
International Journal of Future Generation Communication and Networking

Vol. 9, No. 3 (2016), pp. 57-68

http://dx.doi.org/10.14257/ijfgcn.2016.9.3.06

ISSN: 2233-7857 IJFGCN

Copyright ⓒ 2016 SERSC

A Composition Method of Logical Function Block Chain
1

JIN Rong
1, 2

, HE Xiong-xiong
1
 and Zhu Guang-xin

3

1. College of Information, Zhejiang University of Technology, Hangzhou

310014, China

2. College of Information & Electronic Engineering, Zhejiang Gongshang

University, Hangzhou 310018, China

3. OB Telecom Electronics Co., Ltd., Hangzhou 310012, China

E-mail: jinrong@mail.zjgsu.edu.cn; hxx@zjut.edu.cn; hans@obtelecom.com

Abstract

ForCES is a new open programmable architecture, it separates control and

forwarding, it also abstracts resources of Forwarding Elements (FE) into some Logical

Function Blocks (LFB), Control Element (CE) can reconfigure the forwarding function

of FEs by recomposing their LFB chains. Firstly, A SDN architecture based on

ForCES is proposed. Then, based on the formalization of the concept of LFB and the

traditional I/O matching algorithm, an LFB chain composition method is proposed.

This method can combine a series of LFBs to an LFB chain according to special

application request. Based on the LFB chain composition algorithm, an improved

algorithm is proposed, which can improve the composition efficiency. At last, an

example is provided to illustrate how this method works, and a simulation is given to

compare the efficiency of the base algorithm and the improved algorithm.

Keywords: SDN, ForCES, Logical Function Block, Composition

1. Introduction

With the emergency of new network applications, the new requirement is no

longer a high performance of data forwarding, but an open flexible network to

adapt to various business requirements. Under this background, many future

network architectures are proposed [1-4], including Software Defined Network

(SDN) [5]. The main idea of SDN is to accomplish a kind of dynamic

management of network resources by a way like software definition. In SDN, user

can construct different data networks by dynamically programming, and then

SDN can meet all kinds of application requirements. Once SDN was proposed, it

received wide attention, and it is regarded as the developing direction of future

networks. But how to implement the architecture of SDN is still a controversial

topic at present. Many technologies, such as OpenFlow，have been trying to

implement SDN [6]. Forwarding and Control Element Separation (ForCES)

technology also began to be used in the study of the implementation of SDN

because of its separation characteristics and its control mechanism based on the

model [7-9].

1 This work was supported in part by a grant from the National Basic Research Program of China

(973 Program) (No. 2012CB315902), the National Natural Science Foundation of China (No.61379120),

Zhejiang Leading Team of Science and Technology Innovation (No.2011R50010-11, No.2011R50010-

15). Zhejiang Provincial Key Laboratory of New Network Standards and Technologies

(NNST)(No.2013E10012).Youth Foundation of Zhejiang Gongshang University(No.QZ13-8)

International Journal of Future Generation Communication and Networking

Vol. 9, No. 3 (2016)

58 Copyright ⓒ 2016 SERSC

ForCES technology is a kind of network element construction mode with the

separation of Forwarding Element (FE) and Control Element (CE). As shown in

Figure 1, a network element satisfying the ForCES protocol is known as a

ForCES element. The number of CEs is usually only several (at least one), and

the number of FEs is usually several hundreds. The communication protocol

between CEs and FEs is ForCES protocol [2].

ForCES NE

CE1 CE2

FE2 FEn FE1

Fp

Fi/f Fi/f Fi/f

Fr

Fi
Fi

CEM

FEM

Figure 1. Forces Architecture

ForCES is a new open programmable architecture. IETF ForCES working

group has developed a series of protocols after 10 years of research. Now ForCES

is being studied for SDN implementation. ForCES implements the separation of

CE and FE, and also implements the centralized control from CE to FE. This idea

of separation and centralized control also happens to be promoted by SDN

architecture. In addition, ForCES has a very good abstraction and definition of

open resources, the resources of FE are abstracted into LFBs. CE can reconfigure

the forwarding function of FE by recombining the LFB topology of FE. This kind

of abstraction of resources provides good support for SDN to realize resource

management. So we can extend ForCES architecture from Network Element to

SDN. As shown in figure 2, a SDN architecture based on ForCES is proposed.

