
International Journal of Future Generation Communication and Networking

Vol. 9, No. 12 (2016), pp. 351-360

http://dx.doi.org/10.14257/ijfgcn.2016.9.12.32

ISSN: 2233-7857 IJFGCN

Copyright ⓒ 2016 SERSC

Research on Data Transmission Security Technology of Wireless

Sensor Networks

Jinsong Zhang and Hua Zhang

Qiqihar University, Qiqihar 161006, China

E-mail: 29373370@qq.com

Abstract

In this paper, regarding to the online data compression issue of wireless sensor

networks, a disconnected segmented linear compression algorithm GDPLA is proposed.

The algorithm uses the least number of disconnected segments to approximate describing

the original time series under the condition of the error limit ε be guaranteed. The

algorithm GDPLA is an optimal algorithm from the number of segments generated. In

addition, the GDPLA algorithm requires linear run-time only, and the linear coefficient is

6, which makes it suitable for resource-constrained wireless sensor networks. Finally, the

experiments on two real data sets show that the compression rate of our algorithm is

obviously superior to other algorithms.

Keywords: Wireless sensor network, data transmission, security technology, GDPLA

1. Introduction

With the rapid development of sensing, embedded systems and low- consumption

short-range wireless communications, sensor nodes with sensing, wireless

communications and computing power are possible. A large number of sensor nodes with

short-range wireless communication cooperate with each other to monitor a geographical

area and transmit the perceptual data to the sink node by means of self-organized hop-by-

hop forwarding. The wireless sensor networks (WSNs) are composed of these nodes with

self- composition capacity.

In WSNs, data compression is a popular method to reduce communication overhead,

but traditional techniques such as wavelet transform, discrete Fourier transform and

discrete cosine transform have high space-time complexity and require high computation

and storage, thus they are not suit for WSNs. Based on these observations, the

researchers begin to explore new methods to compress the data in WSNs, namely the

Piecewise Linear Approximation (PLA) method, which divides the time series into

several segments, and then approximate describes each data points of the segment with a

line segment. In recent years, the PLA methods used in WSNs are PMC-MR, Cache and

Linear filter [1]. The PMC-MR scans the time series greedy and sequential from the first

data point and places the scanned data points in a bucket until a data point is scanned,

which makes the difference between the maximum value and the minimum value of the

data points in the bucket larger than 2ε. In this case, the data points in the barrel are

approximated by (Max + Min) / 2, and the absolute value of the difference between

approximate value and the true value is equal to or less than (Max-Min) / 2 and less than

or equal to ε. Then a new bucket is created from the last scanned data point, and

operations like the first bucket continue to greedy scan the subsequent data points. Cache

selects the value of the first data point as an approximation, if the subsequent data point

within the ε range of the first data point it will be filtered out, until the data point which is

not within the ε range of the first data point, then a new piecewise approximation is

started from the new data point [2]. The linear filter selects the line connecting the first

data point and the second data point as the approximation of the first segment. When the

International Journal of Future Generation Communication and Networking

Vol. 9, No. 12 (2016)

352 Copyright ⓒ 2016 SERSC

value of the subsequent data point is within the ε range of the vertical direction of the

straight line, the data is filtered out, until the value of the new data point is not within the

ε range of the vertical direction of the straight line, then a new Piecewise approximation is

started from the new data point. As we known, there is no PLA method that can

approximate describe a time series with a minimum number of line segments in linear

time and guarantee the accuracy of the error (the absolute value of the difference between

the true value and the approximation is less than or equal to one Error bounds) [3-4].

In order to solve this problem, a piecewise linear approximation algorithm, GDPLA

(Greedy Disconnected Piecewise Linear Approximation), is proposed in this paper, which

can describe a time series and guarantee the precision of error by using disconnected

segment in linear time. The following briefly describes the main idea. Given a time series

S, a maximum error bound ε, GDPLA starts at the first data point, greedily scans the data

points in the sequence until a data point is scanned so that all data points before this data

point can be approximate described by a line segment, and the accuracy is guaranteed [5-

7]. However, if this data point is added, then there is no line segment can approximate

describe all of the current data points which have not been approximate described yet.

