
International Journal of Future Generation Communication and Networking

Vol. 9, No. 12 (2016), pp. 39-54

http://dx.doi.org/10.14257/ijfgcn.2016.9.12.04

ISSN: 2233-7857 IJFGCN

Copyright ⓒ 2016 SERSC

A Power and Performance Management Simulation Platform for

Web Application Server Cluster

Zhi Xiong, Zhongliang Xue, Weihong Cai, Lingru Cai and Juan Yang

Department of Computer Science and Technology

Shantou University

Shantou, Guangdong Province, China

{zxiong, 15zlxue, whcai, lrcai, 13jyang2}@stu.edu.cn

Abstract

Web application server cluster has been widely used to improve the performance of

web application servers. Because web load is highly variable, we need to dynamically

manage cluster’s deployment so as to reduce power consumption and meanwhile satisfy

load performance demand. To facilitate researchers to evaluate a management strategy

or choose key parameters for it, we propose a CloudSim-based simulation platform in this

paper. It can simulate different cluster deployment algorithm, request scheduling

algorithm and load feature, where cluster’s deployment includes the on/off state, CPU

frequency and request scheduling parameter(s) of each server. By the aid of HookTimer

component, the platform supports periodical and conditional deployment trigger modes,

and can calculate some common performance indicators. The usage of interface, dynamic

proxy technique and XML configuration file make the platform have good extensibility

and configurability. In addition, a request-number-triggered management strategy is

proposed and simulated by the platform. The simulation results demonstrate the

feasibility of the platform.

Keywords: Web application server cluster, power management, performance

management, simulation, CloudSim

1. Introduction

Web is one of the most popular applications in the Internet. Web requests can be

divided into static requests and dynamic requests. We usually separate them in practice,

use web server (e.g., Nginx) to serve static requests, and use web application server (e.g.,

JBoss) to serve dynamic requests. Compared with static request, the response to a

dynamic request needs to be generated on the fly and consume more server resource. Web

application server cluster (web cluster for short), for its traits of scalability, high

performance, high cost-effectiveness, high availability, and transparency for clients, has

been widely used to improve the performance and reliability of web application servers.

Hence, various large-scale web applications, such as e-commerce, e-banking and SaaS

(Software as a Service) applications, usually adopt web clusters to supply services.

Web cluster is usually deployed to handle peak load that may be significantly larger

than in off-peak conditions. Researches show that servers are now gobbling up

a huge amount of energy [1], but they, most of the time, are loaded between 10% and

50% of peak, with CPU utilization that rarely surpasses 40% [2]. This leads to an

excessive waste of energy. Moreover, the load of web cluster is highly variable.

Therefore, we need to dynamically manage cluster’s deployment so as to reduce power

consumption and meanwhile satisfy load performance demand. The deployment should

include the on/off state, CPU frequency (CPU is the largest energy consumption

component of a server, and mainstream CPUs all support dynamic frequency scaling

technology [1] today) and request scheduling parameter(s) of each server.

http://dj.iciba.com/%E5%8F%AF%E9%9D%A0%E6%80%A7_reliability

International Journal of Future Generation Communication and Networking

Vol. 9, No. 12 (2016)

40 Copyright ⓒ 2016 SERSC

When researchers present a new management strategy for web cluster and need to

evaluate it, or choose key parameters (e.g., some thresholds) for a strategy, actual tests

will consume a lot of equipment, time and energy. Conversely, if using simulation tests, it

will effectively save resources. In this paper, we propose a simulation platform based on

CloudSim [3], which can simulate different management strategies for web cluster. It

supports periodical and conditional deployment trigger modes; can simulate cluster

deployment algorithm, request scheduling algorithm and load feature; and can calculate

some common performance indicators such as energy consumption, mean response time,

drop rate, etc. It also has good extensibility and configurability. Besides, we propose a

request-number-triggered management strategy, and use the platform to simulate the

strategy. The simulation results demonstrate the feasibility of the platform.

The rest of this paper is organized as follows. The related works are introduced in

Section 2. Section 3 and 4 describe the outline and detailed design of the simulation

platform respectively. The implementation of some important components are given in

Section 5. We propose a request-number-triggered management strategy in Section 6, and

simulate the strategy with our simulation platform in Section 7. Finally, we conclude in

Section 8.

2. Related Works

In the study of cluster’s power and performance management, some works [4-6] test

their management strategies in real environment, but the cluster scale is small, so the

effectiveness of their strategies is only verified in small-scale clusters. Some works [1, 7-

12] use simulation tests to evaluate their strategies. However, [7-8] and [9] do not give

simulation methods; [1] and [10] just simulate in computational level rather than cluster’s

actual operation; [11] and [12] use their own simulator to simulate, but do not give the

design details of their simulators.