SDN architecture includes three layers, and they are application layer, control

layer, and infrastructure layer. The communication between control layer and

infrastructure layer is ForCES protocol. The routing and forwarding infrastructure

is described as Forwarding Element. The user of application layer can use API to

control the reconfiguration of infrastructure layer.

Control Element

Control Layer

Forwarding Element

Infrastructure Layer

Forwarding Element

Forwarding Element Forwarding Element

Forwarding Element

ForCES protocol

Application Layer

Business Application

API

Figure 2. SDN Based on Forces

The internal resources of Forwarding Elements shown in Figure 2 are fine-

grained abstracted to some Logical Function Blocks (LFB), as shown in Figure

3.The LFBs can be dynamically configured to form different LFB chains. The

different LFB chains can constitute different functions of the FE. LFBs are the

International Journal of Future Generation Communication and Networking

Vol. 9, No. 3 (2016)

Copyright ⓒ 2016 SERSC 59

abstraction of the resources of FE model in ForCES framework. LFBs are well

defined and logically separated function blocks, they exist in FE and are

controlled by CE through ForCES protocol. IETF ForCES working group has

formed FE model [10] and LFB library [11]. The FE model defines data model,

and the LFB library defines some common LFB classes. LFB classes provide

typical routing and switching functions, these functions are classified into several

LFB classes, and then these classes constitute a typical and flexible LFB library.

The LFB library can adapt to various IP forwarding requirements. There is

Ethernet packet processing LFB, IP packet authentication processing LFB, IP

forwarding processing LFB, and so on. The LFB library is divided into core LFB

and general LFB. The core LFB is currently mainly refers to the FE protocol LFB

and the FE object LFB, the other LFBs are all belong to the general LFB. As

shown in Figure 3, these LFBs can be flexibly combined to a LFB topology to

achieve a typical routing and forwarding function.

Forwarding Element

LFB1 LFB2 LFB3 LFB1...

Figure 3. LFB Topology in FE

In SDN based on ForCES, SDN control layer should have the ability to

dynamically combine LFBs into LFB chain according to the requirement of

application layer. This problem must be solved in SDN based on ForCES.

Therefore, this paper focuses on the study of the method of LFB chain

composition. Based on the formalization of the concept of LFB and traditional

I/O matching algorithm, an LFB chain composition method is proposed. This

method can combine a series of LFBs to an LFB chain according to special

application request. Based on the LFB chain composition method, an improved

algorithm is proposed, which can improve composition speed. At last, an example

is provided to illustrate how this method works, and a simulation is given to

compare the efficiency of the base method and the improved method.

2. Conceptions and Definitions

Traditional I/O matching algorithm has been widely used in many areas, such

as scheduling, web service etc [12-14]. Its principle is matching the input and

output parameters of functions. This paper introduces the traditional I/O matching

algorithm into the LFB chain composition area in SDN based on ForCES. But the

input and output of LFBs are more complex than that of usual functions. So the

traditional I/O matching algorithm must be improved, and the definition of

matching relation between input and output must be redefined.

So firstly our LFB should be defined according to the LFB model. And some

other conceptions should also be defined, such as connecting relation between I/O

port, success relation between two LFBs, LFB chain requirement, and sequential

composition of LFB and so on.

2.1. Def. 1 LFB Definition

LFB model defines LFB as an eight-tuple. It can be described as follows.

),,,,,,,(

),,,,,,,(

esCapabilitiEventsAttributessOutputPortInputPortsversiontagIDname

CEAOIvtnS





International Journal of Future Generation Communication and Networking

Vol. 9, No. 3 (2016)

60 Copyright ⓒ 2016 SERSC

Where „n‟ is short for „name‟ and denotes LFB‟s name; „t‟ is short for „tagID‟ and

denotes LFB‟s tag identification; „v‟ is short for „version‟ and denotes LFB‟s version

number; „I‟ is short for „InputPorts‟ and denotes the input port set of LFB; „O‟ is short

for „OutputPorts‟ and denotes the output port set of LFB; „A‟ is short for „Attributes‟

and denotes operable attribute set; „E‟ is short for „Events‟ and denotes event set; „C‟ is

short for „Capabilities‟ and denotes capability set.