Thus, GDPLA approximates all data points prior to the last data point by a line segment,

and greedy scanning begins at the last data point similarly until the entire time series ends.

2. Design of GDPLA Algorithm

We consider the data flow generated by a non-Sink node. Without loss of generality,

we denote the number of the node by n0. Suppose that S=<x[t1], x[t2], x[t3],……> is the

time series of the monitoring value produced by the node n0. When the first data point (t1,

x[t1]) arrives, it is stored. When the second data point (t2, x[t2]) arrives, it is easy to find a

line segment where the vertical distance from the first two data points to this line segment

is less than or equal to ε. When the third data point (t3, x[t3]) arrives, we examine whether

the first three data points can be approximate described by a line segment and satisfy the ε

error limit requirement [8-10]. If not, the first and second data point is approximated by a

line segment, and then a new segment approximation is started from the third data point;

contrarily, waiting for the arriving of the fourth data point. When the fourth data point

arrives, similarly checking whether the first four data points can be approximate described

by a line segment and satisfies the ε error margin requirement. In this way, whenever a

new data point arrives, we perform a similar check operation until the entire time series

ends.

2.2. UI lines and LI lines

Definition 1: Given a time series S[ta:tb]=< x[ta], x[ta+1],…, x[tb]>, the straight line

satisfying the following two conditions is U line which belongs to S[ta:tb].

(1) The straight line through point (tp, x[tp]−ε) and the point (tq, x[tq]+ε).

(2) a≤p≤q≤b.

We use upq to represent the U-line which passing the point (tp, x[tp]− ε) and the point

(tq, x[tq]+ε).

Definition 2: Given a time series S[ta:tb]=< x[ta], x[ta+1],…, x[tb]>, the line satisfying

the following two conditions is L line which belongs to S[ta:tb].

(1) The straight line through point (tp,x[tp]+ε) and the point (tq,x[tq]−ε).

(2) a≤p≤q≤b.

We use lpq to represent the L-line which passing point(tp,x[tp]+ε) and the point (tq,

x[tq]− ε).

Definition 3: Given a time series S[ta:tb]=< x[ta],x[ta+1],…,x[tb]>, ltk,2ε are segment

connecting points (tk, x[tk]− ε) and (tk,x[tk]+ε), where a≤k≤b. We call ltk,2ε is a 2ε-bound

line of S[ta:tb].

International Journal of Future Generation Communication and Networking

Vol. 9, No. 12 (2016)

Copyright ⓒ 2016 SERSC 353

Definition 4: Given a time series S[ta:tb]=<x[ta],x[ta+1],…,x[tb]>, U line upq of S[ta:tb]is

UI line If and only if upq and each 2ε-bound line of S[ta:tb] intersecting, that is

upq∩ltk,2ε≠Φ,a<k<b (1)

Note: that the four lines and one line segment defined above are within the time series

S[ta:tb]. For a better understanding of U-line, L-line, UI line, LI line, and the 2ε-bound

line, we use a small example for a brief explanation. As shown in Fig. 1, there are three

data points (tk,x[tk]) generated by a node, 1≤ k≤3. The three 2ε-bound lines (vertical thick

line in the figure 1), three U-lines (solid line in the figure 1), and three L-lines (dashed

lines in the figure 1). However, for S[t1 : t3], there is only one UI line u12 of those three,

there is only one LI line l23 too. We will prove that for any time series S[ta:tb], it has at

most one UI line and one LI line.

Figure 1. For S[t1:t3], there are Three 2-bound Line Segments, Three U-
Lines and Three L-Lines

The main role of the UI and LI lines is to determine whether a new data point can be

compressed with previously arrived data points that have not been compressed yet

(namely, a line segment is used to approximate describe the points and guarantee the error

limit ε).

3. Analysis of GDPLA Algorithm

The space-time complexity of the algorithm depends on four subroutines in the

algorithm, namely four subroutines in the 15th, 16th, 17th and 18th lines. We analyze the

complexity of Update And Prune Up(U,tj,x[tj]) and Calculate LILine (U,tj,x[tj]), and

similarly we can analyze the complexity of Update And Prune Low(L,tj,x[tj]) and

Calculate UILine (L,tj,x[tj]).