CloudSim is one of the most sophisticated and comprehensive simulation platforms in

cloud computing. It is a frame that can be used to model and simulate cloud computing

infrastructures and application services, as well as energy-aware computational resources.

CloudSim package provides some examples about power-saving simulation of data

center, but in these examples, tasks are batch-produced, while actual web request is a kind

of streaming load, and energy consumption calculation is not very accurate as they do not

consider all possible states of server (such as ignoring the process of server switching

on/off). CloudSim has been widely used in various simulation of cloud computing

platform, but they all deploy multiple VMs on a Host [13] and save energy by migration

and integration of VMs (Virtual Machines), which do not accord with the deployment

manner of web cluster [14].

As far as we know, there is no special power and performance management simulation

platform for web cluster, and no reference bases on CloudSim to simulate power and

performance management strategy for web cluster.

3. Outline Design

This section presents the outline design of our simulation platform.

3.1. CloudSim Introduction

CloudSim is an event-based simulator, and the communication between entities is

based on message event. It is written by Java. The core entity class in CloudSim is

SimEntity, which is responsible for sending messages to other entities and processing the

received messages. Each entity that needs to communicate with other entities must extend

SimEntity and override its some methods. The send and sendNow methods are used to

send events to other entities. The important basic classes in CloudSim include Cloudlet,

International Journal of Future Generation Communication and Networking

Vol. 9, No. 12 (2016)

Copyright ⓒ 2016 SERSC 41

Datacenter, Host, VM, as well as PowerDatacenter, PowerHost and PowerVM which can

be used for energy-aware simulation.

3.2. Cluster Model

The simulation object of this paper is dispatcher-based web cluster, which consists of a

dispatcher and a number of (back-end) servers. We suppose each server node is a real

server or the sole VM of a real server [14]. Nowadays, mainstream CPU usually has four

or more cores, and each core has many available discrete frequencies, e.g., Intel Xeon E5-

1650 has 6 cores and each core has 15 frequencies. For a multi-core server, if we allow

different cores to work at different frequencies (including on/off state), the deployment

algorithm will be very complicated and we have to determine a lot of power parameters;

therefore, for simplification, we simultaneously adjust each core’s frequency and keep

them consistent.

3.3. Platform’s Overall Structure

The platform includes seven components: request generator, dispatcher, server pool,

load feature, scheduling algorithm, deployment algorithm and HookTimer, where the first

three are entity components and the last four are extensible components. The entity

components are responsible for handling request, and the extensible components are used

to realize some user-defined algorithms or functions. These components all have their

respective classes.

RequestGenerator, Dispatcher and ServerPool are the corresponding classes of the

three entity components, where the first two are subclasses of SimEntity and the last one is

a subclass of PowerDatacenter. RequestGenerator generates requests flow according to

request rate, size distribution and time interval distribution. The request size distribution

and time interval distribution are supplied by load feature component. Dispatcher calls

request scheduling algorithm to dispatch requests. Requests are served in ServerPool.

ServerPool also maintains each server’s state during the simulation process and modify

each server’s deployment according to deployment algorithm. The main event

relationship among them is shown in Figure 1. These events will be discussed in latter

appropriate sections.

ServerPool

Dispatcher

RequestGenerator

SUBMIT_REQUEST

CLOUDLET_SUBMIT
CLOUDLET_RETURN

GENERATE_REQUEST

SERVER_BOOTED

SERVER_HALTED

SECOND_UPDATE

UPDATE_DEPLOYMENT

Figure 1. Main Event Relationship among Entity Components

Each kind of extensible component corresponds to an interface, and each extensible

component must implement its corresponding interface. The relationship among entity

components, extensible components and interfaces is as Figure 2 shows.

International Journal of Future Generation Communication and Networking

Vol. 9, No. 12 (2016)

42 Copyright ⓒ 2016 SERSC

ILoadFeature ISchedulingAlgorithm IDeploymentAlgorithm

LoadFeature

RequestGenerator Dispatcher

SchedulingAlgorithm DeploymentAlgorithm

ServerPool
entity

component

extensible

component

interface

implement

deployment

call call

implement

ServerDeployment

ClusterDeployment

SchedulingParameter

contain

containrely on

implement

call

generate

HookTimer

(Misc)trigger

Figure 2. The Relationship between Components and Interfaces

4. Detailed Design

This section discusses the detailed design of our simulation platform.