LFB defined as above eight-tuple can be illustrated as Figure 4. The input port set

can contain several inputs (,..., 21 II), and the output port set can also contain several

outputs (,..., 21 OO).),,(MpnI i denotes an input port, where „n‟ denotes port name,

„p‟ denotes packet type and „M‟ denotes the metadata being waited to input this port;

),,(MpnOi denotes an output port, where „n‟ denotes port name, „p‟ denotes packet

type and „M‟ denotes the metadata outputted by this port.

Name(n)
tagID(t)

Attributes(A)
Events(E)

Capabilities(C)

1In

nIn

1Out

nOut

Input port set

... ...

LFB),,(1 MpnO

),,(MpnOn

),,(1 MpnI

),,(MpnIn

Output port set

Figure 4. LFB Definition

2.2. Def. 2 Formal Description of LFB

In order to study the mechanism of LFB composition, LFB is formally

described as follows.

,...),,(

,...),,(

),(

,...),,(

),(

,...),,(

),(

321

321

321

321

MetadataMetadataMetadataMetadata

PacketPacketPacketPacket

MetadataPacketOutputport

OutputportOutputportOutputportOutputport

MetadataPacketInputport

InputportInputportInputportInputport

OutputportInputportLFB

i

i















An LFB contains several inputs and outputs, and each input or output consists

of one or more „Packet’ and „Metadata’.

2.3. Def. 3 Containing and Equivalence Relation between Two Concepts

Take „packet’ for an example to explain the containing and equivalence relation

between two concepts. (The „metadata’ has no containing relation at present, and it

only has equivalence relation.)

1) If 1packet and 2packet are same, then it is expressed as 21 packetpacket  .

E.g. If 1packet is IPv4Unicast, and 2packet is also IPv4Unicast,

then UnicastIPvpacketpacket 421  .

2) If 2packet contains 1packet , then it is expressed as 21 packetpacket  .

E.g. If 42,41 IPvpacketUnicastIPvpacket  , then 21 packetpacket  .

International Journal of Future Generation Communication and Networking

Vol. 9, No. 3 (2016)

Copyright ⓒ 2016 SERSC 61

2.4. Def. 4 Containing and Equivalence Relation between two Concept Clusters

Take „packet‟ for an example to explain the Containing and Equivalence relation

between two concept clusters. „metadata‟ is similar.

,...)2,2,2(2

,...)1,1,1(1

321

321

packetpacketpacketPacket

packetpacketpacketPacket





If ipacket1  1Packet ,  jpacket2  2Packet and ji packetpacket 21  , then it

means 2Packet contains 1Packet , which is expressed as 21 PacketPacket  .

2.5. Def. 5 Connectable Relation of Ports

According to LFB model, if the packet type of an input port of a subsequence LFB

contains or equals the packet type of an output port of a precursor LFB, and the

metadata type of the output port of the precursor LFB contains or equals the metadata

type of the input port of the subsequence LFB, then this precursor output port can

connect to this subsequent input port. The connectable relation of ports can be

formalized as follows.

The precursor output port is expressed as)1,1(1 MetadataPacketOutputport  ,

and subsequent input port is expressed as)2,2(2 MetadataPacketInputport  . If the

following two conditions are satisfied, then it suggests that the precursor output port

can connect to the subsequent input port.

1) 21 PacketPacket 

2) 21 MetadataMetadata 

The connectable relation of the two ports can be expressed as

21 InputportOutputport  .

2.6. Def. 6 Succession Relation of LFBs

According to LFB model, if every output port of precursor LFB can establish

connection relation with one input port of subsequent LFB, the succession relation

between the two LFBs is established. It is formalized as follows.

Precursor LFB is expressed as)1,1(1 OutputportInputportLFB  , and subsequent

LFB is expressed as)2,2(2 OutputportInputportLFB  . If

 iInputport 2  2Inputport ,  jOutputport1  1Outputport and

ij InputportOutputport 21  , then a succession relation can be established between

this precursor LFB and this subsequent LFB, which is marked as 21 LFBLFB .

2.7. Def. 7 LFB Chain Requirement

When user‟s application requirement arrives, the control layer of SDN based on

ForCES will map the user‟s application requirement into a LFB chain requirement with

special chain input ports and chain output ports. According the LFB chain requirement,

control layer will dynamically compose some special LFBs with special functions into

a special chain. And then control layer will tell infrastructure layer to reconfigure

network nodes. The LFB chain requirement is denoted as LFBR, which is formalized as

follows.