3.1. Space Complexity

Suppose that g(h){1≤h≤H} H line segment which is the outputs of S[t1:tn] is

approximate described by GDPLA, and g(m) is the line segment with the most

approximate data points. Assuming that Num(g(m)) is the total number of data points

approximated by g(m), then the maximum number of elements in U (L) is Num(g(m)), the

space complexity of the algorithm is O (max1≤ m≤ H(Num(g(m)))). In the worst case, the

entire time series needs only one-line segment to be approximate described, in this case.

The space complexity is O(n). However, this situation rarely occurs, in most cases

max1≤m≤H(Num(g(m))) is less than or equal to a constant, so in most cases, the space

complexity is O(1).

International Journal of Future Generation Communication and Networking

Vol. 9, No. 12 (2016)

354 Copyright ⓒ 2016 SERSC

3.2. Time Complexity

Definition 5: Given the time series S[t1:tn], the time complexity of the algorithm

GDPLA is O(n).

Proof: For Update And Prune Up (U,tj,x[tj]), the main runtime of algorithm depends on

the while loop from the 4th to 8th lines. Assume that while loop runs M times, M1 loop

condition is satisfied and M2 loop condition is not satisfied. Since each time a new data

point is reached, only one loop condition is not satisfied, so M2=n, thus

M=M1+M2=M1+n.When the M1 loop condition is satisfied, it means that there are M1

pruning operations occurred in the Update and Prune Up (U, tj, x[tj]) algorithm. In

essence, we compare the slope of two lines to determine whether a point is the pruning

point, to simplify the description, we use 1 represent slope size (that is, the size of the two

floating-point) to compare the time complexity. The time complexity of Update And

Prune Up (U,tj,x[tj]) algorithm is M1+n. Similarly, the time complexity of the Update and

Prune Low (U, tj, x[tj]) algorithm is M1' +n. where M1' is the number of times the while

loop condition is satisfied. The main runtime of the Calculate LILine (U,tj,x[tj]) algorithm

depends on the while loop from the 5th to 10th lines[11]. Assume that the while loop runs

N times, where N1 loop condition is satisfied and N2 loop condition is not satisfied. Since

each time a new data point is reached, only one loop condition is satisfied, so N2=n.

Besides, from the overall point of view, when the LI line is updated, no upper pruning

point is scanned, At most n−M1 data points are scanned, so that N1≤n−M1.Therefore the

time complexity of the Calculate LILine (U,tj,x[tj]) algorithm is at most 2n-M1. Similarly,

the time complexity of the Calculate UILine (L, tj, x[tj]) algorithm is a most 2n−M1'. In

conclusion, the time complexity of GDPLA algorithm is

O(M1+n+M1'+n+2n−M1+2n−M1')=O(6n) , namely O(n).

3.3. Optimality

From definition 5 we can see that GDPLA requires only a linear run-time. Following

we will prove that the number of disconnected segments produced by the GDPLA

algorithm is the least. Linear time and optimality are the two greatest advantages of this

algorithm, GDPLA, which make it suitable for WSNs with limited resources.

Definition 6: Given the time series S(n)=S[t1:tn], error limit ε and error function E(S(n),

𝑆𝑆 (n)), 𝑆𝑆 (n)is the approximate description of S(n). In all of the disconnected piecewise

linear ε approximation algorithm which satisfy E(S(n),𝑆𝑆 (n))≤ε, if the number of

disconnected segments generated by the algorithm GDPLA is H, there is no algorithm for

piecewise linear approximation S (n) with less than H segments.

Proof: Counter-evidence. Suppose that there is a piecewise linear approximation

algorithm approximates S (n) with a shorter length of disconnected line segments

(d1,d2,…,dH′)(H′<H) and satisfies E(S(n),𝑆𝑆 (n))≤ε, where 𝑆𝑆 (n) is the time series

obtained by approximating S (n) with(d1,d2,…,dH′). The line d1 the approximate

subsequence <x[t1],x[t2],…,x[tl1]>. Line segment dh′(2≤h′≤H′) approximate subsequence

x[tlh-1+1],x[tlh-1+2],…, x[tlh]>. Assume that the algorithm GDPLA produces disconnected

segment sequence c1, c2,…, cH), where segment c1 approximates the

subsequences<x[t1],x[t2],…,x[tj1] >, segment ch(2≤h≤H) approximates subsequences

<x[tjh-1+1],x[tjh-1+2],…, x[tjh]>; where jH=n.

