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Abstract 

Previous studies of aerosol optical thickness (AOT) estimations were generally based 

on observations from a single satellite sensor. Due to the limited observations from one 

instrument, the observations yielded AOT estimations with a system bias. In this paper, 

we combined two heterogeneous data sources, Moderate Resolution Imaging 

Spectroradiometer (MODIS) and Cloud-Aerosol Lidar with Orthogonal Polarization 

(CALIOP), together and proposed collaborative regression models to achieve more 

accurate AOT estimations than a single sensor does. These two independent remote 

sensors in the A-train satellite constellation both provide global AOT retrievals and they 

scan the same location on the Earth surface within a two-minute interval. However, the 

two remote sensors have different design principles respectively and their heterogeneous 

observation data streams pose challenges for information fusion. In our study, we 

proposed two types of heterogeneous collaborative regression approaches. One type of 

collaborative regression approach fuses information in a feature level. The other type of 

collaborative approach combines information in a model level. In our study, in each level, 

we apply a linear regression collaboration model and a neural network collaboration 

model. The proposed approaches are evaluated based on global observation data from 

MODIS and CALIOP during April 2, 2009 and April 1, 2011. The encouraging 

experimental results show that the regression approach collaborating in a model level 

achieves significantly more accurate AOT estimations than the results from the 

collaborative regression approach in a feature level. It also obtains significantly superior 

results to the deterministic AOT retrievals from any single satellite sensor. 

 

Keywords: CALIOP, collaborative regression, linear regression, MODIS, neural 

network 

 

1. Introduction 

A key challenge for environmental observation satellite is inferring atmosphere 

parameters. One of the most important parameters is the aerosol optical thickness (AOT). 

It measures the degree to which aerosols prevent sun light passes through a column of 

atmosphere. AOT is important to study the Earth's radiation balance, environment 

protection and climate change. Traditional approaches of estimating AOT uses radiance 

data from a single satellite sensor.  Due to the limited observations from one instrument, 

the observations yielded AOT estimations with a system bias [1-3].  

In this paper, we aim to design a collaborative regression approach for improving AOT 

estimation accuracy by using multiple satellite sensor observations in a satellite 

constellation. Specifically, the A-train satellite constellation consists of multiple 

observation satellites running in a sun-synchronous orbit. They are spaced a few minutes 

apart from each other and all provide remote sensing observations of the Earth‘s 

atmosphere. MODIS (Moderate Resolution Imaging Spectroradiometer) and CALIOP 

(Cloud-Aerosol Lidar with Orthogonal Polarization) are two independent remote sensors 

aboard satellite Aqua and CALIPSO respectively in the A-train satellite constellation. 
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They both globally measure AOTs by deterministic approaches [4-9]. Especially, MODIS 

and CALIOP scan the same location on the Earth surface within a two-minute interval. 

The spatial-temporal synchronization provides us chance to combine the observation 

datasets together and make more accurate AOT estimations. 

The challenge is that MODIS and CALIOP are designed with different principles and 

provide heterogeneous data streams. MODIS observes Earth from polar orbit in 36 

wavelength bands ranging from 0.415μm to 14.5μm. Its deterministic algorithm separates 

the Earth surface from clouds by using 2.1μm wavelength band observations and directly 

derives AOTs with a forward simulation model (The estimations from a deterministic 

algorithm are called AOT retrievals). CALIOP, however, uses backscatter LiDAR signals 

to estimate the aerosol layer optical thicknesses and total column optical thickness. The 

different observations from the two sensors can complement with each other. Thereby, it 

will be very useful to build an enhanced AOT estimator by combining the two sets of 

heterogeneous remote sensing data. 

Researchers worldwide have made efforts to estimate AOT by satellite observation 

attributes. Previous studies generally estimate AOT by using radiance data from a single 

remote sensor. Goo Jun et al. proposed a gaussian process regression approach to predict 

aerosol optical thickness from MODIS multispectral images [10]. Jhoon Kim et al. 

improved aerosol optical depth retrieval over Hong Kong from a geostationary ocean 

color imager satellite observations by using a critical reflectance method with background 

optical depth correction [11]. KostaRistovski et al. built a neural network model for 

predicting aerosol optical thickness based on MODIS observations and further analyzed 

its uncertainty [12]. Zhuang Wang et al. proposed a mixture model for multiple instance 

regression to estimate AOT and test the model on MISR and MODIS data independently 

[13]. Chul Eddy Chung globally estimate the anthropogenic aerosol direct forcing derived 

from MODIS information [14]. In addition, some research has compared CALIOP AOT 

with MODIS AOT, and found that they have different systematic biases due to different 

observation principles [15-17]. However, few researches have been performed to build a 

more accurate AOT estimator using heterogeneous satellite datasets observed from two or 

more remote sensors in a satellite constellation. 