),(OutputportInputportLFBR 

International Journal of Future Generation Communication and Networking

Vol. 9, No. 3 (2016)

62 Copyright ⓒ 2016 SERSC

2.8. Def. 8 Sequential LFB composition

We define that only the LFBs having succession relations can be composed into a

sequential LFB chain. And this kind composition of LFBs is called sequential LFB

composition.

Given a LFB set and a LFBR, sequential LFB composition can be deemed to

discover a sequential LFB chain ni LFBLFBLFBLFB ,,,...,, 21  to satisfy the LFBR.

This sequential LFB chain only has succession relation between any precursor LFB and

its subsequence LFB, that is 1 ii LFBLFB . And this sequential LFB chain must

satisfy InputportLFBInputportLFBR .. 1 and

OutputportLFBROutputportLFBn ..  .

3. Implementation of Composition Method

A sequential composition method of LFB chain is proposed based on I/O matching

algorithm. This method can build LFB chains according requirements automatically.

Based on the definitions of section 2, in section 3, an implementation framework is

proposed firstly, and then composition steps are introduced, and at last detail algorithm

is given.

3.1. Implementation Framework

The LFB composition implementation framework is shown as Figure 5. The

matching agent locates in the control layer of SDN based on ForCES. It consists of

three parts, and they are mapper, combiner and selector. According to arriving LFBR,

the mapper searches LFB library for a LFB set which could satisfy application

requirement. By this time these LFBs are discrete and standalone. The combiner is

responsible for combining these LFBs into one or more LFB chains according to

special LFBR and then putting these chains into the LFB Chain Set. At last the selector

will pick out the best chain as the final output.

This paper focuses on the second step, and proposes an atomic LFB chain

composition method based on ForCES LFB model and traditional I/O matching

algorithm. LFB chain composition can be divided into three types, sequential

composition, branch composition, and hybrid composition, this paper studies on the

sequential composition problems.

Matching Agent

Mapper Combiner SelectorLFBR
LFB

Chain

LFB Set
LFB

Chain Set
LFB LIB

Figure 5. Implementation Framework of LFB Composition

3.2. Composition Steps

The proposed sequential composition method of LFB chain is implemented in the

combiner. The detail steps of composition algorithm are given as follows.

LFBR denotes LFB chain requirement; LFBSet denotes the LFB set where LFBs are

mapped out and have no connection relation with each other; LFBChain denotes an

International Journal of Future Generation Communication and Networking

Vol. 9, No. 3 (2016)

Copyright ⓒ 2016 SERSC 63

LFB chain; ChianLen is an input parameter denoting length of a LFBChain;

LFBChainSet denotes the set of LFBChains, and it is the output of the algorithm.

Step1. Traverse LFBSet to find out every LFB whose inputport matches with

LFBR.Inputport, and put them into LFBChainSet as the first LFB of respective

LFBChain.

Step2. For each LFBChain of LFBChainSet, traverse LFBSet to search for a successor

LFB matched with the last LFB of the current LFBChain, and then connect this

LFB to the LFBChain. If there are more matched successor LFBs, then copy

current LFBChain to form more LFBChains and connect the different successor

LFBs to them respectively. If there is no successor LFB we can find, then delete

the current LFBChain.

Step3. Repeat step2 until the length of LFBChain is equal to ChainLen.

Step4. Check whether the output of each LFBChain matches LFBR.Outputport. If not,

then delete the LFBChain. Then all the rest LFBChains can meet the LFBR. If

lastly the LFBChainSet is empty, it means there are no chains can be composed

to meet the LFBR.

3.3 Composition Algorithm

The detail sequential composition algorithm of LFB chain is given as follows.

//initialization.

LFBChainSetNULL

//find the first LFB.

for all LFB in LFBSet do

 if (LFB.Inputport == LFBR.Inputport)

 then { TempChain.add(LFB)

 LFBChainSet.add(TempChain)

 Templen1

 }

//find successor LFB for each LFBChain.

while(TempLen<ChainLen)

 {for all LFBChain in LFBChainSet

 {FoundFlag=false

 TempChain=LFBChain

 for all LFB in LFBSet do

 {if ((LFBChain.lastLFB  LFB) and

(LFBChain.lastLFB!=LFB) and FoundFlag=false)

 then {LFBChain.add(LFB)

 FoundFlag=true

 }

 if ((LFBChain.lastLFB  LFB) and

(LFBChain.lastLFB!=LFB) and FoundFlag=true)

 then {TempChain.add(LFB)

 LFBChainSet.add(TempChain)

 FoundFlag=false

 }

 }

 if(FoundFlag=false)

 then LFBChainSet.delete(LFBChain)

 }

 TempLen++;

 }

//output check.