4.1. Interfaces

The ILoadFeature interface contains two methods: “double getRequestSize()” and

“double getRequestInterval(double rate)”. They are used to generate the required request

size distribution and time interval distribution. Request time interval is obviously

related to request rate, so getRequestInterval has an input argument.

The ISchedulingAlgorithm interface contains two methods. The “int

scheduleRequest(Cloudlet request)” method is an important method. It selects an

appropriate server for the request passed in, and returns the serial number of the selected

server. Some scheduling algorithms depend on some parameters to select server, e.g. the

weights in WLC (Weighted Least Connection) algorithm and the probabilities in

probability-based algorithm. So the interface supplies an initialize function to initialize

scheduling parameters.

The IDeploymentAlgorithm interface contains seven methods, and user can realize

periodical and/or conditional deployment trigger mode through implementing these

methods.

(1) The “ClusterDeployment requestNumberReport(int serverID, int requestNumber)”

method is used in the case that the cluster’s redeployment is triggered by request number,

and it will be automatically called by the platform when a server’s request number is

updated. The typical application pattern is that, if a server’s request number is above a

given threshold or below another given threshold, redeployment will be triggered. If

redeployed, it returns the deployment result; otherwise, null is returned.

(2) The “ClusterDeployment dropRateReport(double[] dropRate)” method is used in

the case that the cluster’s redeployment is triggered by request drop rate, and it will be

periodically called by the platform when all servers’ request drop rates are calculated. Its

returned value is similar to that of requestNumberReport. The responseTimeReport and

cpuUtilizationReport are the other two similar methods.

(3) The “void setInterval(int interval)” and “int getInterval()” method are used to set

and get the deployment period respectively in periodical trigger mode. If the returned

value of “getInterval()” is zero, periodical trigger mode is disabled.

(4) The “ClusterDeployment deploy()” method is used in periodical trigger mode. If the

returned value of “getInterval()” is not zero, this method will be called by the platform

every “getInterval()” seconds.

International Journal of Future Generation Communication and Networking

Vol. 9, No. 12 (2016)

Copyright ⓒ 2016 SERSC 43

4.2. HookTimer Component

Performance measurement is based on information sampling, and the calculation of

different performance indicators may need different information sampling modes.

Generally, there are two information sampling modes: periodical mode and event-

triggered mode. Moreover, the platform supports periodical and conditional deployment

trigger modes. So we design an important component — HookTimer, which includes two

functions: Hook and Timer.

Hook allows us to hang our customized codes at some pivotal places; Timer allows us

to do certain work at regular intervals. HookTimer component must implement

IHookTimer interface, and the methods defined in IHookTimer will be called by the

platform at some particular time. Figure 3 gives the nine methods defined in IHookTimer,

and also illustrates the time when these methods will be called from the angles of

simulation time and request handling processes.

time

initialization

void initialize(); void simulationBegin(); void simulationEnd();

simulating

RequestGenerator

Dispatcher
Scheduling

Algorithm

ServerPool

Server

…

Server

void requestArrived(

Cloudlet request,

Dispatcher dispatcher);

void requestScheduled(

Cloudlet request,

Dispatcher dispatcher,

int serverID);

void requestDropped(

Cloudlet request,

Server server);

Drop

request flow call call return

void secondUpdatePeriodically();

void requestReturned(

Cloudlet request,

int serverID);

void serverStateChanged(

Server server, int oldState,

int newState);

end

Figure 3. The Methods Defined in IHookTimer

4.3. Misc Component

Misc is a class that implements IHookTimer interface. Its functions include three

aspects: the calculation of some common performance indicators, the realization of two

deployment trigger modes, and energy consumption calculation. In addition, users can

add their customized HookTimer components to the platform to realize some special

functions, e.g., calculate some less-used performance indicators.

In the methods like requestDropped，requestArrived，requestScheduled, etc of Misc,

we record and update corresponding variables so as to calculate some common

performance indicators, such as mean response time, drop rate and CPU utilization.

Misc cooperates with IDeploymentAlgorithm interface to realize periodical and

conditional deployment trigger modes. Once the request number of a server is changed,

Misc will call the requestNumberReport method of IDeploymentAlgorithm. Misc

periodically calculate the performance indicators including mean response time, drop rate

and CPU utilization, once these indicators are calculated, it will call the dropRateReport,

responseTimeReport and cpuUtilizationReport method of IDeploymentAlgorithm,

respectively. User can determine whether to trigger redeployment in these functions. As

for periodical trigger mode, if the returned value of getInterval() of

International Journal of Future Generation Communication and Networking

Vol. 9, No. 12 (2016)

44 Copyright ⓒ 2016 SERSC

IDeploymentAlgorithm is not zero, then Misc’s secondUpdatePeriodically() method will

call the deploy() method of IDeploymentAlgorithm every “getInterval()” seconds.