In this study, we proposed two collaborative regression approaches for AOT retrievals 

by fusion heterogeneous information: one in a feature level and the other in a model level. 

Experimental results based on MODIS, CALIOP data from April 2, 2009 to April 1, 2011 

observations show that for the two heterogeneous sources, the collaborative regression 

approach in a model level outperforms the collaborative regression approach in a feature 

level. The model level collaboration also achieves significantly better AOT estimation 

accuracy than the AOT retrieval results from a single instrument. 

The paper is organized as follows. Section 2 describes the data sets and accuracy 

measures; Section 3 proposes heterogeneous collaborative regression models; Section 4 

compares AOT retrievals and proposed regression approaches collaborating in a feature 

level and in a model level based on a MODIS-CALIOP-AERONET synchronization 

dataset; Section 5 draws the conclusion of the collaborative AOT regression approach by 

using two remote sensors. 

 

2. Data Sets and Accuracy Measures 

In remote sensing field, the ground-based sun photometers AOT measures from 

Aerosol Robotic Network (AERONET) are generally used as the ―ground truth‖ in most 

validation of satellite AOT retrievals. Thereby, to evaluate the accuracy of proposed 

heterogeneous collaborative regression approaches, we collected the spatial-temporal 

synchronized data among MODIS, CALIOP and AERONET from April 2, 2009 to April 

1, 2011. The three datasets are compared in visible wavelength 550nm. 
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2.1. AERONET Data 

AERONET is a federation of ground-based remote sensing aerosol networks over 

multiple hundreds of global observation sites collaborated by worldwide national 

agencies, institutes, universities, etc. It provides a continuous and readily accessible 

public AOT database for validation of satellite retrievals [18, 19].  

In our experiments, we collected cloud-screened and quality-assured Level 2.0 

AERONET data over 197 observation sites globally between April 2, 2009 and April 1, 

2011. These sites vary on different surface types, including land, coast, desert and marine.  

 

2.2. MODIS Data 

MODIS is a key remote sensing instrument aboard the satellite Aqua and it views the 

entire Earth's surface every 1 to 2 days. MODIS acquires remote sensing data in 36 

spectral bands [20].  

In the experiments, we used MODIS/Aqua Collection 005 product suites between April 

2, 2009 and April 1, 2011, including level 2 aerosol product MYD04_L2, calibrated 

radiance data MYD02SSH and cloud mask product MYD35. The three MODIS datasets 

are collocated in a spatial coincidence square region of size 40km×40km surrounding an 

AERONET site. 

 

2.3. CALIOP Data 

CALIOP combines an active LiDAR remote sensing instrument with passive infrared 

and visible imagers to probe the vertical structure and properties of thin clouds and 

aerosols over the globe [16, 21].  

We collected CALIOP level 2 version 3 cloud-free aerosol layer products around 

AERONET sites by including those observations with quality control flag QC=0.  

 

2.4. Spatial-Temporal Synchronization Data 

MODIS, CALIOP and AERONET datasets are synchronized by similar spatial-

temporal coincidence criteria as Ichoku et al. (2002). Spatially, MODIS or CALIOP 

radiance attributes are averaged in a 40km× 40km box with an AERONET station in the 

center. Temporally, AERONET observations are averaged within ±30 minutes of MODIS 

overpass.  

By the above coincidence criteria, we collected 6351 records covering 197 AERONET 

sites globally in the MODIS-AERONET synchronization data. 486 collocated data points 

are found covering 82 AERONET sites globally in the CALIOP-AERONET 

synchronization data. The MODIS-CALIOP-AERONET synchronization data contains 

322 collocated data records covering 65 global AERONET sites. 