International Journal of Future Generation Communication and Networking

Vol. 9, No. 3 (2016)

64 Copyright ⓒ 2016 SERSC

for all LFBChain in LFBChainSet

 {if (LFBChain.lastLFB.Outputport!=LFBR.Outputport)

 then LFBChainSet.delete(LFBChain)

 }

3.4 An Improved Algorithm

According to the composition algorithm described above, when LFBSet becomes

numerous and LFBChain becomes long, the efficiency of the composition process will

become low, because the composition method needs to search successor LFB one by

one. We proposed an improved method as following to improve the efficiency.

The idea of the improved algorithm is to compose an LFB chain from both ends to

middle. Firstly, it finds out the LFB which match with the input port of LFBR as the

first LFB of the LFBChain, and finds out the LFB which match with the output port of

LFBR as the end LFB of the LFBChain. Then it scans the whole LFBSet to find a

successor LFB matched with the first LFB, and then connects this LFB to the

LFBChain. At the same time, it scans the whole LFBSet to find a precursor LFB

matched with the end LFB, and then also connects this LFB to the LFBChain. In this

way, It gets two half chains with the half length of LFBChainLen. At last it connects

the two half chains into a whole LFBChain.

Because the improved algorithm composes LFB chain from both ends to the middle

at the same time, the efficiency of the improved algorithm will be improved greatly

than the base algorithm, especially when the LFB chain become long. Specific

simulation comparison will be discussed in section 5.

4. Application Example and Analysis

Assuming there is an LFBR as follows.

),(OutputportInputportLFBR  , and 3ChainLen .

Where

))(),(())1(),1((

)1,1()(

11

1

NullArbitrarymetadatapacket

MetadataPacketInputportInputport




,

The input port set has only one port 1Inputport . 1Inputport has only one

packet 1Packet and one metadata 1Metadata . 1Packet is Arbitrary , and

1Metadata is null.

)),4,3(),4((

))1,1,1(),1((

)1,1()(

3211

1

InfoIndexMediaEncapAddrNextHopIPvPortIDLUnicastIPv

metadatametadatametadatapacket

MetadataPacketOutputportOutputport







The output port set has only one port 1Outputport . 1Outputport has only one

packet 1Packet and one metadata 1Metadata . 1Packet is UnicastIPv4 , and

1Metadata is InfoIndex)MediaEncap4Addr,NextHopIPv(L3PortID, .

LFBSet is shown in Table 1. There are three LFBs, IPv4Validator, IPv4UcastLPM

and IPv4NextHop. Here we take IPv4Validator for example to introduce, and the

others can refer to RFC 6956 [11]. The function of IPv4Validator is to verify IPv4

header. It has one input port, the needed input packet is arbitrary, and no input

metadata is needed. IPv4Validator has four output ports. The packet type of the first

output port is IPv4Unicast and the metadata is null. Actually the first output port is the

International Journal of Future Generation Communication and Networking

Vol. 9, No. 3 (2016)

Copyright ⓒ 2016 SERSC 65

special output port for IPv4 unicast packet. The packet type of the second output port is

IPv4Multicast and the metadata is null too. Actually the second output port is the

special output port for IPv4 multicast packet. The packet type of the third output port is

IPv4 and the metadata is ExceptionID. Actually the third output port is the special

output port for exception. The packet type of the fourth output port is IPv4 and the

metadata is ValidateErrorID. Actually the fourth output port is the special output port

for validating error.

Table 1. LFB Set of an Application Example

LFB Name
Input

Packet

Input

Metadata

Output

Packet
Output Metadata

IPv4Validator

Arbitrary IPv4Unicast

IPv4Multicas

t

 IPv4 ExceptionID

 IPv4 ValidateErrorID

IPv4UcastLP

M

IPv4Unicast IPv4Unicast HopSelector

 IPv4Unicast ExceptionID

IPv4NextHop
IPv4Unicast HopSelector IPv4Unicast

L3PortID,

NextHopIPv4Addr,

MediaEncapInfoInd

ex

 IPv4Unicast ExceptionID

The processing of the algorithm is described as follows.

1) Traverse LFBSet to find out every LFB matched with LFBR.Inputport.