By mathematical induction we prove that for ∀1≤m≤H′−1, lH′−m>jH−(m+1) holds.

(1) When m=1, it is easy to know that lH′−1>jH−2 holds. Otherwise, if lH′−1≤jH−2, the

subsequence S[tjH-2:tjH]⊆S[tjH`-1+1:tjH1], the subsequences S[tjH-2:tjH] can be approximated

by dH′. and the error is not greater than ε. However, S[tjH-2:tjH]⊆(S[tjH`-1+1:tjH1]) can’t be

approximated by one line segment and ensured error is less than or equal to ε. S[tjH-2:tjH]

can’t be approximated by a line segment and ensured error is less than or equal to ε. Draw

the contradiction, when m=1, lH′−1>jH−2 holds.

International Journal of Future Generation Communication and Networking

Vol. 9, No. 12 (2016)

Copyright ⓒ 2016 SERSC 355

(2) Suppose m=k<H′, lH′−k> jH−(k+1) holds. Then lH′-(k+1)>jH−(k+2) holds too. Otherwise, l

H′−(k+1)≤jH−(k+2), By the induction hypothesis that lH′−(k+1)≤jH−(k+2)<jH−(k+1)<lH′−k, and S[tjH-

(k+2):tjH-(k+1)]⊆S[tjH`(k+1) +1:tjH`-k], S[tjH-(k+2):tjH-(k+1)] can be approximated by dH′−k and the

error is less than or equal to ε. But from the algorithm, S[tjH`(k+1) +1:tjH`-k] can’t be

approximated by a line segment and ensured error is less than or equal to ε. Draw the

contradiction, thus lH′−(k+1)> jH−(k+2) holds.

Seen from (1) and (2), ∀1≤m≤ H′−1, lH′−m+1 > jH−(m+1) holds. Specially, when m = H′−1

，l1>jH−H′ holds, then S[t1:tjH-H`]⊆S[t1+1:tl1]，S[t1:tj1]⊆S[t1:tH-H`] can be approximated by

d1 and the error is less than or equal to ε. But from the algorithm, S[t1:tj1] can’t be

approximated by a line segment and ensured error is less than or equal to ε[12]. Draw the

contradiction, so there is no other piecewise linear algorithm approximating S (n) with a

sequence of lengths less than H and satisfying E(S(n), 𝑆𝑆 (n))≤ε. End of proof.

4. Experimental Results

4.1. Contrast Results of Compression Ratio

As shown in Figure 2, the first set of experiments measures the variation of the

compression rate with error ε. Figure 2(a) describes the variation of compression ratio of

GDPLA, PMA-MR, Cache, and Linear filter with error ε when the original data size of

the Intel TEM dataset is 8000. As expected, for all algorithms, the compression ratio

increases with error ε. When ε=0.1, the compression ratio of GDPLA is 2.5, 4.2 and 5.0

times of PMA-MR, Cache and Linear filter respectively. The reason is that GDPLA is an

optimal algorithm, which uses a minimum number of segments to describe the time series

in a piecewise linear approximation. When ε=0.05, GDPLA only needs to transfer about

10% of the original data, that means the compression rate is about 10; when ε = 0.1,

GDPLA only need to transfer about 5% of the original data, the compression rate is about

20. When the data size of Wash HUM is 10000, Figure 2(b) describes the variation of

compression ratio of GDPLA, PMA-MR, Cache, and Linear filter with error ε. The

observed experimental results are similar to those shown in Figure 2(a). When ε = 0.5, the

compression ratio of GDPLA is 1.75, 2.87 and 2.88 times of PMA-MR, Cache and Linear

filter respectively. We observe that GDPLA's compression ratio increase is larger than

PMA-MR, Cache, and Linear filter. When ε = 1, the compression ratio of GDPLA is 1.9,

4.81 and 3.54 times of PMA-MR, Cache and Linear filter respectively. Figure 3 (a)

depicts how the compression ratio of GDPLA, PMA-MR, Cache and Linear filter changes

with the size of the Intel TEM dataset when ε=0.05. For all algorithms, the compression

rate decreases as the size of the data set increases. This may be related to the distribution

of the data. Figure 3 (b) shows the variation of compression ratio of GDPLA, PMA-MR,

Cache, and Linear filter with the size of WashTEM data set, when ε = 0.5. It can be seen

that the compression rate of all the algorithms changes slowly. From Figure.2 and

Figure.3, we can see that the compression ratio of GDPLA is always larger than that of

PMA-MR, Cache and Linear filter. This further validates our theoretical analysis.