 

2.5. Accuracy Measures 

The accuracy of our heterogeneous collaborative regression models is measured by 

correlation coefficient (Corr), R
2
, mean square error (MSE) and percentage of outliers 

(Outlier%). The equations of the four measures are listed in equation (1) - (4). E_AOT 

denotes the AOT estimation of a regression model. A_AOT denotes AERONET AOT. N 

is the number of AOT retrievals. AOTE _ , AOTA _  present the average of AOT 

estimations and AERONET AOTs respectively. The std(A_AOT) denotes the standard 

derivation of AERONET AOT retrievals. 
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3. Heterogeneous Collaborative Regression Models 

To obtain the full benefits from heterogeneous sensors, we apply collaborative 

regression approaches by fusion of information either in a feature level or in a model 

level.  

In a feature level, we combine the spatial-temporal coincidence features from 

heterogeneous sensors together into a record and next build a regression model.  Suppose 

the features in MODIS are described as <MF1,MF2,……, MFp>, p indicates the number of 

informative features which MODIS have. The features in CALIOP are listed as <CF1, 

CF2, ……,CFq>, q  suggests the number of informative features which CALIOP have.  By 

collaborative regression in a feature level, we would like to build a model f, where 

),...,,,,...,,( qp CFCFCFMFMFMFfAOT 2121                        (5) 

In a model level, we apply regression on AOT retrievals from each individual sensor. 

mAOT  denotes the AOT retrievals from MODIS, cAOT  is the spatial-temporal 

synchronization AOT retrievals from CALIOP.   By model collaboration, we combine the 

two deterministic model outputs together in the following equation,  

),( cm AOTAOTfAOT                                                     (6) 

For the collaborative regression either in a feature level or in a model level, we explore 

both a linear regression estimator and a neural network estimator. For measuring its 

accuracy of each model, we apply cross-validation to build a separate training set and a 

test set for each model based on the MODIS-CALIOP-AERONET synchronization data.  

 

3.1. Collaborative Linear Regression in a Feature Level (CLRFL) 

With a linear regression method, the equation (5) can be rewritten as, 



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
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i

ii CFMFAOT
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0                                      (7) 

Since many observation features are collected from MODIS and CALIOP, it will 

increase the complexity of computing a solution. Thereby, we firstly apply linear 

regression on MODIS features and CALIOP features respectively. Only those features 

with significant t-values will be kept for collaborative regression in equation (7). 
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3.2. Collaborative Neural Network Regression in a Feature Level(CNNRFL) 

In this study, we build a feed-forward neural network (NN) with one hidden layer of 

neurons. It is illustrated in Figure 1. The network inputs include the attributes from both 

MODIS and CALIOP observations. The hidden layer consists of r hidden neurons, and 

the output is the AOT estimation.  

The connection weights between nodes across different layers are learnt by back 

propagation with a gradient descent method.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Neural Network Structure for CNNRFL 

In our pilot study, we tried to practically apply principle component analysis (PCA) 

transformation to reduce dimension before the neural network training stage [22]. The 

experimental accuracy drops and we gave up the PCA preprocessing before a neural 

network modeling. 

 

3.3. Collaborative Linear Regression in a Model Level (CLRML) 

By comparing MODIS and CALIOP AOT retrievals with AERONET AOT records, 

we observe that the two satellite datasets show different system bias due to different 

design principles. In this heterogeneous context, we intuitively propose a collaborative 

regression model by linearly correcting their bias in equation (8). 

cm AOTAOTAOT  210                                    (8) 

 

3.4. Collaborative Neural Network Regression in a Model Level (CNNRML) 

For a model level collaboration, we would like to build a feed-forward neural network 

(NN) with one hidden layer of neurons (Figure 2). It is similar to the neural network 

structure illustrated in Figure 1. The difference is that the input layer here includes only 

two attributes: the MODIS AOT retrievals M_AOT and the CALIOP AOT retrievals 

C_AOT. 

 

4. Experimental Results 
 

4.1. Experimental Settings and Optimization 

The spatial-temporal synchronized data among MODIS, CALIOP and AERONET 

from April 2, 2009 to April 1, 2011 is used in our experiments. The learning regression 

target is the AOT retrieved by AERONET. For the collaborative regression in a feature 

level, the driving attributes collected from MODIS and CALIOP are used as learning 

variables. They are designed according to MODIS/CALIOP data descriptions and our 

previous research results [23, 24]. The detailed name and explanation of all driving 
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attributes are listed in Table 1. For the collaborative regression in a model level, the AOT 

retrievals by MODIS and CALIOP are used as inputs.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Neural Network Structure for CNNRML 

For all methods, we apply 10-fold cross validation to access their accuracy. That is, the 

MODIS-CALIOP-AERONET synchronization dataset is randomly partitioned into 10 

equal sized subsets. Among them, 9 subsets are used as training data for constructing a 

model for a method, and the remaining single subset is retained as the validation data for 

testing the method. The cross-validation process is then repeated 10 times, with each of 

the 10 subsets used exactly once as the validation data. The 10 test results then are 

combined to produce a single estimation. For each method, we repeated the 10-fold cross 

validation for 10 rounds. In each round, the synchronization dataset is randomly 

partitioned. All the results reported below are the average accuracy from 10 rounds 

experiments.  

