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Abstract 

A large number of pilots are utilized to acquire channel information in traditional 

channel estimation for Orthogonal Frequency Division Multiplexing (OFDM) system, 

which leads to lower spectrum efficiency. For exploiting the sparse channel 

characteristics of 3GPP multipath channels, we employ the Compressed Sensing (CS) 

approach for channel estimation.   Two CS-based recovery algorithms, Orthogonal 

matching pursuit (OMP) algorithm and Compressive sampling matching pursuit 

(CoSaMP) algorithm, are considered in this paper. The Bit error rate (BER) and Mean 

squared error (MSE) performance using traditional least square(LS), and two CS-based 

algorithms are given. Simulation results demonstrate that the CoSaMP algorithm 

achieves best performance with fewer pilots among three algorithms under 3GPP 

channels. 
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1. Introduction 

In wireless communications, multipath radio channels often leads to frequency-

selective fading and serious Inter-Symbol Interference (ISI) for high speed data 

transmissions. The Orthogonal frequency division multiplexing (OFDM) techniques has 

been widely employed to combat multipath interference at high data rate. Channel 

estimation is essentially a process of recover channel impulse response, and it is an 

important part of OFDM transmission system. Rich multipath channel is usually assumed, 

and long training sequences/large number of pilots are required in the traditional channel 

estimation methods like least squares (LS) and minimum mean squared error (MMSE) 

[1], which reduce the frequency spectrum utilization. In reality, the wireless multipath 

channel exhibit sparse structure [2], such as 3GPP channels. Hence, exploiting the sparse 

characteristics for channel estimation can improve the spectrum utilization, and 

compressed sensing provides such an approach.  

Compressed sensing (CS) theory was proposed by E.J.Candes, J.Romberg, T.Tao and 

L.Donoho [3, 4] in 2006. They have proved that if signal in an orthogonal space can be 

sparse represented, the signal sampling can use lower sampling frequency. With some 

recovery algorithm, the signal can be restored with high probability, which contrasts with 

the Nyquist sampling theorem. The appearance of the theory has received widespread 

attention in sparse signal processing [5]. In [6], the authors analyzed current application of 

compressed sensing to sparse channel estimation, and proposed the channel modeling 

method and how to insert pilot sub-carrier. The research of CS-based channel estimation 

include Ultra-wideband (UWB), OFDM, and Multi-input multi-output (MIMO) systems 

[7-9]. In [10], Matching pursuit (MP) algorithm for CS signal recovery is proposed. In 

[11], OMP algorithm for CS signal recovery is proposed. It improves the estimation 
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accuracy, but increases the computational complexity. In [12], performance of OMP and 

CoSaMP (compressive sampling matching pursuit) based channel estimation in amplify 

and forward two way relay network (AF-TWRN) scenario is compared. CoSaMP 

algorithm performs iterative signal recovery form incomplete and inaccurate 

measurements [13]. The conclusion is that CoSaMP-based channel estimation performs 

similar to OMP-based channel estimation in AF-TWRN scenario. 

In this paper, we investigate the CS-based channel estimation for OFDM transmission 

under 3GPP channels. The LS, OMP and CoSaMP algorithms are considered as the 

recovery algorithms for channel estimation. The BER and MSE performance of the three 

algorithms with different number of pilots are compared in two 3GPP channels, 

Pedestrian A channel and Vehicular A channel. The analysis shows that CoSaMP 

algorithm obtains better performance than OMP and LS algorithms in two 3GPP channel 

models with fewer pilots.  

The rest of this paper is organized as follows. In Section 2, we introduce the CS-based 

OFDM transmission system model. Section 3 introduces the CS-based channel estimation 

theory, and describes the OMP and CoSaMP recovery algorithms. Simulation results are 

given and analyzed in Section 4. Finally, Section 5 concludes our work. 

 

2. System Model 

The CS-based block diagram of OFDM transmission system is shown in Figure 1. The 

input data is first modulated and converted into parallel. In this paper, we consider 

selecting number of P sub-carriers in N sub-carriers OFDM system as pilots, and the 

pilots are inserted into data sub-carriers at regular intervals. In order to avoid the inter-

symbol interference (ISI) due to multipath delay spread, a cyclic prefix (CP) of length 

equal or greater than the maximum expected time delay of the channel is inserted in each 

OFDM symbol prior to transmission. By N-point Inverse fast fourier transform (IFFT) 

and CP insertion, the symbols are transmitted. At the receiver side, the CP is removed, 

and the received data are passed to fast fourier transform (FFT) block. Then, the received 

symbols are extracted to channel estimator which estimates the channel frequency 

response and delay spread parameters. 
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Figure 1. CS-Based OFDM Transmission Model 

At the transmitter, the time-domain samples of transmission signal can be written 

as    , 0 1x n n N   , N is the total number of sub-carriers. Assuming that the 

transmission system has good synchronization performance, the received signal, denoted 

by  r n , is the convolution of the transmitted signal and the channel response plus noise. 

