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Abstract 

With the improvement of the performance of the embedded processor, the real-time 

network video monitoring system based on embedded technology becomes a developing 

direction of the network video with its low price and portability. In this paper, software 

and hardware co-design method is adopted to design an embedded system.  ARM of the 

Zynq chip is responsible for embedded system structures and high definition video 

processing, and FPGA is used to design other logic and hardware expansion. Compared 

with the traditional network video monitoring technology, the embedded network video 

monitoring technology based on Zynq not only improves the quality of the image, but also 

has better real-time performance and scalability. 
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1. Introduction 

With the rapid development of video monitoring market, digital monitoring has 

become the mainstream, and network, personalized and intelligent will be an 

important development trend in the future video monitoring market. However, the 

network condition of video monitoring network based on streaming media 

transmission technology is higher, and the fixed monitoring cost is too high . So it 

can not be popularized in large area [1-3]. It is an urgent problem of modern 

monitoring technology that how to combine the video monitoring with the Internet. 

On the other hand, ARM9 and ARM11 are mostly used for the current video 

monitoring system. These hardware peripherals of micro controller have been fixed, 

which is not conducive to the user to expand and upgrade the hardware. The multi 

chip combination solution of ARM and FPGA will not only lead to high cost of the 

system, but also cause the waste of system resources.   Therefore, the single chip 

solution is needed, and this chip is integrated with ARM and hardware extensibility. 

That is the case with the Xilinx Zynq-7000 family, all programmable SoC that 

includes a dual-core ARM Cortex-A9 processor and a 28nm FPGA. The Zynq 

comprises two sections: the Processing System (PS), and the Programmable Logic 

(PL). These can be used independently or together, and in fact the power circuitry is 

configured with separate domains for each. However, the most compelling use 

model for Zynq is when both of its constituent parts are used in conjunction, and 

therefore it is important to appreciate the structure of both sections, as well as the 

interfaces between them.  This means that the processor and logic can each be used for 

what they do best, without the overhead of interfacing between two physically separate 

devices. 

The paper is structured as follows: In Section 2, we introduce Zynq-7000 All 

Programmable SoC. Section 3 discusses embedded network video monitoring system 

based on Zynq, which are the main contribution of this work. In Section IV, testing and 

verification of the monitoring system is completed. Finally, Section 5 summarizes the 

main conclusions of this work. 
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2. Zynq-7000 All Programmable SoC 

The Zynq-7000 is based on the Xilinx All Programmable SoC architecture , which 

is shown in Figure 1. These products integrate a feature-rich dual-core ARM Cortex-

A9 based PS and PL in a single device[4-5]. The ARM Cortex-A9 CPUs are the 

heart of the PS and also include on-chip memory, external memory interfaces, and a 

rich set of peripheral connectivity interfaces. The Zynq-7000 architecture enables 

implementation of custom logic in the PL and custom software in the PS. It allows for the 

realization of unique and differentiated system functions. The architecture is completed 

by industry standard AXI interfaces, which provide high bandwidth, low latency 

connections between the two parts of the device. This means that the processor and logic 

can each be used for what they do best, without the overhead of interfacing between two 

physically separate devices. 

 

 

Figure 1. Zynq-7000 System Structure Block Diagram 

The application processing unit (APU) consists of two ARM Cortex-A9 processor 

with a snoop control unit (SCU), which is responsible for maintaining the cache 

coherency between the two processors. Each processor has its own 32 KB level-one 

(L1) instruction and data caches, memory management unit (MMU), and separate 

media processing engine (NEON). L1 caches include two parts: instruction-side 

cache (I-Cache) and data-side cache (D-Cache). I-Cache is responsible for providing 

an instruction stream to the Cortex-A9 processor. D-Cache is responsible for 

holding the data used by the Cortex-A9 processor. The MMU in the ARM 

architecture involves both memory protection and address translation. The MMU 

works closely with the L1 and L2 memory systems in the process of translating 

virtual addresses to physical addresses. NEON is co-processor and extends the 

Cortex-A9 to provide support for the ARM v7 advanced single instruction multiple 

data and vector floating-point instruction sets. 

The PL is derived from Xilinx 7 series FPGA technology. Advanced high-

performance FPGA logic based on real 6-input lookup table (LUT) technology is 

used to distribute memory. The PL includes many different types of resources 

including configurable logic blocks, port and width configurable block RAM, DSP 

slices with a 25×18 multiplier, 48-bit accumulator and pre-adder, a user 

configurable analog to digital converter, clock management. 
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3. Embedded Network Video Monitoring System 

The whole system design is divided into three steps. First, the Linux operating system 

is ported to the Zedborad. Secondly, V4L2 read the camera device data and complete the 

video API interface. Finally, server and client achieve data communication using the TCP 

protocol.  