Energy consumption calculation is based on the state transition of each server, so we

calculate energy consumption in the serverStateChanged method of Misc. We define six

states:

(1) OFF: The server is shutdown. We usually use suspending-to-RAM to replace it in

practice so as to shorten the time of server’s switching on/off [6].

(2) BOOTING: The server is starting. Once entering this state, SERVER_BOOTED

event will be triggered after a certain period of time.

(3) IDLE: The server provides normal service, but there is no request in the server at

this moment.

(4) BUSY: The server provides normal service, and it is serving request at this

moment.

(5) CLOSED: The server is ready to shut down and stop receiving new requests, but it

is serving the received requests.

(6) HALTING: The server is shutting down. Once entering this state,

SERVER_HALTED event will be triggered after a certain period of time. Figure 4 gives

the transition conditions among various states.

CLOSED

HALTING OFF

BOOTING

turn off

request number
equals 0

receives
SERVER_HALTED

event turn on

receives
SERVER_BOOTED

event

turn off

request number
equals 0

request number
equals 1

BUSY(1)

BUSY(K)

BUSY

...

IDLE(1)

IDLE(K)

IDLE

...

Figure 4. Transition Conditions among Various States

When a server is in IDLE or BUSY state, its frequency may be changed by deployment

algorithm, so the two states contain some substates. We take a server that has six available

frequencies as an example. Substate BUSY(1) denotes it is busy at the lowest frequency,

and IDLE(6) denotes it is idle at the highest frequency. Strictly speaking, CLOSED,

HALTING and BOOTING also should have analogous substates. However, considering

that these three states are instantaneous states, whether distinguishing substates or not has

little effect on the calculation of energy consumption; therefore, we ignore their substates.

For each server, once its state/substate changes (say from A to B) or a statistic period

terminates (say the current state/substate is A), we will compute the residence time and

power of the state/substate (i.e., A), then calculate energy consumption and accumulate it.

When a statistic period terminates, the accumulated energy consumption will be outputted

and cleared to zero.

4.4. Extensibility and Configurability

Users are allowed to add new extensible components to the platform. Of course, they

can name the new components as they like, that is to say, the class names of these new

International Journal of Future Generation Communication and Networking

Vol. 9, No. 12 (2016)

Copyright ⓒ 2016 SERSC 45

components are unknown in advance. How to use these user-defined new component

classes only through modifying configuration file (without modifying platform’s codes) is

a key problem, which determines the convenience of component extension. In other

words, we must guarantee the PnP (Plug and Play) characteristic of extensible

components.

Java dynamic proxy technique [15] means using Java reflection to create dynamic

implementations of interfaces at runtime. Since each extensible component corresponds

an interface, we use Java dynamic proxy technique to realize component dynamic proxy,

and then use component dynamic proxy to realize the PnP characteristic of extensible

components. Specifically, for every extensible component, the platform reads its

configuration information from configuration file, then creates a dynamic proxy of the

corresponding component interface and a component object in the proxy at runtime, and

then uses the component object through its host proxy.

In addition, the configuration of extensible components and the parameter settings of

all components are realized through a configuration file of XML (eXtensible Markup

Language) format. Figure 5 gives an example of configuration file.

<Configuration>

<RequestGenerator>

<LoadFeasure name="Exponential"></LoadFeasure>

</RequestGenerator>

<Dispatcher>

<SchedulingAlgorithm name="Hybrid"

parameters=""></SchedulingAlgorithm>

</Dispatcher>

<ServerPool>

<DeploymentAlgorithm name="RequestNumberThreshold" period="0">

</DeploymentAlgorithm>

<Server name="type1" memSize="2048" suspendPower="4.85"

coreNumber = "2"

count="2">

<Frequencies>

<Frequency mips="1000" idlePower="65.8"

busyPower="82.5"></Frequency>

……

<Frequency mips="2600" idlePower="76.9"

busyPower="140.1"></Frequency>

</Frequencies>

</Server>

……

<Server ……>

……

</Server>

</ServerPool>

<HookTimers>

<HookTimer name="Misc" reportPeriod="60"></HookTimer>

<HookTimer name="DelayOffAssist" delay="120"></HookTimer>

</HookTimers>

 </Configuration>

Figure 5. An Example of XML Configuration File

International Journal of Future Generation Communication and Networking

Vol. 9, No. 12 (2016)

46 Copyright ⓒ 2016 SERSC

5. The Implementation of Entity Components

In this section, we give the implementation of the three entity components, namely

request generator, dispatcher and server pool.

