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Abstract 

Decaying with the increasing of signal propagation distance, Received Signal Strength 

(RSS) is used in the wireless localization due to its low cost and easily implementation. 

When the transmit power is unavailable, two convex optimization algorithms including 

semi definite programming (SDP), second order cone and semi definite programming 

(SOC/SDP) are designed to estimate the source locations by relaxing the non-convex 

problem as convex optimization. The corresponding Cramér-Rao lower bound (CRLB) of 

the problem is derived. The simulations demonstrate that the SOC/SDP algorithm 

provides the similar accuracy performance compared with the SDP algorithm. However, 

the computational complexity of SOC/SDP is lower than that of the SDP due to the less 

variables and equality constraints. When perfect knowledge of the path loss exponent is 

available, the simulations also show that the accuracy performance of the proposed 

convex optimization algorithms degrades as the path loss exponent increases.  

 

Keywords: wireless sensor networks; localization; received signal strength; convex 

optimization 

 

1. Introduction 

Localization techniques play a critical role in most of wireless sensor network (WSN) 

applications such as coverage calculation, event detection, object tracking, and geometric 

routing [1-3]. In such applications, sensor nodes are categorized into anchor nodes and 

source nodes. The main difference between them is that the anchor nodes know their 

locations, for instance with the help of GPS, whereas the locations of source nodes are 

unknown and required to be estimated. 
To locate the source nodes with these anchor nodes, ranging information is required to 

be measured based on one or more physical parameters of the radio signal exchanged 

between the anchor nodes and the sensor nodes which are in communication range of 

each other. These measurements include the time of arrival (TOA) [4, 5], time difference 

of arrival (TDOA) [6] and received signal strength (RSS) [7, 8]. There is a tradeoff in the 

techniques, which rely on these parameters, in terms of implementation complexity and 

localization accuracy. Among these techniques, TOA-based range estimates are inherently 

more accurate than the alternatives, while the RSS-based techniques provide the solutions 

with low-cost and easily implement [9].  

By using one or several aforementioned parameters, the localization problem can be 

modeled as an estimation problem. When the statistics of the measurement error are 

known, the maximum likelihood (ML) estimator is asymptotically optimal. However, the 

numerical solution of ML estimation highly depends on the initial point provided for the 

iterative solver.  A poor initialization often leads to a very bad estimation.  The non-

convex ML estimator would be possible to trap in a local minimum. To overcome 

shortcoming of the ML estimator, several researchers have proposed the linear estimator. 

By converting the nonlinear equations into a set of linear equations with respect to the 



International Journal of Future Generation Communication and Networking 

Vol. 9, No. 5 (2016) 

 

 

114                                                                                                        Copyright ⓒ 2016 SERSC 

locations of the source nodes, the linear estimator [10] provides closed-form solutions for 

the source location estimation. However, the accuracy performance is not very well at 

larger noise.  

Another method is the use of the convex optimization technique by relaxing the non-

convex and nonlinear problem as convex optimization including the semi definite 

programming (SDP) [11, 12], second order cone programming (SOCP) [13] and their 

mixture.  By taking advantage of the convex optimization technique, the global minimum 

of a convex problem can be quickly and efficiently found. The SDP estimators in [11] and 

[12] are proposed by exploiting the pairwise distance information. SDP solution is an 

approximate ML estimate due to the relaxation of optimization equations, but it has a 

complicated structure and high computational complexity. Compared with the SDP 

algorithm, the SOCP runs faster than the SDP algorithm due to the less variables and 

equality constraints as for the same optimization model.  

When the anchor nodes transmit the signal received by the source nodes, the RSS 

measurements of the source nodes depend on the transmit power of the anchor nodes. 

However, most researches of RSS-based wireless localization assume that the 

transmit power is known. In fact, the transmit power will be subject to a large 

fluctuation because its value is dependent on the height and orientation of the node 

antenna, as well as antenna gain and its battery which will decrease with time. In 

[14] linear least squares is utilized to determine the location of the source node when 

path loss model parameters are unknown. The performance shows that the presented 

method outperforms other off-the-shelf source node localization algorithms when 

path-loss model parameters are unknown. The optimal power allocation policy is 

first derived in [15] for the case that the anchor nodes estimate their own locations 

with no error. The results show that a substantial reduction in power consumption 

can be achieved by optimal allocation of the transmission power. 

In this paper two convex optimization algorithms including SDP and SOC/SDP 

are proposed to estimate the source locations when the transmit power of the anchor 

nodes is unavailable. Here the RSS measurement is assumed to be the log-normal 

shadowing. The path loss exponent and shadow fading variances in the model are 

known a priori through a calibration phase. By relaxing the non-convex target 

function as convex optimization, the SDP and SOC/SDP algorithms provide robust 

solutions to the source location estimation.  