Table 1. Driving Attributes from MODIS and CALIOP 

Source Attribute 

Index 

Name and Explanation 

MODIS 1 AOT retrieval by MODIS 

2 NDVISwir– a parameter suggesting surface greenness 

3-9 Surface Reflectance at 7 different wavelength 

10 Solar zenith angle 

11 Sensor zenith angle 

12 Scattering angle  

CALIOP 13 AOT retrieval by CALIOP 

14 IGBP surface type 

15 Aerosol subtype analyzed by CALIOP 

16 Solar zenith angle 

17 Scattering angle 

18 DEM surface elevation 

19-20 The layer effective multiple scattering factors at 

532nm and 1064nm wavelength 

21-22 Pressure at the geometric midpoint of the 

thickest/thinnest layer  

23-24 Temperature at the layer base altitude for the 

thickest/thinnest layer  

25-26 Layer top altitude for the thickest/thinnest layer 

 

For linear regression in a feature level or in a model level, we apply a linear regression 

method with least squares fit to construct a model.  

…… 

Input Layer

Hidden Layer

Output Layer

M_AOT C_AOT

AOT
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For collaborative neural network regression in a feature level, we explored different 

types of neural transfer functions in the hidden layer and the output layer. By experiments, 

the best functions for the two layers are both set to ‗purelin‘. Table 2 summarizes the 

achieved accuracy for different number of hidden nodes in a neural network. By the four 

accuracy measures, the neural network with 6 hidden nodes shows to be an appropriate 

choice. 

Table 2. Optimization of Neural Network for CNNRFL 

No. of Hidden 

Nodes 

Corr R
2
     MS

E 

Outlier% 

3 0.759 0.557 0.01

4 

7.27% 

6 0.807 0.651 0.01

1 

7.14% 

9 0.776 0.597 0.01

3 

7.82% 

12 0.759 0.571 0.01

4 

7.57% 

15 0.738 0.540 0.01

5 

7.05% 

18 0.670 0.112 0.03

1 

8.38% 

 

Similarly, we optimized the collaborative neural network in a model level. We 

practically set both transfer functions in the two layers to ‗purelin‘ by experiments. The 

regression accuracies with different number of hidden nodes are reported in Table 3. It 

shows the hidden layer with four nodes achieved the best performance. 

Table 3. Optimization of Neural Network for CNNRML 

No. of Hidden 

Nodes 

Corr R
2
     MSE Outlier% 

1 0.818 0.652 0.011 1.05% 

2 0.825 0.670 0.011 0.87% 

3 0.839 0.699 0.010 0.59% 

4 0.848 0.714 0.009 0.31% 

5 0.836 0.689 0.010 0.66% 

6 0.827 0.677 0.010 0.80% 

 

 

4.2. Experimental Results 

For comparing the collaborative regression results with deterministic retrievals from a 

single sensor, we illustrate their scatterplots in Figure 3. Figure 3(a) and Figure 3(b) 

intuitively present the comparisons between AERONET AOT with AOT retrievals from 

MODIS and CALIOP respectively. They show MODIS AOT and CALIOP AOT both 

have two retrieval outliers with AOT>1.4, though all AERONET AOT are less than 1.2. 

We checked the outliers‘ details. The two outliers for MODIS are a point with MODIS 

AOT=2.461, CALIOP AOT=0.860 and AERONET AOT=1.065, and another point with 

MODIS AOT=1.455, CALIOP AOT=0.536 and AERONET AOT=0.996. The two 

outliers for CALIOP are a point with CALIOP AOT=2.178, MODIS AOT=0.438 and 

AERONET AOT=0.663, and another point with CALIOP AOT=1.804, MODIS 

AOT=0.901 and AERONET AOT=0.826. All four outliers suggest that MODIS and 
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CALIOP derive outliers significantly differently. When one overestimates outlier AOT, 

the other underestimates its AOT. The differences show that, potentially we can combine 

both sensor measurements together to provide more robust and accurate AOT retrievals. 