 

3.1. Hardware System Structure 

The whole video monitoring system mainly includes CMOS camera OV5640, 

Zedborad, LCD, PC and others peripherals [6][7]. The system block diagram is showed as 

Figure 2. Client / server structure is adopted by the system. The video data acquired by 

the remote collection terminal is transmitted to the local client through the network, and 

the display and analysis of the alarm are carried out in real time. 

 

Remote  Acquisition Terminal 
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Local Display System

Internet
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Figure 2. Embedded Network Video Monitoring System Block Diagram 

The ZedBoard is an evaluation and development board based on the Xilinx Zynq-7000 

Extensible Processing Platform. Combining a dual Corex-A9 Processing System (PS) 

with 85,000 Series-7 Programmable Logic (PL) cells, it applies special ways to make it 

suitable for video processing. Omni Vision's OV5640 is used here. It incorporates a 10 bit 

A/D converter, corresponding to data output interface [0:9]. The output image data format 

can be 10 bit raw RGB or 8 bit RGB/ YCbCr through internal DSP processing. 

Peripherals part mainly includes LCD and touch screen interface circuit, JTAG debugging 

circuit, reset circuit, the power supply circuit, RS232 serial interface circuit and so on. 

 

3.2. Linux Operating System Porting 

Embedded Linux is the use of a Linux operating system in embedded systems. Unlike 

desktop and server versions of Linux, embedded versions of Linux are designed for 

devices with relatively limited resources. The ARM Cortex-A9 processor used in Xilinx 

Zynq All Programmable SoCs support embedded Linux. In order to use the ZedBoard as a 

desktop computer with a monitor, keyboard and mouse, the following items are required: 

• A monitor capable of displaying VESA-compliant 1024x768 @ 60Hz  

• An analog VGA cable for the monitor 

• A USB keyboard 

• A USB mouse 

• A USB hub 

Detailed Linux system migration process steps can be referred to the literature [8]. 
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3.3. The Basic Principle of V4L2 

V4L is a range of interface functions provided by Linux for video devices applications, 

the image data can be read out from video equipment by using API functions [9]. V4L2 is 

an upgraded version of V4L, which is used to capture images, video and audio data API 

interface under the Linux operating system. V4L2 specification not only defines the 

common API, image format, input method, but also defines a series of interfaces of the 

Linux kernel driver processing video information. 

In the Linux system, all the peripherals are seen as a special file, which is called the 

device file. Video equipment is also a device file, which can be read and written like other 

ordinary files. V4L2 supports two ways to capture images: memory mapping and direct 

reading. The first one is mainly used for the collection of continuous video data, while the 

second is commonly used in static image data acquisition. Collecting video data of 

application program by the V4L2 interface is divided into 5 steps: 

(a)  Opening the video equipment file to initialize the video capture parameters. 

(b) Apply a number of video capture frame buffer, and map the frame buffer from the 

kernel to the user space. 

(c) Start video capture. 

(d) Driving video data acquisition, video capture application accessing to video data in 

the frame buffer, and the cycle of continuous video data acquisition 

(e) Stop video capture, and shut down the device file. 

The flow chart of image acquisition based on V4L2 is as Figure 3. 
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Figure 3. Flow Chart of Image Acquisition via V4L2 

In the process of obtaining video data by the V4L2 interface, the interface function 

ioctl( ) is frequently used. ioctl( ) is a powerful function. It can control the I/O channels of 
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equipment, set the format of video and frame, and also can inquiry current device 

properties. Main ioctl function commands are shown as Table 1. V4L2 defines a number 

of important data structures in the header file. In the process of collecting images, the 

operation of these data is used to obtain the data of the image. Table 2 gives the 

explanation of the structure of V4L2 and its function. 

Table 1. ioctl( ) Function Command 

ioctl Command Function 

VIDIOC_CROPCAP 
video information of cutting and 

scaling capabilities 

VIDIOC_G_CROP 

VIDIOC_S_CROP 

read or set the rectangular area 

currently cropping 

VIDIOC_G_FMT 

VIDIOC_S_FMT 

VIDIOC_TRY_FMT 

read or set data format and format 

VIDIOC_G_STD 

VIDIOC_S_STD 

inquiry or choose video standards 

currently input 

VIDIOC_QBUF 

VIDIOC_DQBUF 

read data from buffers or put data 

back to buffer sequence 

VIDIOC_QUERYCAP query device attribute 

Table 2. Commonly Structures and Functions 

Structure     name Function 

v4l2_requestbuffers  application cache area data of V4L2 

v4l2_capability capacity type description of V4L2 

v4l2_standard video format type of V4L2 

v4l2_format frame format type of V4L2 

v4l2_buffer buffer data structure of V4L2 

v4l2_queryctrl control structure of query of V4L2 

v4l2_control structure of control value of V4L2 

 

3.4. TCP Network Programming Based on QT 

Transmission Control Protocol (TCP) is a basic network protocol for data transmission, 

which is the basis of many Internet protocols. TCP is a reliable protocol for connection 

and data flow. That is to say, it can make the data on a computer error free to send to 

other computers on the network. Therefore, when a large amount of data is transferred, 

the TCP protocol should be selected. TCP protocol programming generally uses the 

server / client mode [10]. 