5.1. Request Generator

When RequestGenerator receives GENERATE_REQUEST event, it proceeds as

follows:

double size = loadFeature.getRequestSize();

Cloudlet request = generateRequest(size);

sendNow(dispatcherID, Tags.SUBMIT_REQUEST, request);

double interval = loadFeature.getRequestInterval(rate);

send(getId(), interval, Tags.GENERATE_REQUEST, null);

User can implement the getRequestSize and getRequestInterval functions of load

feature component to generate the required request size and time interval distribution.

5.2. Dispatcher

Every time Dispatcher receives SUBMIT_REQUEST event, it proceeds as follows:

Cloudlet request = (Cloudlet)event.getData();

for (i=0; i<hooktimer.length; i++)

hooktimer[i].requstArrived(request, dispatcher);

int sel = schedulingAlgorithm.scheduleRequest(request);

request.setVmId(sel);

sendNow(serverPoolID, Tags.CLOUDLET_SUBMIT, request);

for (i=0; i<hooktimer.length; i++)

hooktimers[i].requestScheduled(request, dispatcher, sel);

Besides, when it receives CLOUDLET_RETURN event, it will call the

requestRetruned method of each HookTimer component.

5.3. Server Pool

ServerPool sends itself a SECOND_UPDATE event every one second. When it

receives SECOND_UPDATE event, it will call the secondUpdatePeriodically

method of each HookTimer component. When a new deployment is generated, it will

compare new deployment with old deployment, and then adjust each server’s on/off state

and CPU frequency. It is relatively easy to realize the switching on/off of a server. Below

we will discuss how to realize CPU frequency adjustment.

Since VM is the component which directly supplies task processing service in

CloudSim, we use a Host and a sole VM deployed in the Host (occupying all resources) to

simulate a server node. The running configuration information of Host and VM are set

when corresponding entities are created, so CPU frequency adjustment is a little

complicated and includes two processes: Host’s frequency adjustment and VM’s

frequency adjustment. Host’s frequency can be modified by rewriting the CPU cores’

MIPS (Million Instructions Per Second) values of the Host. The host can be obtained

through the path “ServerPool->characteristics->hostList->host”.

As the modification of VM frequency involves several properties (e.g.,

“cloudletScheduler”, “vmStateHistoryEntry” and “currentAllocatedMips” are all related

to frequency information), we use the following simple method to avoid the complexity of

code modification. Firstly, we obtain the task processing list “cloudletExeList” in original

VM (it records all running tasks’ progress information); then, create a new VM with the

specified frequency to replace the original one and put the “cloudletExeList” into the new

VM; finally, call updateCloudletprocessing() to update all tasks.

International Journal of Future Generation Communication and Networking

Vol. 9, No. 12 (2016)

Copyright ⓒ 2016 SERSC 47

6. Management Strategy

To verify our platform, we propose a request-number-triggered management strategy

suitable for homogeneous web cluster, which bases on request number thresholds and

greedy idea to schedule requests and adjust cluster’s deployment.

6.1. Request Number Thresholds

Many indicators can be used to measure server load, such as CPU utilization, memory

utilization, (current) request number, etc. Here, we choose request number, because the

dispatcher can easily get the current request number of each server without any

additional measures. We set a high threshold (HIGH_THRESHOLD) and a low threshold

(LOW_THRESHOLD). When a server’s request number is equal or bigger than the high

threshold, it means the server is overloaded and we should improve its performance by

turning up its frequency. Conversely, when a server’s request number is equal or less than

the low threshold, it means the server is underloaded and we should turn down its

frequency.

In order to guarantee QoS (Quality of Service) and avoid too much request response

time, we also set a drop threshold (DROP_THRESHOLD). When the request number of a

server goes over the threshold, the server will discard the new requests which are

scheduled to it.

6.2. Deployment Algorithm

Suppose a server’s current frequency is j, i.e., all the cores are working at the jth

frequency. When it is overloaded, we turn up its frequency to j+1. Conversely, when it is

underloaded, we turn down its frequency to j-1.

Anti-thrashing is a practical issue to be resolved, i.e., we must avoid servers oscillating

between the on/off states caused by small fluctuations of the load. Therefore, when a

server’s request number becomes zero, we do not turn it off immediately, but adopt the

following turning-off scheme. We check each server every D seconds, only if a server’s

request number equal zero all the time in the past D seconds, we turn it off. Bigger D is

more helpful to reduce thrashing, but it will waste a little more energy when the load

is in falling stage. We use a HookTimer component DealyOffAssist (see Figure 5) to help

realize the delay turning-off function.