Consequently IPv4Validator is the satisfactory LFB.

2) Traverse LFBSet to find out the successor LFB matched with IPv4Validator.

Consequently IPv4UcastLPM is the satisfactory LFB and can connect to

IPv4Validator to get UcastLPMIPvValidatorIPv 44  .

3) Traverse LFBSet to find out the successor LFB matched with IPv4UcastLPM.

Consequently IPv4NextHop is the satisfactory LFB and can connect to

IPv4UcastLPM to get NextHopIPvUcastLPMIPvValidatorIPv 444  .

4) Verify whether the output of the chain

NextHopIPvUcastLPMIPvValidatorIPv 444  matches LFBR.Outputport.

As shown in Table 1, the output of IPv4NextHop can match the output of

LFBR. Thus LFB chain NextHopIPvUcastLPMIPvValidatorIPv 444 

meets LFBR. The processing of the composition algorithm ends.

After searching and matching, there is only one LFBChain in LFBChainSet. So the

result is as follows.

)}444{(NextHopIPvUcastLPMIPvValidatorIPvtLFBChainSe 

5. Simulation and Test

C language is used in our simulation, the simulation implements the LFB chain

composition method proposed in this paper. The simulation implements both the base

algorithm and the improved algorithm to compare their efficiency. Here a composition

International Journal of Future Generation Communication and Networking

Vol. 9, No. 3 (2016)

66 Copyright ⓒ 2016 SERSC

time in milliseconds is selected as the performance parameter. The simulation adopts

the ForCES LFB library defined in RFC6956 [11].

The test measured the time of the base algorithm and the improved algorithm with

gradually increased chain length. The input of the algorithm is the application request

donated by LFBR and the LFB chain length donated by ChainLen. The output is the

LFB chains satisfied with the application request.

The test results are shown in figure 6.

Figure 6. Comparison of the Base Algorithm and the Improved Algorithm

The x-axis in figure 6 shows the LFB chain length, we use the LFB chain length

from 10, 50, to 500 for tests. The y-axis in figure 6 shows the costing time of LFB

chain composition in milliseconds. The solid line curve represents the base algorithm,

and the dashed curve represents the improved algorithm. The graph shows that the

improved algorithm spend less time than the base algorithm as the chain length

increases, so the improved algorithm has better efficiency than the base algorithm.

In theory, assuming there are n LFBs in LFBSet, the optimal efficiency of the base

algorithm is)(n , and the worst efficiency is)!(n . The optimal efficiency of the

improved algorithm is)2(n , and the worst efficiency is ((/ 2)!)n . The test result

basically agrees with the theoretical analysis.

6. Conclusion

ForCES has a good Characteristic of separation and centralized control. In addition,

ForCES has a very good abstraction and definition of open resources. So ForCES can

provide good support for SDN. We proposed a SDN architecture based on ForCES.

In SDN based on ForCES, resources are abstracted into LFBs, and control layer can

reconfigure LFB chain to manage FEs. Based on the formalization of the concept of

LFB and the improved I/O matching algorithm, a LFB chain composition method is

proposed. This method can combine a series of LFBs to a LFB chain according to

special application request. Based on the LFB chain composition algorithm, an

improved algorithm is proposed, which can improve the composition efficiency.

Traditional I/O matching algorithm just specifies the matching between input and

output parameters. Our improved I/O matching algorithm specifies not only the

matching of I/O packets, but also the matching of I/O metadata, and the definition of

matching must be according to the RFC definition of LFBs.

International Journal of Future Generation Communication and Networking

Vol. 9, No. 3 (2016)

Copyright ⓒ 2016 SERSC 67

An example is provided to illustrate how this method works, and a simulation is

given to compare the efficiency of the base algorithm and the improved algorithm, the

result shows that the improved algorithm has better efficiency than the base algorithm.

In addition, the composition method of LFB chain can be divided into three types.

They are sequential composition, branch composition and hybrid composition. This

paper proposed a sequential composition method of LFB chain. Further research will

deep into branch composition method and hybrid composition method.

References

[1] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rexford, S. Shenker and J.

Turner, “OpenFlow: Enabling innovation in campus networks”, ACM SIGCOMM Computer

Communications, Review, (2008).