This paper mainly presents convex optimization algorithms including SDP and 

SOC/SDP for RSS-based wireless localization when the transmit power is 

unavailable. The rest of this paper is structured as follows. Section 2 presents  the 

problem specification of localization model in the network. Section 3 in detail 

describes the localization design with convex optimization algorithms. Section 4 

derives the corresponding performance of CRLB. Section 5 analyzes the simulation 

results. The conclusion is represented in Section 6. This paper contains a number of 

symbols. Following the convention, we represent the matrices as bold case letters.  If 

we denote the matrix as (*), (*) -1 represents matrix inverse. ji,][A  denotes the 

element at the i th row and j th column of matrix A . For arbitrary symmetric 

matrices A , 0A  means that A  is positive semi definite. 

 

2. Localization Model 

Consider a wireless network with N  anchor nodes of known locations denoted 

by vectors 1a , , Ma . The problem is to localize M  unknown indistinguishable 

source nodes whose locations are denoted by vectors 1x ,,
Nx .  In the proposed 

model, the anchor nodes transmit the wireless signal which is received by the source 

nodes. Considering a statistical path loss model, the dBm value of the average 
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power collected from the i th source node and corresponding to the signal 

transmitted by the j th anchor node is given by 

        
jijijji ndPP ,,100,, log10                                                                (1) 

where 0,jP  is the power transmitted by the j th anchor node and received by the i th 

source node at the reference distance of 1 m.   and 
jid ,
 is the path loss exponent 

and the distance for the link between the i th source node and the j th anchor node. 

ji
n

,
  is the corresponding shadowing term modeled as independent zero-mean 

Gaussian random variables with standard deviation 
2

, ji . 

 In this case, both the source coordinates and the transmit powers of the anchor 

nodes are unknown and should be estimated. Denote the positions of the source 

nodes and transmit powers of all anchor nodes in vector form by 

TT

N

TT ][ 21 xxxx                                                (2) 

][ 0,0,20,1 MPPP p                                              (3) 

Our aim is to estimate x  based on the received signal strength measurements 

where the transmit power vector p  is unknown.  

To unique positioning the source node, the requisite number of RSS 

measurements is now discussed.  In the two-dimensional space, it is well known that 

at least three non collinear transmitters and measurements are used to uniquely 

locate a source node. Hence we need at least N3  distance measurements to locate 

N  nodes assuming that the transmit powers are known.  

When 
0

p is unknown, the requisite number of RSS measurements is increased to 

MN 3 due to the extra M unknown parameters. Since there are at most MN  

measurements in total, this leads to the inequality  

MNMN  3                                                      (4) 

Then we can obtain that  

2,
1

3



 N

N

N
M                                                 (5) 

When 2N , M must be meet that 6M .  (4) Also means that  

4,
3




 M
M

M
N                                                 (6) 

Where 4M , N must be meet that 4N . 

The well-known maximum likelihood (ML) estimation for the proposed model 

can be represented as the following optimization problem 

2

,100,,

1 1
2

,

)log10(
1

min jijji

N

i

M

j ji

dPP 



 px,

                      (7) 

However, the numerical solution of the ML estimation depends on the initial 

conditions or may suffer from local minima and even divergence problems. The semi 

definite programming algorithm converts the non-convex formulation of (7) to a convex 

optimization program which always guarantees a global solution. Another method to 

avoid the shortcoming of the ML estimation is the linear estimator. The linear estimator 
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transforms the nonlinear equations to a set of linear ones and obtains the closed-form 

solution to the source position. In the following, we in detail present the designed semi 

definite programming algorithm for the proposed RSS-based localization model when the 

transmit power is unavailable.  

 

3. Semidefinite Programming Algorithm 

To obtain the linear expression, (1) is rewritten as  

jijijji nPPd ,,0,,10log10                                                (8) 

By dividing both sides of (8) by 5 , (8) is further written as 

5
log

,,0,2

,10

jijij

ji

nPP
d


                                                  (9) 

Taking the power of 10 on both sides of (9) yields  

52

,

,,0,

10

jijij nPP

jid



                                              (10) 

For sufficiently small noise, the right hand side of (10) can be approximated using the 

first-order Taylor series expansion as 

jijjijid ,,

2

,                                                         (11) 

where
 5

,

,

10

jiP

ji


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 5

0,

10

jP

j  ,
jjiji


,,

 ,  ji

ji

ji n ,

,

,
5

10ln




   is the noise modeled 

as a zero-mean Gaussian random variable with variance 
2

, ji . 

