts in real-time collaborative design systems”, Proceedings of the 2013 IEEE 17th International

Conference on Computer Supported Cooperative Work in Design, (2013), pp. 11-16.

[10] H. S. Gu, H. J. Hang, Q. Lv, and D. Grunwald. "Fusing Text and Frienships for Location Inference in

Online Social Networks", In Web Intelligence and Intelligent Agent Technology (WI-IAT), 2012

IEEE/WIC/ACM International Conferences on, vol. 1, (2012), pp. 158-165.

[11] H. H. Xia, T. Lu, B. Shao, G. Li, X. H. Ding and N. Gu, “A partial replication approach for anywhere

anytime mobile commenting”, Proceedings of the 2014 ACM Conference on Computer Supported

Cooperative Work, (2014), pp. 530-541.

International Journal of Future Generation Communication and Networking

Vol. 9, No. 5 (2016)

Copyright ⓒ 2016 SERSC 61

Authors

Qiongqiong Fu, she is a postgraduate student in University of

Shanghai for Science and Technology. And she obtained her BSc

degree in 2013 at Zhengzhou Institute of Aeronautical Industry

Management. Her current research interests include CSCW,

collaborative design and collaborative computing.

Liping Gao, she graduated from Fudan University, China with a

PhD in Computer Science in 2009. She received her BSc and master

degree in Computer Science from Shandong Normal University,

China in 2002 and 2005 respectively. She is doing her research work

in University of Shanghai for Science and Technology as an

assistant professor. Her current research interests include CSCW,

heterogeneous collaboration, consistency maintenance and

collaborative engineering.

Naixue Xiong, he is a Professor at School of Computer Science,

Colorado Technical University, Colorado Spring, CO, USA and

University of Shanghai for Science and Technology, China. He

received his both PhD degrees in Wuhan University (about software

engineering), and Japan Advanced Institute of Science and

Technology (about dependable networks), respectively. Before

attending Colorado Technical University, he worked in Wentworth

Technology Institution, Georgia State University for many years.

His research interests include Cloud Computing, Security and

Dependability, Parallel and Distributed Computing, Networks, and

Optimization Theory.

International Journal of Future Generation Communication and Networking

Vol. 9, No. 5 (2016)

62 Copyright ⓒ 2016 SERSC