Obviously, the deployment trigger mode is conditional and the deployment is triggered

by request number. So the deployment trigger codes are written in the

requestNumberReport method of IDeploymentAlgorithm. Algorithm 1 gives the pseudo-

code of deployment algorithm. In the algorithm, Stop denotes the set of servers whose

frequency is adjusted to the maximum and meanwhile whose request number is bigger or

equal to the high threshold.

6.3. Request Scheduling Algorithm

We combine greedy idea, thresholds and request number to schedule requests. When

all the turned-on servers are over-loaded, we use least request number algorithm.

Otherwise, we schedule requests on a greedy fashion, specifically, we concentrate load on

some servers and let them work at the highest possible frequency, thus turning off other

servers as many as possible. Algorithm 2 gives the pseudo-code of request scheduling

algorithm. It should be noted that if the request number of the selected server is bigger

than DROP_THRESHOLD, the request will be dropped by the server.

7. Simulation Tests

In this section, we simulate the proposed request-number-triggered management

strategy with our simulation platform.

International Journal of Future Generation Communication and Networking

Vol. 9, No. 12 (2016)

48 Copyright ⓒ 2016 SERSC

7.1. Simulation Scenario

Suppose a web cluster consists of 50 homogeneous servers. Each server has an AMD

Athlon 64 X2 Dual-Core 5000+ CPU and 2G memory, Table 1 gives its power

parameters which are supplied in [6]. We use a server of this hardware configuration to

t e s t , a n d t h e

Algorithm 1. Deployment Algorithm

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

ClusterDeployment requestNumberReport(int serverID, int requestNumber) {

i = ServerID;

S[i].req_num = requestNumber;

if (S[i].req_num==0) {

S[i].delay_off = CloudSim.clock();

return null;

}

if (S[i].delay_off>0 && S[i].req_num==1) {

S[i].delay_off = 0;

return null;

}

if (S[i].req_num<=LOW_THRESHOLD) {

if(S[i].frequency != 1) {

turn_down (S[i], deploymnet);

return deploymnet;

}

return null;

}

if (S[i].req_num==HIGH_THRESHOLD-1 && i∈Stop) {

Stop = Stop - {i};

return null;

}

if (S[i].req_num==HIGH_THRESHOLD && i∉Stop) {

if(S[i]. frequency != S[i].maxFrequency) {

turn_up(S[i], deployment);

if (S[i]. frequency==S[i].maxFrequency) {

Stop = Stop + {i};

if (Son==Stop) {

fectch j from Soff;

Soff = Soff - { j };

turn_on(S[j], deployment);

}

}

return deployment;

}

}

return null;

}

Algorithm 2. Request Scheduling Algorithm

1

2

3

int scheduleRequest(Cloudlet request) {

select the first S[i] whose req_num < HIGH_THRESHOLD from Son;

if (success)

International Journal of Future Generation Communication and Networking

Vol. 9, No. 12 (2016)

Copyright ⓒ 2016 SERSC 49

4

5

6

7

return i;

select S[i] whose req_num is minimal from Son;

return i;

}

results show that: the off (suspending-to-RAM) power is about 4.85W; booting and

halting process lasts about 2s; the booting power is approximately equal to the mean of

busy power and idle power; the halting power approximates to idle power.

Table 1. Power Parameters

Frequency (GHz) Idle power (W) Busy power (W)

1.0 65.8 82.5

1.8 68.5 99.2

2.0 70.6 107.3

2.2 72.3 116.6

2.4 74.3 127.2

2.6 76.9 140.1

Suppose request size follows a negative exponential distribution with a mean of 10.

Every two minutes is deemed as a time unit. Suppose the request time interval in a time

unit also follows negative exponential distribution, i.e., the request arrival process is a

Poisson process. We define request mean rate as load. The loads of different time units

may be different. In addition, the delay parameter D is set to 120 seconds.

7.2. Simulation Results and Analysis

We use a group of thresholds (namely, DROP_THRESHOLD, HIGH_THRESHOLD

and LOW_THRESHOLD) (35, 30, 10) to simulate. Our simulation lasts 51 time units.

Figure 6 gives load curve, Figure 7, 8 and 9 give the curve of energy consumption, mean

response time and drop rate respectively.