International Journal of Future Generation Communication and Networking

Vol. 9, No. 12 (2016)

356 Copyright ⓒ 2016 SERSC

(a) Compression ratio vs. ε (IntelTEM)

(b) Compression ratio vs. ε(WashHUM)

Figure 2. Compression Ratio as a Function of the Error Bound ε

(a)compression ratio vs. data size (IntelTEM)

International Journal of Future Generation Communication and Networking

Vol. 9, No. 12 (2016)

Copyright ⓒ 2016 SERSC 357

(b) compression ratio vs. data size(WashHUM)

Figure 3. Compression Ratio as a Function of Data Size

4.2. Contrast Results of Average Error

Figure.4 (a) describes the variation of average error of GDPLA, PMA-MR, Cache and

Linear filter with error ε when the original data size of the Intel TEM dataset is 8000.

From this we can observe that for all algorithms, the average error is approximately

proportional to the error ε, and that the average error of all the algorithms is less than half

of the maximum absolute value error. Figure 4(b) depicts similar experimental results.

Figure 5 (a) depicts the variation of the average error of GDPLA, PMA-MR, Cache, and

Linear filter when ε=0.05 and the size of the Intel TEM dataset increases from 2000 to

10000. From the figure we can observe that for all algorithms, the average error is less

than 0.03, and when the size of the Intel TEM dataset increases from 2000 to 10000, the

average error does not change much. The average error of GDPLA is slightly higher than

the average error of Cache, which is lower than the average error of PMC-MR. Figure 5

(b) shows the variation of the average error of GDPLA, PMA-MR, Cache and Linear

filter with the size of WashTEM dataset when ε=0.5, we can see that the average error of

the four algorithms is less than 0.3, and when the size of the Wash HUM dataset increases

from 2000 to 10000, the average error value increases gradually, but does not exceed 0.55

times the maximum error.

4.3. Contrast Results of Processing Time

Figure 5(a) depicts the average processing time for each data point in the Intel TEM

dataset when the size of the Intel TEM dataset is 8000 and ε is incremented from 0.01 to

0.1. The average processing time of GDPLA for each data point is slightly higher than the

other three algorithms. Figure 5 (b) depicts the average processing time for each data

point in the Wash HUM data set when ε is gradually change from 0.5 to 1 and the size of

the Wash HUM data set is 10000. Similarly, the average processing time of GDPLA for

each data points is slightly higher than the other three algorithms. However, the

computational energy cost of the algorithm GDPLA is worth because the energy cost of

WSNs depends mainly on the communication overhead, moreover the compression ratio

of GDPLA is far more than that of other algorithms, so GDPLA will transmit much less

data than the other algorithms, which makes GDPLA communication overhead is far less

than other algorithms communication overhead.

International Journal of Future Generation Communication and Networking

Vol. 9, No. 12 (2016)

358 Copyright ⓒ 2016 SERSC

(a) Average error vs. ε (IntelTEM

(b) Average error vs. ε(WashHUM)

Figure 4. Average Error as a Function of the Error Bound ε

(a) Average error vs.data size(IntelTEM)

International Journal of Future Generation Communication and Networking

Vol. 9, No. 12 (2016)

Copyright ⓒ 2016 SERSC 359

(b) Average error vs.data size(WashHUM)