QT provides a QtNetwork module for network programming, and the module provides 

the TCP network programming for the QTcpSocket class and QTcpServer class [11]. The 

QTcpSocket class is used to create a TCP connection and data flow exchange. The 

QTcpServer class is used to write the server program. Figure 4 shows the client / server 

model for network communications 
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Figure 4. QT Network Programming Block Diagram  

A TCP connection must be established to a remote host and port before any data 

transfer can begin. Once the connection has been established, the IP address and port of 

the peer are available through QTcpSocket::peerAddress() and QTcpSocket::peerPort(). 

At any time, the peer can close the connection, and data transfer will then stop 

immediately. QTcpSocket works asynchronously and emits signals to report status 

changes and errors, just like QNetworkAccessManager and QFtp. It relies on the event 

loop to detect incoming data and to automatically flush outgoing data. You can write data 

to the socket using QTcpSocket::write(), and read data using QTcpSocket::read(). 

QTcpSocket represents two independent streams of data: one for reading and one for 

writing. 

Since QTcpSocket inherits QIODevice, you can use it with QTextStream and 

QDataStream. When reading from a QTcpSocket, you must make sure that enough data is 

available by calling QTcpSocket::bytesAvailable() beforehand. If you need to handle 

incoming TCP connections (e.g., in a server application), use the QTcpServer class. Call 

QTcpServer::listen() to set up the server, and connect to the QTcpServer::newConnection() 

signal, which is emitted once for every client that connects. In your slot, call 

QTcpServer::nextPendingConnection() to accept the connection and use the returned 

QTcpSocket to communicate with the client. 

Although most of its functions work asynchronously, it's possible to use QTcpSocket 

synchronously (i.e., blocking). To get blocking behavior, call QTcpSocket's waitFor...() 

functions; these suspend the calling thread until a signal has been emitted. For example, 

after calling the non-blocking QTcpSocket::connectToHost() function, call 

QTcpSocket::waitForConnected() to block the thread until the connected() signal has 

been emitted. 

Synchronous sockets often lead to code with a simpler flow of control. The main 

disadvantage of the waitFor...() approach is that events won't be processed while a 

waitFor...() function is blocking. If used in the GUI thread, this might freeze the 

application's user interface. For this reason, we recommend that you use synchronous 

sockets only in non-GUI threads. When used synchronously, QTcpSocket doesn't require 

an event loop. 

 

4. System Testing and Verification 

The testing and verification of the whole video monitoring system is divided into two 

parts: off-line testing and networking testing. 

In order to off-line testing, the server and the client are put on a computer test. First, 

connect the USB camera to your computer, and run the server program. After that, the 
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client program is run. Enter the host name and port number, click the connection button. 

The captured video is displayed on the LCD. Program running results are shown in Figure 

5. 

 

 

Figure 5. The Testing Results of Video Monitoring System 

Using SD production system mirror, ZedBrod is set to SD boot. ZedBrod is used as a 

server, and the camera is connected to the board. The server and the client machine IP is 

set in the same segment. The client application is executed. At the client interface, the IP 

address and port number of the board are entered. When you click the connect button, the 

video captured by the camera on the board is transferred to the client, which can be seen 

in Figure 6. 

 

 

Figure 6. The Testing Results of Video Monitoring Network Display 
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5. Conclusion 

The real-time network video monitoring system based on embedded technology is very 

important and becomes a developing direction of the network video with its low price and 

portability. How to expand the hardware design and software application in the case of 

meeting the design requirements has become a core issue of modern video monitoring 

design. Zynq integrate a feature-rich dual-core ARM Cortex-A9 based PS and PL in a 

single device. This means that the processor and logic can each be used for what they do 

best, without the overhead of interfacing between two physically separate devices. In this 

paper, ARM of the Zynq chip is responsible for embedded system structures and high 

definition video processing, and FPGA is used to design other logic and hardware 

expansion. Testing results show that the embedded network video monitoring technology 

based on Zynq not only improves the quality of the image, but also has better real-time 

performance and scalability. 
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