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Abstract 

This paper studies the optimal linear filtering problem for networked control systems 

(NCSs) with multiple packet dropouts. When the current measurement is lost, the two 

popular compensation mechanisms (the hold-input and zero-input mechanism) are used 

for compensation, respectively. The hold-input strategy means that the latest 

measurements received is applied directly whereas the zero-input one adopts zero value. 

Based on the two popular compensators, the optimal linear filters in the linear minimum 

variance sense are given by innovation analysis approach, and their performances are 

compared in terms of two simulation examples. The conclusion is that neither of the two 

compensation mechanisms can be claimed to be superior to the other. 

 

Keywords: Packet dropout; Compensation; Linear filter; Networked control system; 
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1. Introduction 

Recently, the control and filtering problem for NCSs have received much 

attention due to their wide applications in target tracking, environmental 

monitoring, and communication [1-4]. Because of the communication noise, 

interference or congestion, random packet dropouts could occur in data 

transmissions, which is challenging for filtering of the system. 

For systems with packet dropouts, from the literatures, there are two popular 

compensation mechanisms: the hold-input and the zero-input mechanisms. The 

former means that the latest measurement or control signal received is used whereas 

the latter adopts zero value whenever the current signal is lost.  The two 

compensators are straight forward and easy to implement. Based on the hold-input 

compensator, the stabilization problem of networked controls by a switched system 

approach [5], the optimal H2 filtering problem by LIM approach [6], the optimal 

linear estimation and steady-state estimation problem by innovation analysis 

approach [7-8] are investigated, respectively.  Based on the zero-input compensator, 

the optimal filtering problem for systems with multi-step random delays and 

multiple packet dropouts are studied in [9].  Further, the possible packet dropouts 

for a rehabilitation system [10] and for T-S fuzzy dynamic systems [11] are tackled, 

respectively. Using the two compensators, the optimal control problem of LTI 

system was investigated in [12], the LG performance are analyzed in [13], and the 

LQG problem is investigated in [14]. Moreover, a one-step prediction-based packet 

dropout compensation method is proposed and the corresponding control problem is 

also studied in [15] and [16]. 
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Motivated by the above discussion, in this paper, we investigate the optimal linear 

filtering problem for networked systems with multiple packet dropouts by applying the 

two popular compensators. First, we review the existing linear filter proposed in [7] based 

on the hold-input mechanism. However, the proposed filter in [7] has high computational 

cost due to the state augmentation. Then, we propose the optimal filter by innovation 

analysis approach based on the zero-input mechanism. The proposed filter has the same 

order with the original system and can reduce the computational burden. Finally, we use 

two examples to compare the filtering performance of the above two filters. The results 

show that neither of the two compensators always outperforms the other. 

 

2. Problem Formulation  

Consider the following linear discrete-time system modeled by 

( 1) ( ) ( )x t x t w t                                                       (1) 

( ) ( ) ( )z t Hx t v t                                                 (2) 

where ( ) nx t  is the state, ( ) mz t   is the sensor output.  ,   and H are constant 

matrices. ( ) rw t   and ( ) mv t   are correlated zero-mean white noises with covariance 

matrices  TE[ ( ) ( )]= ww t w t Q  , TE[ ( ) ( )]= vv t v t Q  and TE[ ( ) ( )]=w t v t S . The initial state (0)x  is 

independent of ( )w t  and ( )v t , and has 
0E{ (0)}=x   and T

0 0 0E{( (0) )( (0) ) }=x x    . 

We assume that there exist possible consecutive packet dropouts during the data 

transmission from the sensor to the filter over a network. Then, a compensation 

measurement is needed at the filter when the current measurement is not available.  

Now, we review the two popular compensation mechanisms: 

Hold-input mechanism: ( ) ( ) ( ) (1 ( )) ( 1)h hy t t z t t y t                           (3) 

Zero-input mechanism: ( ) ( ) ( )zy t t z t

                                                

(4) 

where ( )t is an i.i.d Bernoulli process with { ( ) 1}P t    and { ( ) 0} 1P t    . The 

subscripts z and h in the compensation measurements indicate the zero-input and the hold-

input mechanism, respectively. 

Remark 1: From (3) and (4), we see that if ( ) 0t  , i.e., the current measurement is lost, 

the latest measurement is used in the hold-input mechanism whereas zero is used in the 

zero-input mechanism. 

 

3. Optimal Linear Filters under the Two Compensation Mechanisms 

In this section, we will give the optimal linear filters based on the above two 

compensation mechanisms. 

 

3.1. Linear Filter under the Hold-input Compensator 

In this subsection, we shall review the filter under the hold-input mechanism [7].  

First, we rewrite the system (1)-(3) as the following form of [7]: 

0 0
( 1) ( ) ( )

( ) (1 ( )) 0 ( )m m

X t X t W t
t H t I t I

 

  

   
     

   
                       (5) 

( ) [ ( ) (1 ( )) ] ( ) ( ) ( )h my t t H t I x t t v t                                     (6) 

where T T T( ) [ ( ) ( )]hX t x t y t , T T T( ) [ ( ) ( )]W t w t v t . 