0 10 20 30 40 50
0

2

4

6

8

10

Time Unit

R
e
q
u
e
s
t

R
a
te

 (
1
0

3
re

q
/s

)

Figure 6. Load

International Journal of Future Generation Communication and Networking

Vol. 9, No. 12 (2016)

50 Copyright ⓒ 2016 SERSC

0 10 20 30 40 50
0

5

10

15

20

Time Unit

E
n
e
rg

y
 C

o
n
s
u
m

p
ti
o
n
 (

1
0

4
W

*s
)

Figure 7. Energy Consumption

0 10 20 30 40 50
45

50

55

60

65

Time Unit

M
e
a
n
 R

e
s
p
o
n
s
e
 T

im
e
 (

m
s
)

Figure 8. Mean Response Time

0 10 20 30 40 50
0

2

4

6

8

10

Time Unit

D
ro

p
 R

a
te

 (
%

)

Figure 9. Drop Rate

From the results we can see that: (1) cluster’s energy consumption changes along with

the load and their trends are basically identical; and (2) when the load increases rapidly,

new server will be turned on, because server’s booting needs some time, the mean

response time and drop rate will increase significantly. The results accord with our

expectations for the management strategy on both power and performance control.

We fix the load equal to 5000 req/s, and use three groups of thresholds (35, 30, 10),

(38, 33, 13) and (41, 36, 16) to simulate. Each simulation lasts 10 time units. Figure 10

gives the simulation results of mean response time. In the proposed management strategy,

bigger threshold means more concurrent request number. When concurrent request

number increases, each request will wait more time, so request mean response time will

increase. The results coincide with this conclusion.

International Journal of Future Generation Communication and Networking

Vol. 9, No. 12 (2016)

Copyright ⓒ 2016 SERSC 51

0 1 2 3 4 5 6 7 8 9
40

50

60

70

Time Unit

M
e
a
n
 R

e
s
p
o
n
s
e
 T

im
e
 (

m
s
)

(41, 36, 16)

(38, 33, 13)

(35, 30, 10)

Figure 10. Comparison of Mean Response Time

8. Conclusion

Along with the wide usage of web cluster, its dynamic power and performance

management is an urgent problem to be resolved. Evaluating a proposed management

strategy by actual tests will consume a lot of equipment, time and energy. This paper

proposes a CloudSim-based simulation platform. The main traits and merits of the

platform are as follows:

(1) It can simulate web cluster’s actual operation and cluster’s dynamic deployment,

where the deployment includes server dynamic switching on/off, CPU dynamic frequency

scaling and scheduling-parameter dynamic adjustment.

(2) It can calculate cluster’s energy consumption, request mean response time, request

drop rate, and other common performance indicators.

(3) It supports periodical and conditional deployment trigger modes for the

introduction of HookTimer component.

(4) Users can conveniently define their own load feature, deployment algorithm and

request scheduling algorithm.

(5) It has good extensibility and configurability for the usage of interface, dynamic

proxy technique and XML configuration file.

Finally, we put forward a request-number-triggered management strategy, and simulate

it with our platform. The simulation results accord with our expectations for the

management strategy on both power and performance control, which demonstrates the

feasibility of the platform.

Acknowledgment

The authors would like to thank the referees and editors for providing very helpful

comments and suggestions. This work is partially supported by the National Natural

Science Foundation of China (No. 61202366), the Natural Science Foundation of

Guangdong Province (No. S2012010010023), Engineering and Technology Research

Center of Digital Content Management of Guangdong Province (No. 2016B090920095),

Engineering and Technology Research Center of Guangdong Higher Education Institutes

(No. GCZX-A1306), and the Science and Technology Program of Shantou (No. 2014-98).

References

[1] K. Bilal, A. Fayyaz, S. U. Khan and S. Usman, “Power-Aware Resource Allocation in Computer

Clusters Using Dynamic Threshold Voltage Scaling and Dynamic Voltage Scaling: Comparison and

Analysis”, Cluster Computing, vol. 18, no. 2, (2015), pp. 865-888.

[2] L. A. Barroso and U. Holzle, “The Case for Energy-Proportional Computing”, Computer, vol. 40, no. 12,

(2007), pp. 33-37.

[3] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. F. De Rose and R. Buyya, “CloudSim: A Toolkit for

Modeling and Simulation of Cloud Computing Environments and Evaluation of Resource Provisioning

Algorithms”, Software: Practice and Experience, vol. 41, no. 1, (2011), pp. 23-50.

International Journal of Future Generation Communication and Networking

Vol. 9, No. 12 (2016)

52 Copyright ⓒ 2016 SERSC

[4] S. Kiertscher, J. Zinke and B. Schnor, “CHERUB: Power Consumption Aware Cluster Resource

Management”, Cluster Computing, vol. 16, no. 1, (2013), pp. 55-63.

