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Abstract 

Aiming at the problem of unsolved data spatio-temporal correlation emerged during 

the high-speed movement of nodes in WSN network, a compressive sensing reconstruction 

algorithm of dynamic node data is proposed in this paper. First, estimate the sparseness 

of network data sparse coefficient vectors through fragmental increasing supporting set, 

and then the optimal supporting set element is selected in each section by supporting set 

backtracking optimization method. Simulation results show that this algorithm can 

reconstruct WSN sensor network data in the condition that sparseness of sparse 

coefficient vector is uncertain with the complexity of reconstruction error and measuring 

operation needed in reconstruction obviously lower than traditional algorithms. 
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1. Introduction 

Data transmission of dynamic node in wireless sensor network has become the research 

hotpot of sensor network [1-2]. It’s mainly because more and more sensor nodes have 

appeared in dynamic environment, such as vehicle-sensor, etc, and these dynamic sensor 

nodes transmit data mainly by wireless communication method, thus it can collect data to 

transmit. Due to the large scale of sensor nodes, how to correctly transmit perceived data 

of each node to processing center becomes the important challenge of sensor network 

technology of dynamic node [3].  As researchers have successively put forward many 

data-collection methods of dynamic sensor network, in order to reduce energy 

consumption of data transmission, literature [4] put forward a sparse signal reconstruction 

method based on compressed sensing and adaptive orthogonal matching pursuit algorithm. 

Literature [5] put forward sensor network data fusion method based on multi-resolution 

and compressed sensing. Literature [6] design a strategy based on DS evidence theory and 

compressed sensing WSN hybrid data fusion. Simulation experiments show this method 

has advantages of smaller reconstruction error and larger network lifetime. Literature [7] 

put forward a data-collection method based on delay-bound rooting protocols. Most of 

these methods require data output end has strong data processing and storage capacity, as 

it not only require higher demands of dynamic node computing power. But it doesn’t take 

into the account of the problem of data dependency of each node. 

Compressed sensing theory [8-11] provides ideal solution for the data-collection 

problem of wireless sensor network. Compressed sensing theory can make full use of 

computing power asymmetry of data sending and receiving ends, which can maximize 

system sensing and computing power and make effective use of node data dependency to 

increase data reconstruction accuracy [12-14]. This paper put forward compressed sensing 

reconstruction algorithm based on dynamic node data. The algorithm evaluates sparse 

degree of sparse coefficient vector of network data step by step using support set potential 

segment increasing method. While in each segment, determine nonzero element location 

and amplitude in sparse vector by using support set retrospective optimization method. 
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Compared with past algorithms, algorithm in this paper can reconstruct accurately when 

network data dependency degree is uncertain, and reconstruction error and measurement 

computing complexity required by construction degrease significantly.  

2. Problem Description  

Suppose the number of several dynamic sensors of each node is J , during 

data-collection process of each node, repeat n times of sampling processes, and every 

node data length is n . Mark collected signal node data as matrix column, thus network 

data can be presented as 
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For the ease of presentation, connect data of each node, and network data can be 

written as vector form 

 Dvec 2XX   TnJJnn xxxxxx ,...,,,...,,,..., 1212111       TNxxx ,...2,1 （1） 

其中 NRX ， nJN  。 

Among which, 
NRX , nJN   

Before compressed sensing measurement of data, sparse convert the signal by Discrete 

Cosine Transform 
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Among which, Ψ is NN  dimension DCT transformation matrix, N  dimension 

sparse coefficient vector ks includes K ( NK  ) nonzero elements. Measurement 

matrix used to measure data produces in each node, mark the measurement matrix 

produced in node j ( Jj ,...,2,1 ) as jΦ , matrix dimension is nm ( nm  ). 

Measured value of each node can be presented in the below vector form: 

 TmJJmm yyyyyy ,...,,,...,,,..., 1212111Y       TMyyy ,...2,1           （3） 

Thus measurement process of network data can be presented in the below matrix 

vector form: 

ΦΨsΘXY        （4） 

Among which,
MRY , mJM  , measurement matrix 
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In order to realize network data recovery of WSN sensor, under condition with known 

measurement Y and recovery matrixΘ , reconstruct sparse coefficient vector. However, 

sparse degree of sparse coefficient vector s  of dynamic node data in sensor network 

changes with node mobility, so traditional reconstruction method doesn’t adapt anymore. 
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The paper put forward a new network data reconstruction algorithm.  

 
3. Dynamic Node Data Reconstruction Algorithm   
 

3.1 Algorithm Description 

Know from compressed sensing theory, network data reconstruction realizes data 

construction mainly by determining nonzero element location and amplitude step by step 

in sparse coefficient vector. Based on convert reconstruction algorithms, the paper 

determines support set step by step in segment increasing method, detailed steps is shown 

as below: 

Initialization: residual error Yr0  , iteration times 1t , support set potential iteration 

step length 0size , support set potential sizeL  , segment sequence 1stage , index 

value set 0 , 0 . 