Lemma 1
 
[7] For systems  (5)-(6), the optimal linear filter  is given by  

ˆ ˆ( | ) ( | 1) ( ) ( )h h h hX t t X t t K t t                                            (7) 

ˆ ˆ( 1| ) ( | 1) ( ) ( )h h h hX t t X t t L t t                                         (8) 

ˆ( ) ( ) ( | 1)h h ht y t HX t t                                                        (9) 
T 1( ) ( | 1) ( )

hh hK t P t t H Q t

                                                     (10) 
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 
T T 1

0 0
( ) (1 ) ( ) ( | 1) ( )

hh X m

m v

S
L t q t H I P t t H Q t

H I Q



    
     

         
     

        (11) 

   
T T( ) (1 ) ( ) ( | 1)

h m X m vQ t H I q t H I Q HP t t H                         (12) 

T

T
0 0 0 0

( 1) ( ) (1 ) ( )X X X

m m

q t q t q t Q
H I H I

   
   

       
    

              (13) 

T( | ) ( | 1) ( ) ( ) ( )
hh h h hP t t P t t K t Q t K t                                             (14) 

   
T

0 0 0 0
( 1| ) (1 ) ( ) ( ) ( )h h m X h m

m m

P t t L t H I q t L t H I Q
H I H I

 
         

             
          

 

T

T T( ( ) ) ( | 1)( ( ) ) ( ) ( )h h h h h

v v

S S
L t H P t t L t H L t L t

Q Q

 
   

   
        

   

T( ) ( )h v hL t Q L t     (15) 

where [ (1 ) ]mH H I   , 
0

(1 ) mH I




 

 
  

 
,

T

T T

w

v

Q S
Q

S Q

  

  

 
  
 

, ( )h t is the 

innovation sequence with variance ( )
h

Q t , ( )hK t and ( )hL t are gain matrices, ( )Xq t  is the 

state second-order moment matrix of augmented state ( )X t , ( | )hP t t is the filtering error 

variance matrix, ( | 1)hP t t  is the one-step prediction error variance matrix. The initial 

values are  
T

0
ˆ (0 | 1) 0hX   , 

0(0 | 1) diag( ,0)hP   and T

0 0 0(0) diag( ,0)Xq      . 

Remark 2: From the definition of T T T( ) [ ( ) ( )]hX t x t y t , the linear filter under the 

hold-input mechanism can be given by ˆˆ ( | ) [ 0] ( | )h n hx t t I X t t . 

 

3.2. Linear Filter under the Zero-input Compensator 

In this subsection, we shall derive the linear filter under the zero-input mechanism 

based on the innovation analysis approach.  

Theorem 1.  For systems  (1), (2) and (4), the optimal linear filter is given by 

ˆ ˆ( | ) ( | 1) ( ) ( )z z z zx t t x t t K t t                                            (16) 

ˆ ˆ( 1| ) ( | 1) ( ) ( )z z z zx t t x t t L t t                                         (17) 

ˆ( ) ( ) ( | 1)z z zt y t Hx t t                                                 (18) 
T 1( ) ( | 1) ( )

zz zK t P t t H Q t                                                    (19) 

T 1( ) ( ( | 1) ) ( )
zz zL t P t t H S Q t                                                (20) 

T 2 T( ) (1 ) ( ) ( | 1)
z x v zQ t Hq t H Q HP t t H                                    (21) 

T T( 1) ( )x x wq t q t Q                                                       (22) 
T( | ) ( | 1) ( ) ( ) ( )

zz z z zP t t P t t K t Q t K t                                          (23) 

T T T( 1| ) ( | 1) ( ) ( ) ( )
zz z w z zP t t P t t Q L t Q t L t                           (24) 

where ( )z t , ( )
z

Q t , ( )zK t , ( )zL t , ( | )zP t t  and ( | 1)zP t t  are of the similar definitions as 

the one in Lemma 1. ( )xq t  is the state second-order moment matrix of the original 

state ( )x t .The initial values are 
0

ˆ (0 | 1)zx   , 
0(0 | 1)zP    and T

0 0 0(0)xq      . 

Proof: By projection, we have (16)-(18). The gain matrices ( )zK t and ( )zL t are defined as:  
T 1( ) E[ ( ) ( )] ( )

zz zK t x t t Q t   , T 1( ) E[ ( 1) ( )] ( )
zz zL t x t t Q t                        (25) 

Substituting (4) into (18), ( )z t  can be rewrite as  

( ) [ ( ) ] ( ) ( | 1) ( ) ( )z zt t Hx t Hx t t t v t                                   (26) 
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where the estimation error is ˆ( | 1) ( ) ( | 1)z zx t t x t x t t    . From (26), and 

using E[ ( ) ] 0t   , ( ) ( )x t v t , ˆ( | 1) ( | 1)z zx t t x t t   , ( | 1) ( )zx t t v t  , and 

( | 1) ( )zx t t w t  , where the symbol “ ”denotes orthogonality, we have 
T T T TE[ ( ) ( )] E[ ( | 1) ( | 1)] ( | 1)z z z zx t t x t t x t t H P t t H        

T TE[ ( 1) ( )] E[ ( ) ( )]z zx t t x t t S                                               (27) 

Substituting (27) into (25) yields (19) and (20). By substituting (26) into 
T( ) E[ ( ) ( )]

z z zQ t t t    and using 2E[( ( ) ) ] (1 )t      , we obtain (21). From the state 

equation (1), we easily obtain the state second-order moment matrix T( ) E[ ( ) ( )]xq t x t x t of 

state ( )x t . 