2

2

22

2

, ,

,
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)10(ln

ji

ji

ji 



                                                   (12) 

So the ML estimation can be reformulated as  

2

,

2

,

1 1
2

,

)(
1

min jjiji

N

i

M

j ji

d 



 ρx,

                                      (13) 

where
2

2

, jijid ax  , ],,2,1|[ Mjj  ρ  denotes the unknown parameter vector 

corresponding to the transmit power. The unknown parameter vector along with the 

source locations is estimated by using the ML estimation. Producing a new variable 










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Z
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2
                                                           (14) 

Then the parameter 
2

, jid  can be further rewritten as 
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where 
ie  is an 1N column vector with 1 at the i th entry and 0’s elsewhere. By 

relaxing
2N0Z  , we construct a semidefinite relaxation form of (13) which can be 
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rewritten as 

2
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For avoiding the local minima, (13) is converted into the SDP optimization problem 

2
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where ],,2,1,,,2,1|[ , MjNiji   α .  (17) provides an SDP solution to the 

proposed RSS localization model. But the SDP algorithm runs slower due to a larger 

number of the variables and the equality constraints. So an alternative algorithm is 

the SOCP algorithm which has less variables and equality constraints.  (17) is 

equivalent to the following optimization problem 
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                                                (18) 

where ],,2,1,,,2,1|[ , MjNiu ji  u . The solutions to (17) and (18) are 

determined by the transmit power which is not available. Preliminarily considering 

ji,  as one we obtain the initial estimate ji,  . Then putting the initial estimate into 

these optimization expressions would produce a better solution for the positions of 

source nodes. 

 

4. CRLB Performance 

The CRLB matrix provides a lower bound on the covariance of any unbiased 

location estimator and is equal to inverse of fisher information matrix (FIM).  In this 

section, the position CRLB of source node with unknown transmit power is derived. 

Since the transmit power is not available to the estimator, it should also be taken 

into account as an unknown parameter. Let
TTT ][

0
pxφ  . The FIM is denoted as F , 

which is obtain by 
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2
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Therefore, the elements of matrix F  can be further represented as 
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where Aj  represents the source node i  can communicate with anchor node j . 

The CRLB of the unknown parameters is the diagonal element of the inverse of the 

FIM. So the CRLB of source node position is written as 

1

],[][
)(CRLB 

rrr
Fx                                                  (21) 

where Nr 2,,2,1  . Given the FIM the position CRLB of source node i  is 

obtained by 

1

]2,2[

1

]12,12[
)(CRLB 




iiiii
FFx                                           (22) 

 

5. Evaluation  

When the transmit power of the anchor node is assumed to be unknown, the SDP and 

SOC/SDP algorithms are proposed for RSS-based sensor localization. The proposed 

algorithms do not rely on the initialization and ensure the global convergence.  Computer 

simulations were conducted to evaluate the robust performance of the proposed SDP and 

SOC/SDP algorithms. The proposed SDP and SOC/SDP are all implemented by the CVX 

toolbox using SeDuMi as the solver. 

 

5.1. Impact of the Shadow Fading 

Considering the configuration of the network given in Fig. 1, we perform Monte Carlo 

simulations with 500 ensemble runs to evaluate the root mean square error (RMSE) of the 

location estimation. To test the performance of proposed algorithms, we conduct a group 

of simulations with 15 nodes deployed in a 20 m×20 m square region. 5 anchor nodes are 

set at (0, 0), (0, 20), (20, 0), (20, 20) and (10, 10) and used to locate other 10 source nodes 

deployed in the region randomly. We assume that all anchor-source connections are 

measurable. All transmit power 0,jp  ( 5,,2,1 j ) of the anchor nodes are set to -45 dB 

and assumed to be unknown. The shadow fadings jin ,  are zero-mean white Gaussian 

variables with known identical variances of
22

,  ji . Figure 1 plots the geometry and 

connectivity of deployed 15 sensor nodes. 
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Figure 1. Geometry of Deployed 15 Sensor Nodes 

 

Figure 2. Impacts of Shadow Fading 

Considering the configuration of the network given in Figure 3, we perform 

Monte Carlo simulations with 500 ensemble runs to evaluate the root mean square 

error (RMSE) of the location estimation. When the variances 
2 of shadow fading 

are varied from 
21.0  to 

21 and PLE value   is set at 4, the average RMSE of 10 

source nodes versus shadow fading is plotted in Figure 2.  