(1)Compute correlation coefficient of column and residual of recovery matrix, and 

choose L2  numbers of correlation coefficient with maximum amplitude.  

 iiit ruuu  ,  Ni ,...2,1 ，  Lutt 2,
0
  

(2)Update index value set, and choose L numbers of correlation coefficient with 

maximum amplitude 

ttt   10
，  Ltt ,

0
  

(3)Estimate sparse coefficient vector 

2
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(4)Update residual error: sΘyr
tΛt
ˆ  

(5)Judge algorithm termination condition:  2
ˆˆ

t1t ss . If it satisfy, terminate 

algorithm, output sΨx ˆˆ  ; if it doesn’t satisfy, enter into step (6). 

(6)Judge segment termination condition: 
22 1tt rr  . If it satisfy, enter into step (7); 

if it doesn’t satisfy, enter into step (8). 

(7)Begin next segment iteration: support set potential sizeLL  ， 1 tt ，

1 stagestage ， enter into step (1). 

(8)Continue this segment iteration: 1 tt , enter into step (1). 

Final solution: sΨx ˆˆ   

 

3.2 Algorithm Convergent Analysis  

To test effectiveness and reliability of this algorithm, this section derivate and prove 

the algorithm convergence theoretically.   represents index value selected after n  

times of iteration, n represents index value set after n  times of iteration, 1F  

represents index value set used to signal reconstruction after n  times of iteration, 2F  

represents index value set that failed to be selected after n  times of iteration, 

F represents index value set used for final signal reconstruction. Combining algorithm in 

last section, we can know that, the above sets have below relations: 

1T 、 2T  separately represent potential of set 1F 、 2F , as 11 FT  ， 22 FT  . After 

n times of iteration, residual error can be written as: 
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 YQYr
nΛn   
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Among which,  YQ
nΛ

represent the projection of corresponding element on n . 
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Known from algorithm, number of index value failed to be selected isn’t bigger than 

step support set potential iteration step length size , therefore, known from （5）formula 

and （6）formula 
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Note that recovery matrix Θ meet Restricted Isometry Property, as for any 01  , 

sparse vector s have  
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Satisfy, thus 
nΛ

Θ also meet RIP, in combination with formula (7) can get 
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Suppose 3/1 , thus have  

Thus we know 

 
2222 FFFF ssss 

































1
1

1

22

  （9） 

Algorithm convergence can be illustrated by this. 

 

4. Experiment Simulation  

In this paper, in Windows xp system, CPU is core i3, memory is 4GDDR3, and hard 

disk is 500G, simulation software adopts Matlab2012. The paper first reconstruct 

network data by using general sparse vector to test accuracy of algorithm in this paper; 

second, reconstruct collected network data to test effectiveness of the algorithm.  

Compressed sensing reconstruction algorithm requires the measured data meet 

certain property. In order to let simulation results can reflect algorithm property, 

measure reconstruction sparse data by BRMM matrix to produce sparse vector. This 

paper choose sparse vector length N 256, number of measured values meet 4.0/ NM . 

Under same simulation condition, reconstruct same sparse vector by traditional 

algorithms as SP algorithm, Cosamp algorithm and Stomp algorithm. Adopt relative 

error formula  
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Formula (10) is judge standard of reconstruction, repeat 200 times of experiments 

under every sparse condition, regard average value of reconstruction error as final error 

under this spars condition. Simulation results show as Figure 1. 
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Figure 1. Reconstruction Error Comparison 

Known from the results, when reconstruction vector sparse degree K is lower, each 

algorithm reconstruction error is similar, but as K increases, traditional algorithm 

reconstruction error is obviously higher than the algorithm in this paper. If define 

reconstruction failure probability
  
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er
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xxxnum
P

1.0*ˆmax 
 , reconstruction failure 

probability result shown in Figure 2 can further test that algorithm in this paper can 

accurately reconstruct sparse vector when sparse degree of vector changes.  
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Figure 2. Reconstruction Failure Probability Comparison  
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Figure 3. Reconstruction Error Comparison  

The above experiments use same number of measured values; however, number of 

measured value also influences reconstruction error. In order to display reconstruction 

capacity of each algorithm under different numbers of measured values, the test chooses 

sparse degree 6K , change measured values number, make NM / changes within 0.1-0.8. 

Also, use relative error as judgment standard of reconstruction quality. Test results are 

shown as Fig. 3 and Fig. 4. For the same reconstruction error, number of measured values 

required by algorithm in this paper is obviously smaller than that of traditional algorithm, 

while use same measured value number, algorithm in this paper can realize better 

reconstruction quality than traditional algorithm. 
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Figure 4. Reconstruction Failure Probability Comparison  

5. Conclusion  

As traditional network data compressed sensing algorithm has higher requirement for 

data dependency certainty degree, so it can’t adapt to the practical application background 

of dynamic node in wireless sensor. Dynamic node data compressed sensing algorithm 

put forward by this paper can significantly improve dynamic node data reconstruction 

accuracy in sensor network, meanwhile it can reduce measuring and computing 

complexity required by reconstruction. Algorithm in this paper provides a reference 

research direction for the dynamic node development in wireless sensor.  
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