It is given by 

       
1

0 1
L

l

r n x n l h l z n n N


                              (1) 
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where L  is the number of sample-spaced channel taps,   z n  is the additive white 

Gaussian noise (AWGN) sample with zero mean and variance of  2 , and  h l is the 

multipath channel impulse response in time domain. The multipath channel impulse 

response can be described as [14] 

     
1

0

L

l l

l

h t a t   




                            (2) 

where
l is the delay of lth  path and  la t is the complex amplitude of lth  path, which is 

assumed to be wide-sense-stationary (WSS) complex Gaussian processes and independent 

between different paths. 

 

3. Compressed Sensing based Channel Estimation 

In this section, the CS theory for channel estimation is briefly described. The spare 

representation of the multipath channel system is provided, then we describe two CS 

signal recovery algorithms, OMP and CoSaMP. 

CS theory mainly includes three aspects, sparse representation of signal, the 

measurement matrix and recovery algorithm.  

Assuming that signal  

1i

i

N

ih a


                            (3) 

where  1,2,...,i i N  are base vectors, a and h are 1N  matrix,   is an N N matrix. 

If the number of non-zero elements K  in signal h  far less than N , the signal can be 

thought as K -spares signal. 

CS theory states that a K -spares signal h  can be stably recovered from linear 

measurement  

y h z                 (4) 

where  is a matrix with M rows and N columns, M N ,and z is noise. The premise is 

that the measurement matrix  satisfies the Restricted Isometry Property (RIP), for all 

K -spares h , 

2

2

2

2

h
1 1

h
K K 


                               (5) 

where 0 1K  is the RIP parameter. 

The received signal in (1) in Section 2 can be written in matrix form as 

 R XH Z        (6) 

where  (0), (1),..., ( 1)
T

R r r r N  , ( (0), (1),..., ( 1))X diag x x x N  , NLH F h  is the 

multipath channel frequency response sampling values, NLF  is part of  FFT matrix with it 

elements at row N and column L . z is a N N matrix with zero mean and variance of 
2 . 

 Here, we set P  as the number of pilots,  
1 2s s se ,e , ,e

P
    is a P N pilot selection 

matrix, which is used to select the pilots position from total N  sub-carriers.  

 s 1,2, ,i i P  is the position of the i pilot. Converting  to (6) as  

P F p PR X F h z              (7) 
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where
PR R is received pilot signal, 

Pz z , they are both P  column vector. 
T

PX X  is a diagonal matrix, the diagonal elements are pilot values, 
P NLF F . 

Assuming that 
P PT X F , converting (7) to  

P PR Th z         (8) 

where h is multipath channel impulse response, PR and T can be obtained in the 

transmission process, then the CS recovery algorithm can be used to recover  h . 

The key of recovery algorithm is how to accurately recover original high dimensional 

data from low dimensional data which are from compressed sensing. Many recovery 

algorithms like basis pursuit (BP), orthogonal matching pursuit (OMP) and compressive 

sampling matching pursuit (CoSaMP) have been studied for recovery of the vector  . In 

this paper, we utilize OMP and CoSaMP algorithms as the recovery algorithms to 

estimate channels. The OMP algorithm and CoSaMP algorithm are shown as follows. 

 

OMP Algorithm 

Input:  residual r , linear measurement y , measurement matrix Y , recovery matrix T , 

sparse K  

Output: channel estimator 
eh  

Initialize: , ,   T Y r y , iterations 1:1:i K  

The absolute value of inner product of T
Y and r  : ( ( ))sum abs T

U Y r ,where * is inner 

product operation; 

Record the position of U  and its value:    , maxV P U ; 

Measurement matrix Y  expansion:  , (:, )Y Y T P ; 

Signal approximation with least squares: 1( )   T T

eh Y Y Y r ; 

Update residual :  er = y -Y h ;  

Record the position of projection:    :, :,sY i Y P ; 

End iteration 

 