Figure 5. Average Error as a Function of Data Size

5. Conclusion

This paper proposes a piecewise linear compression algorithm, GDPLA. The main task

of the wireless sensor network is to collect the data, timely and accurate feedback to the

user. In most wireless sensor network applications, the data is continuously transferred

from the data source node to the sink node. As the energy of the wireless sensor network

node is very limited and wireless data transmission is a major part of node energy

consumption, so under the premise of without damaging the network application tasks,

how to reduce the amount of data transmission is an important research topic. To solve

this problem, we propose an online piecewise linear approximation algorithm, GDPLA, to

reduce the amount of data transmission from the source. Under the condition of

guaranteeing the error limit ε, even if the absolute value of error between the true value

and the approximate value of each data point is less than or equal to the user-specified

threshold ε, the original time series is approximate described by using the least

disconnected line segments. We prove the optimality of the algorithm, that is, the number

of line segments generated by the algorithm GDPLA is the least in the algorithm which

approximate describing the time series by disconnected segments. In addition, we also

prove that the time complexity of the algorithm GDPLA is O (n), where n is the length of

the time series. The low time complexity of the algorithm makes it suitable for wireless

sensor networks with limited resources. Finally, the experiments on two real data sets

show that the compression rate of our algorithm is better than other algorithms. Thus, it

has greatly reducing the amount of data transmission in the wireless sensor network from

the source.

References

[1] J. N. Alkaraki and A. E. Kamal, “Routing techniques in wireless sensor networks: a survey”, IEEE

Wireless Communications, vol. 11, no. 6, (2004), pp. 6-28.

[2] C. Intanagonwiwat, R. Govindan, D. Estrin, J. Heidemann and F. Silva, “Directed diffusion for wireless

sensor networking”, IEEE/ACM Transactions on Networking, vol. 11, no. 1, (2013), pp. 2-16.

[3] W. Ye, J. Heidemann and D. Estrin, “Medium access control with coordinated adaptive sleeping for

wireless sensor networks”, IEEE/ACM Transactions on Networking, vol. 12, no. 3, (2004), pp. 493-506.

[4] C. Karlof and D. Wagner, “Secure routing in wireless sensor networks: attacks and countermeasures”,

Ad Hoc Networks, vol. 1, no. 2–3, (2003), pp. 293-315.

[5] K. Sohrabi, J. Gao, V. Ailawadhi and G. J. Pottie, “Protocols for self-organization of a wireless sensor

network”, Personal Communications IEEE, vol. 7, no. 5, (2000), pp. 16-27.

[6] N. Patwari, J. N. Ash, S. Kyperountas, A. O. Hero, R. L. Moses and N. S. Correal, “Locating the nodes:

cooperative localization in wireless sensor networks”, IEEE Signal Processing Magazine, vol. 22, no. 4,

(2005), pp. 54-69.

International Journal of Future Generation Communication and Networking

Vol. 9, No. 12 (2016)

360 Copyright ⓒ 2016 SERSC

[7] W. Du, J. Deng, Y. S. Han, P. K. Varshney, J. Katz and A. Khalili, “A pairwise key predistribution

scheme for wireless sensor networks”, Acm Transactions on Information & System Security, vol. 8, no.

2, (2005), pp. 228-258.

[8] H. Zheng, S. Xiao and X. Wang, “Energy conservation in wireless sensor networks: a survey”, Ad Hoc

Networks, vol. 7, no. 3, (2009), pp. 537-568.

[9] J. Kulik, W. Heinzelman and H. Balakrishnan, “Negotiation-based protocols for disseminating

information in wireless sensor networks”, Wireless Networks, vol. 8, no. 2, (2002), pp. 169-185.

[10] D. Ganesan, R. Govindan, S. Shenker and D. Estrin, “Highly-resilient, energy-efficient multipath

routing in wireless sensor networks”, Acm Sigmobile Mobile Computing & Communications Review,

vol. 5, no. 4, (2001), pp. 72-85.

[11] O. Boyinbode, H. Le, A. Mbogho, M. Takizawa and R. Poliah, “A survey on clustering algorithms for

wireless sensor networks”, Computer Communications, vol. 30, no. 14–15, (2007), pp. 2826-2841.

[12] N. Patwari, A. O. I. Hero, M. Perkins, N. S. Correal and R. J. O'Dea, “Relative location estimation in

wireless sensor networks”, IEEE Transactions on Signal Processing, vol. 51, no. 8, (2003), pp. 2137-

2148.