Next, we derive the estimation error variance matrices T( | ) E[ ( | ) ( | )]z z zP t t x t t x t t  and 
T( 1| ) E[ ( 1| ) ( 1| )]z z zP t t x t t x t t    . By subtracting (16) and (17) from ( )x t and 

( 1)x t  yields the error equations 

ˆ( | ) ( ) ( | ) ( | 1) ( ) ( )z z z z zx t t x t x t t x t t K t t     , 

ˆ ˆ( 1| ) ( 1) ( 1| ) ( ) ( ) ( 1| ) ( | 1) ( ) ( ) ( )z z z z z zx t t x t x t t x t w t x t t x t t w t L t t                  

(28) 

Rewrite (28) as 

( | ) ( ) ( ) ( | 1)z z z zx t t K t t x t t   , 

  ( 1| ) ( ) ( ) ( | 1) ( )z z z zx t t L t t x t t w t                                      (29) 

Using ( | ) ( )z zx t t t and ( 1| ) ( )z zx t t t  , we have 
T( | ) ( ) ( ) ( ) ( | 1)

zz z z zP t t K t Q t K t P t t   , 

T T T( 1| ) ( ) ( ) ( ) ( | 1)
zz z z z wP t t L t Q t L t P t t Q                                  (30) 

From (30), we obtain (23) and (24). 

Remark 3. From Theorem 1, the computational cost of the filter under the zero-input 

mechanism has the order of magnitude 3(( ) )O n . Compared with the filter under the hold-

input mechanism in Lemma 1 with the magnitude 3(( ) )O n m , the computational cost can 

be reduced.

   

4. Simulation Examples 

In this section, we give two examples to compare the filtering performance under the 

two compensation mechanisms.  

Example 1: Consider the numerical example in [7]. 

1.7240 0.7788 1
( 1) ( ) ( )

1 0 0
x t x t w t

   
     

   
                             (31) 

 
  

0.0286 0.0264
( ) ( ) 0.2 ( )

1 1
z t x t w t

 
  
 

                                     (32) 

where ( )w t  is white noise with mean 0 and variance 1.   

The tracking performance of the two filters under the two compensators with 0.5  as 

shown in Figure 1-2. The corresponding filtering error variances are shown in Fig 3. From 

Figure 1-3, we see that the filter under hold-input compensator has the better accuracy 

than the one under zero-input compensator.  
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Figure 1. The Linear Filter under Hold-input Mechanism with 0.5   

 

Figure 2. The Linear Filter under Zero-input Mechanism with 0.5   

  

Figure 3. Filtering Error variances under the Two Compensation 
Mechanisms with 0.5   

To further compare the performance of the two filters, the filtering error variances with 

a low arrival rate 0.1   are shown in Figure 4. It can be seen that the zero-input 

mechanism performs better than the hold-input mechanism. The steady-state values of the 

filtering error variances of the two mechanisms with respect to different arrival rates 

0.1 1   are shown in Figure 5. It can be concluded that neither of the two compensators 

always outperforms the other. 
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Figure 4. Filtering Error Variances under the Two Compensation 
Mechanisms with 0.1   

 

Figure 5. Filtering Error Variances under the two Compensation 
Mechanisms with different Arrival Rates 0.1 1   

Example 2: Consider an uninterruptible power system (UPS) with 1 KVA as in [17]. 

The corresponding direct-time parameter matrices are given as follows and all other 

variables are the same as example 1. 

0.9226 0.6330 0

1 0 0

0 1 0



 
 


 
  

,

0.5

0

0.2



 
 


 
  

,
  23.738 20.287 0H                 (33) 

The comparison curves under the two compensators are shown in Figure 7-8. It also 

can be concluded from Figure 7-8 that neither of the two compensation mechanisms can 

be claimed to be superior to the other. 
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Figure 7. Filtering Error Variances under the Two Compensation 
Mechanisms with different Arrival Rates 0.1 1   

 

 

Figure 8. Filtering Error Variances under the Two Compensation 
Mechanisms with 0.9   
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5. Conclusion 

In this article, the compensation problem of the optimal linear filter for system with 

random packet dropouts is investigated. The hold-input and the zero-input compensators 

are used to design the filters in the linear minimum variance sense, respectively. The 

comparison of the filtering performance of the two filters is given in simulation example 

section. It can be concluded from the simulation that they are all suboptimal and neither 

of the two compensators always outperforms the other. Hence, it is necessary to design an 

optimal compensator. This is also a research topic in the future. 
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