 

(a)                                                  (b) 

 
(c)                                                        (d) 

 
(e)                                                    (f) 

Figure 3. AOT Regression Scatterplots 
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Figure 3(c) and Figure 3(d) show the collaborative regression results in a feature level 

by a linear regression method and a neural network method respectively. Figure 3(e) and 

3(f) present the collaborative regression results in a model level by the two approaches. 

They suggest clearly that all four collaborative methods have produced the regression 

results without outliers (AOT>1.4). It suggests that the two sensors can compensate with 

each other: when one have bad performance, the other one can excel. This practically 

proves one advantage of collaborative models. Specifically, multiple points‘ AOTs are 

estimated by a linear regression model in a feature level with negative values. By 

environment science theory, they are truncated with a minimum value 0 in Figure 3(c).  

Visually from the figure comparison, we see that the AOT estimations collaborated in a 

model level are more closely to the minus diagonal line than collaboration in a feature 

level.  This can be explained that the remote sensing attributes collected by the two 

sensors are heterogeneous. Meanwhile, the deterministic AOT retrievals from MODIS 

and CALIOP have different system bias, which can be effectively reduced by 

collaboration in a model level. Thereby, a feature level combination cannot easily lead to 

better results than model level fusion.  

The detailed regression results are summarized in Table 4. From the results, we see that 

both collaborative regression methods in a feature level can achieve the similar AOT 

retrieval accuracy as MODIS or CALIOP. The two collaborative regression approaches in 

a model level can achieve significantly more accurate AOT retrievals in all four measures.  

Hence, both visualization results and measurement results confirm the effectiveness of 

collaboration models. From atmospheric theory, the physical and chemical processes 

involved in the lower atmosphere and multiple surface types in the Earth are very 

complicated, one satellite sensor designed by some specific theories may be strong in 

some cases for AOT estimations, but weak in other cases. A collaboration model can use 

data-driven approach to smooth the weakness and make the overall model more accurate. 

Table 4. AOT Retrieval Accuracy by Different Methods 

Method Corr R
2
     MSE Outlier% 

MODIS AOT 0.804 0.647 0.019 2.17% 

CALIOP AOT 0.719 0.517 0.024 2.80% 

Collaborative 

Regression in 

a Feature 

Level 

CLRFL 0.779 0.605 0.013 0.93% 

CNNRFL 0.807 0.651 0.011 7.14% 

Collaborative 

Regression in 

a Model 

Level 

CLRML 0.838 0.691 0.010 0.62% 

CNNRML 0.848 0.714 0.009 0.31% 

 

5. Conclusions 

In this paper, we explored two types of collaborative regression approaches by utilizing 

heterogeneous data sources MODIS and CALIOP in a satellite constellation to improve 

AOT retrieval accuracy. One type of collaborative regression approach fuses information 

in a feature level. It aims to integrate informative and potentially complement observation 

features from two sources for regression. The other type of approach combines 

heterogeneous information in a model level. It supposes MODIS and CALIOP have 

powerful deterministic AOT retrievals, but they have different system bias. The model 

level combination can complement their system bias and achieve better regression results. 

In each level of collaboration, we apply a linear regression method and a neural network 

regression method. 
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We evaluated the two types of collaborative regression approaches in the context of 

MODIS, CALIOP remote sensing data globally from April 2, 2009 to April 1, 2011. In 

our experiments, both AOT regression methods in a model level collaboration were 

clearly superior to both AOT retrievals from a single observation sensor and collaborative 

AOT regression in a feature level. The most accurate results were obtained through a 

neural network regression in a model level collaboration. It achieves MSE=0.009. In the 

feature level collaboration, a neural network regression is more accurate than a linear 

regression. It obtains AOT regression accuracy with MSE=0.011, 22% bigger than the 

results from a model level neural network collaboration results. For deterministic AOT 

retrievals from a single satellite sensor, MODIS and CALIOP achieves MSE=0.019 and 

MSE=0.024 respectively, which are 111% and 167% larger than the results from a model 

level neural network collaboration. These encouraging results suggest that in the context 

of heterogeneous remote sensing data sources in a satellite constellation, a model level 

collaborative neural network regression approach can significantly improve AOT 

regression accuracy. Exploring the spatial-temporal collaboration of more remote sensors 

in a satellite constellation for further improving AOT regression accuracy is a subject of 

our next steps research. 
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