Cosamp Algorithm 

Input:  residual r , linear measurement y , measurement matrix Y , recovery matrix T , 

sparse K  

Output: channel estimator 
eh  

Initialize: , ,   T Y r y , iterations 1:1: 2i K  

The absolute value of inner product of T
Y and r  : ( ( ))sum abs T

U Y r ,where * is 

inner product operation; 

Sort the value:  , ( , ' sec ')sort de endV P U ; 

Record the position for current iteration: ( , )unionPS P Y  ; 

Current measurement matrix: ):, PY = Y( S ; 

Signal approximation with least squares: 1( )   T T

eh Y Y Y r ; 

Update residual :  er = y -Y h ;  

Record the position of projection:    :, :,sY i Y P ; 
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End iteration 

 

4. Simulation Results and Analysis 

In the simulated transmission system, the total sub-carriers is N=256, including pilots 

sub-carriers.  The length of CP is 20. QPSK modulation scheme is used. Monte carlo 

simulations are performed over 100 realizations of random channel vectors. We 

investigate the performance of CS-based OFDM transmission under 3GPP Pedestrian A 

channel and Vehicular A channel. The two channel models are show in Table 1 and Table 

2, respectively. 

Table 1. Channel Delay Profiles of 3GPP Pedestrian A Channel 

Tap Relative Delay(ns) Average relative 

power(dB) 

1 0 0 

2 110 -9.7 

3 190 -19.2 

4 410 -22.8 

Table 2. Channel Delay Profiles of 3gpp Vehicular A Channel 

Tap Relative Delay(ns) Average relative 

power(dB) 

1 0 0 

2 310 -1.0 

3 710 -9.0 

4 1090 -10.0 

5 1730 -15.0 

6 2510 -20.0 

Figure 2 and Figure 3 show the variation of BER and MSE (Mean Squared Error) with 

different estimation algorithms (LS, OMP, CoSaMP) for different pilots in Pedestrian A 

channel, respectively. The sparse value K=4. In the simulation, LS and OMP uses 32 

pilots, CoSaMP uses 16 pilots. It is seen that OMP outperforms LS with the same number 

of pilots, and CoSaMP can obtain the best performance in the three algorithms with fewer 

pilots.  
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Figure 2. BER Performance in Pedestrian A Channel 

 

 

Figure 3. MSE Performance in Pedestrian A Channel 

In Figure 2, when the SNR is above 15 dB, BER performance of CoSaMP becomes 

significantly better than OMP. For example, with the same 210BER  , CoSaMP can gain 
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about 0.5 dB than OMP. With 310BER  , CoSaMP can gain about 2 dB than OMP.  In 

Figure 3, MSE values of CoSaMP are less than OMP about 3dB. 

Figure 4 and Figure 5 depict the variation of BER and MSE with different estimation 

algorithms (LS, OMP, CoSaMP) for different pilots in Vehicular A channel, respectively. 

The sparse value K=6. The trends of BER and MSE curves are the same as that in Figure 

2 and Figure 3. It can be observed that CoSaMP achieves best BER and MSE 

performance in Vehicular A channel. 

Comparing Figure 2 and Figure 4, the superiority of CoSaMP compared with OMP is 

more obvious. For example, with the same 210BER  , CoSaMP gets about 2.5dB gain 

than OMP, while 310BER  ,  CoSaMP gain about 7 dB than OMP. Moreover, the MSE 

values of CoSaMP are less than that of OMP about 5 dB. Hence, CoSaMP can obtain 

more gain in Vehicular A channel.  

 

 

Figure 5. MSE Performance in Vehicular A Channel 

From the simulation results, it is seen that the BER of CoSaMP decreases from 

SNR=15 to 30 dB and the MSE performance is also decreased with the number of 

multipath increases, but it achieves the better performance than other two algorithms. 

 

5. Conclusion 

In this paper, we investigated the compressed sensing (CS)-based channel estimation 

for OFDM transmission in 3GPP channel scenarios, 3GPP Pedestrian A channel and 

Vehicular A channel. In OFDM system, we insert pilot sub-carrier at regular intervals, 

and cyclic prefix (CP) length is fixed. The BER and MSE performance are compared 

using three different recovery algorithms, LS, OMP and CoSaMP. The CoSaMP 

algorithm can achieves better performance with fewer pilots than OMP algorithm. Based 

on the simulation results, it is concluded that CoSaMP algorithm outperforms OMP 

algorithm for channel estimation of OFDM transmission system under Pedestrian A 
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channel estimation and Vehicular A channel. Specifically, the improvement of CoSaMP 

algorithm is more significant in Vehicular A channel than in Pedestrian A channel. 
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