[5] C. Lei, L. Luo and W. Wu, “Cloud Computing Based Cluster Energy Monitoring and Energy Saving

Method Study”, Computer Applications and Software, vol. 28, no. 11, (2011), pp. 242-244, 251.

[6] L. Bertini, J. C. B. Leite and D. Mosse, “Power Optimization for Dynamic Configuration in

Heterogeneous Web Server Clusters”, Journal of Systems and Software, vol. 83, no. 4, (2010), pp. 585-

598.

[7] A. Krioukov, P. Mohan, S. Alspaugh, L. Keys, D. Culler and R. Katz, “NapSAC: Design and

Implementation of a Power-Proportional Web Cluster”, Computer Communication Review, vol. 41, no.

1, (2011), pp. 102-108.

[8] D. Duolikun, T. Enokido, A. Aikebaier and M. Takizawa, “Energy-Efficient Dynamic Clusters of

Servers”, Journal of Supercomputing, vol. 71, no. 5, (2015), pp. 1642-1656.

[9] T. Enokido, M. Takizawa and S. M. Deen, “The Delay Time-Based (DTB) Algorithm for Energy-

Efficient Server Cluster Systems”, Proceedings of 2014 Eighth International Conference on Complex,

Intelligent and Software Intensive Systems, Birmingham, UK, (2014), pp. 294-301.

[10] P. J. Kuehn and M. E. Mashaly, “Automatic Energy Efficiency Management of Data Center Resources

by Load-Dependent Server Activation and Sleep Modes”, Ad Hoc Networks, vol. 25, (2015), pp. 497-

504.

[11] X. Zheng and Y. Cai, “CMDP Based Adaptive Power Management in Server Clusters”, Sustainable

Computing: Informatics and Systems, vol. 3, no. 2, (2013), pp. 70-79.

[12] G. Terzopoulos and H. Karatza, “Energy-Efficient Real-Time Heterogeneous Cluster Scheduling with

Node Replacement Due to Failures”, Journal of Supercomputing, vol. 68, no. 2, (2014), pp. 867-889.

[13] H. He and D. Liu, “Optimizing Data-Accessing Energy Consumption for Workflow Applications in

Clouds”, International Journal of Future Generation Communication and Networking, vol. 7, no. 3,

(2014), pp. 37-48.

[14] Z. Xiong, S. Zeng and H. Lu, “Online Automatic Energy-Saving Deployment under QoS Guarantee for

Web Server Cluster”, Proceedings of IEEE International Conference on Information and Automation,

Yinchuan, China, (2013), pp. 25-30.

[15] W. V. Heiningen, T. Brecht and S. MacDonald, “Exploiting Dynamic Proxies in Middleware for

Distributed, Parallel, and Mobile Java Applications”, Proceedings of the 20th International Parallel and

Distributed Processing Symposium, Rhodes Island, Greece, (2006).

Authors

Zhi Xiong, he received the Ph. D. degree in Communication and

Information System from Wuhan University, China. He is currently an

associate professor in the Department of Computer Science and

Technology at Shantou University, China. His research interests

include server cluster, green computing and cloud computing.

Zhongliang Xue, he received the B.E. degree in Computer

Science and Technology from Jiangsu University, China. He is

currently pursuing the M.E. degree in Computer Application

Technology at Shantou University, China. His research interests

include big data and server cluster.

Weihong Cai, he received the Ph.D. degree in Communication and

Information System from South China University of Technology,

China. He is currently a professor in the Department of Computer

Science and Technology at Shantou University, China. His research

interests include information security, network and communications.

http://link.springer.com/search?facet-author=%22George+Terzopoulos%22
http://link.springer.com/search?facet-author=%22Helen+Karatza%22

International Journal of Future Generation Communication and Networking

Vol. 9, No. 12 (2016)

Copyright ⓒ 2016 SERSC 53

Lingru Cai, she received the Ph.D. degree in System Engineering

from Huazhong University of Science and Technology, China. She is

currently an associate professor in the Department of Computer

Science and Technology at Shantou University, China. Her research

interests include modelling and simulation, system dynamics and

game theory.

Juan Yang, she received the B.E. degree in Computer Science

and Technology from Tianjin Polytechnic University, China. She

is currently pursuing the M.E. degree in Computer Application

Technology at Shantou University, China. Her research interests

include cloud computing and server cluster.

International Journal of Future Generation Communication and Networking

Vol. 9, No. 12 (2016)

54 Copyright ⓒ 2016 SERSC