[2] A. Doria, J. Hadi Salim, R. Haas, H. Khosravi, W. Wang, L. Dong, R. Gopal and J. Halpern, “IETF

RFC 5810: ForCES Protocol Specification”, http://tools.ietf.org/search/rfc5810, (2010).

[3] A.P. Manu, B. Rudra, V. Kumar and O.P. Vyas, “Broker's Communication for Service Oriented

Network Architecture”, International Journal of Future Generation Communication and Networking,

vol. 5, no. 4, (2012).

[4] P. Huss, N. Wigertz, J. Zhang, A. Huynh, Q. Ye and S. Gong, “Flexible Architecture for Internet of

Things Utilizing an Local Manager”, International Journal of Future Generation Communication and

Networking, vol. 7, no. 1, (2014).

[5] N. Feamster, J. Rexford and E. Zegura, “The Road to SDN: An Intellectual History of Programmable

Networks”, ACM Queue, (2013).

[6] B.A.A. Nunes, M. Mendonca, X.N. Nguyen, K. Obraczka, T. Turletti, “A Survey of Software-

Defined Networking: Past, Present, and Future of Programmable Networks. Communications

Surveys & Tutorials”, IEEE, vol. 16, no. 3, (2014)

[7] E. Haleplidis, O. Cherkaoui, S. Hares and W. Wang, “Forwarding and Control Element Separation

(ForCES) OpenFlow Model Library”, https://tools.ietf.org/html/draft-haleplidis-forces-openflow-lib,

vol. 03, (2013).

[8] S. Hares, “Analysis of Comparisons between OpenFlow and ForCES”,

http://tools.ietf.org/html/draft-hares-forces-vs-openflow-00.txt, (2012).

[9] S. Hares, “Forces vs. ONF, IETF 84 Meeting Presentation”,

http://www.ietf.org/proceedings/84/slides/slides-84-forces-3.pdf, (2012).

[10] J. Halpern and J.H. Salim, “Forwarding and Control Element Separation (ForCES) Forwarding

Element Model”, http://tools.ietf.org/html/rfc5812, (2010).

[11] W. Wang, E. Haleplidis and K. Ogawa, “IETF RFC 6956: Forwarding and Control Element

Separation (ForCES) Logical Function Block (LFB) Library”, http://tools.ietf.org/html/rfc6956,

(2013).

[12] D.R. Zheng, P. Yi and B.Q. Wang, “Journal of Information Engineering University. Matching

Algorithm with Multiple Output Ports for Input Queued Switches”, vol. 2, (2009).

[13] Y.N. Fu, L. Liu and C.Z. Jin, “Journal on Communications. Service chain-based approach for Web

service composition”, vol. 7, no. 28, (2007).

[14] S.P. Liu, D.Y. Liu, H. Qi and J.Q. Wang, “Journal of Jilin University:Eng and Technol Ed. Service

community chain based approach for web service composition”, vol. 1, no. 1, (2010).

Authors

Rong Jin, She received her B.S. degree in physics from

Shaanxi Normal University, China in June 2000 and her M.S.

degree in communication and information system from

Zhejiang University of Technology, China in March 2003. She

is currently working towards his Ph.D. degree in control

theory and control engineering at Zhejiang University of

Technology, China. Her current research interest includes

open programmable networks and Software Defined Network.

http://tools.ietf.org/search/rfc5810
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Xuan-Nam%20Nguyen.QT.&newsearch=true
https://tools.ietf.org/html/draft-haleplidis-forces-openflow-lib
http://tools.ietf.org/html/draft-hares-forces-vs-openflow-00.txt
http://www.ietf.org/proceedings/84/slides/slides-84-forces-3.pdf
http://tools.ietf.org/html/rfc5812

International Journal of Future Generation Communication and Networking

Vol. 9, No. 3 (2016)

68 Copyright ⓒ 2016 SERSC

Xiongxiong He, He received the M.S. degree from Qufu

Normal University in 1994 and the Ph.D. degree from

Zhejiang University in 1997. From 1998 to 2000, he held a

postdoctoral position in Harbin Institute of Technology. He

joined Zhejiang University of Technology in 2001，and since

then he has been working as a professor in the College of

Information Engineering of ZJUT. His research areas include

control theory and signal processing.

Guangxin Zhu, He received his Ph.D. degree in

communication and information system from Zhejiang

University, China in December 2010. He is working as a

senior engineer in OB Telecom Electronics Co., Ltd. His

current research interest includes open programmable

networks and signal processing.