It can be seen from Figure 2 that the RMSE performance of SOC/SDP is very 

similar with the mixed SOC/SDP algorithm. The RMSE performance degrades as 

the shadow fading increases. When the shadow fading is set at 1.0 , the average 

RMSEs are also equal to 0.12 m with SDP and SOC/SDP algorithms. When the 

shadow fading is increased to 1, the average RMSEs are also increased to 1.2 m 

with SDP and SOC/SDP algorithms. The position RMSE is approximately linear 

with the shadow fading. Compared the optimal CRLB performance, the solutions of 

SDP and SOC/SDP algorithms are not very well due to the convex optimization 
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relaxation. 
 

5.2. CPU Runtime 

The SOC/SDP algorithm provides the similar performance with the SDP 

algorithm. However, the SDP algorithm runs slower than the SDP algorithm due to 

the larger number of variables and equality constraints.  In Table 1, we compare the 

average CPU runtime of the proposed algorithms. The running time is measured by 

averaging over 500 noise realizations when the standard deviation of the shadow 

fading is set to 4 dB. When the network configuration is set as Figure 1. The number 

of variables and equality constraints are 349 and 103 for the SDP algorithm, 

respectively. However, the number of variables and equality constraints are reduced 

to 200 and 53 for the SOC/SDP algorithm. The average running time of SDP 

algorithm is 295 ms. As for the same network configuration, the average running 

time of SOC/SDP algorithm is 201 ms. 

Table 1. CPU Runtime Comparison of Different Algorithms for the 
Network in Figure 1 

Algorithm Measurements Variables Equality constraints CPU runtime 

SDP 50 349 103 295 ms 

SOC/SDP 50 200 53 201 ms 

 

5.3. RMSE Performance of Different Source Node 

 

 

Figure 3. Performance Comparison of Different Source Node 

Specific to the position of a source node, the positions of anchor nodes affect the 

positioning accuracy greatly. When the shadow fading is set to and PLE value   is 

set at 4, the RMSE comparison of 10 source node is plotted in Figure 3. Since 

located by different anchor nodes, the RMSE of each located node is diverse. The 

RMSE of source node ID 1 is 0.180 m in SDP algorithm and 0.193 m in SOC/SDP 

algorithm. However, the RMSE of source node ID 2 is only 0.087 m in SDP 

algorithm and 0.084 m in SOC/SDP algorithm. It also can be seen that the SOC/SDP 

algorithm provides the similar performance with the SDP algorithm.  

 



International Journal of Future Generation Communication and Networking 

Vol. 9, No. 5 (2016) 

 

 

Copyright ⓒ 2016 SERSC                                                                                                        121 

5.4. Path Loss Exponent 

The estimate accuracy of the source node location highly relies on the path loss 

exponent value by using the RSS measurements. Generally, in wireless localization, 

the path loss exponent related with the environment is obtained through 

experimental analysis. We also investigate the effect of path loss exponent 

knowledge on the performance of the proposed algorithms. Similarly, when the 

network configuration is setup as Figure 1, the average RMSE of all source nodes is 

selected to evaluate the impacts of path loss exponent.  When shadow fading is set 

at 0.1 and the path loss exponent  is varied from 2 to 6, the RMSE performance is 

plotted in Figure 4. The RMSE is decreased as path loss exponent   increases. 

When   is set at 2, the RMSE of the proposed SDP and SOC/SDP algorithms is 

0.23 m.  However it is reduced to 0.08 m when the path loss exponent   is set at 6. 

The simulations indicate that, for different path loss exponent parameters, the 

proposed SOC/SDP provides the similar localization accuracy with the SDP 

algorithm. However, the SOC/SDP runs faster that the SDP algorithm as for the 

same network configuration. 

 

 

Figure 4. RMSE Performance versus PLE 

6. Conclusion 

When the transmit power is unavailable, the convex optimization algorithms are 

proposed to avoid the shortcoming of the ML estimation for the RSS-based sensor 

localization. By relaxing the RSS-based localization model to convex optimization 

problem, the SDP and SOC/SDP algorithms are designed. The localization accuracy 

degrades as the shadow fading increases. The accuracy performance becomes better 

as the path loss exponent increases. Compared with the SDP algorithm, the 

SOC/SDP algorithm provides the similar accuracy performance. However, the 

SOC/SDP runs faster than the SDP algorithm. Due to the convex relaxation, the 

proposed SDP and SOC/SDP algorithms cannot achieve the CRLB performance 

which provides the optimal accuracy. But the performance of the proposed SDP and 

SOC/SDP algorithms is robust since the algorithms do not rely on the initialization.  
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