
International Journal of Future Generation Communication and Networking

Vol. 8, No. 6 (2015), pp. 115-122

http://dx.doi.org/10.14257/ijfgcn.2015.8.6.11

ISSN: 2233-7857 IJFGCN

Copyright ⓒ 2015 SERSC

A Remote File Possession Checking Protocol in a Cloud Storage

Zuojie Deng
1, 2

 and Xiaolan Tan
1

1
School of Computer and Communication, Hunan Institute of

Engineering,Xiangtan, Hunan, 411104, China
2

School of Computer Science and Technology, Huazhong University of Science

and Technology, Wuhan, Hubei, 430074, China

zuojiedeng@gmail.com, xltdby@126.com

Abstract

Outsourcing a file to a remote cloud storage provides several benefits, including

scalability, accessibility, data replication and considerable cost saving. Unfortunately,

when we send a file to a remote cloud storage server, we do not know if this file is intact.

To address this problem, we present a remote file possession checking protocol. In this

protocol, we use three technologies: Firstly, we design a kind of file block tag whose

security is based on the discrete logarithm problem (DLP); secondly, we use probability

checking method to improve its effectiveness; thirdly, we use tag aggregation method to

reduce its communication cost. Our theory analysis and experiment results show that our

protocol is practical and secure.

Keywords: File possession checking, Provable security, DLP, Cloud storage

Nomenclature
pk public key

sk private key

σi tag of file block i

L length of a file block

bi file block i

(b1,...,bm) vector of file block

p,q large primes

ri,u1,u2,h1,h2 random numbers

ZP* multiplicative group of integers modulo p

m number of challenge block

1
k
 security parameter

∏1, ∏2 pseudorandom permutations

K1, k2 keys of pseudorandom permutations ∏1, ∏2

(c1,…cm) vector of pseudorandom coefficient

1. Introduction

With the wide application of information technology, we have stored and

maintained a lot of valuable files, such as documents, emails, photos, videos, and so

on. To share and maintain these files easily, we usually outsource them to some

remote cloud storages. Cloud storage denotes a family of increasingly popular on-

line services for archiving, backup, and even primary storage of files. Amazon's S3

[1] is a well-known example. Using cloud storage to share and store files provides

several benefits, such as scalability, accessibility, data replication and considerable

cost saving [2]. Unfortunately, after we have sent a file to a remote cloud storage

server, we do not know whether this file is intact. In 2008, Amazon's S3 suffers

downtime for several hours, which cause many users unable to access their files

remotely [3]. Moreover, some cloud storage providers only consider their economic

International Journal of Future Generation Communication and Networking

Vol. 8, No. 6 (2015)

116 Copyright ⓒ 2015 SERSC

benefit, they will delete some files that hardly be accessed by their users, to save

their storage space. To check the status of our outsourced files, we can download all

these files from the cloud storage to local disk and check them. However, this

method is not practical, it wastes tremendous network bandwidth. Conventional

integrity checks, for instance, cyclic redundancy check (CRC), is useful to detect

accidental integrity loss. But, these integrity checks cannot detect malicious

integrity attacks. If the cloud storage provider can control the communication

channel, it can replay the CRC of a previous version of a file, different from the

current one.

Remote possession checking protocols have been proposed in the last few years

[4-5]. Using one of such protocols, a cloud provider can convince a user that the

cloud provider has stored his files in a complete and uncorrupted status. However,

the efficiency of all these protocols is low. To address this problem, we present an

efficient remote file possession checking protocol. In this protocol, we use three

technologies: Firstly, we design a kind of file block tag whose security is based on

the discrete logarithm problem (DLP); secondly, we use probability checking

method to improve its effectiveness; thirdly, we use tag aggregation method to

reduce its communication bandwidth cost. We summarize our contribution as

follows:

Firstly, we propose an efficient remote file possession checking protocol based on

DLP, and improve its effectiveness by virtue of using probability checking method

and tag aggregation technology. In the following section, we call it EFPCP for short.

Secondly, we prove that EFPCP is secure from the theory field. Thirdly, we do some

experiments for the EFPCP. The experiment results show that our EFPCP is secure

and practicable.

We organize the rest of the paper as follows. In Section 2, we describe the system

model and the problem. In Section 3, we present an efficient remote file possession

checking protocol. In Section 4, we give some rigorous proofs for the security of

this protocol. In Section 5, we do some experiments for the EFPCP, and the

experiment results are presented here. Finally the conclusions and the future work

are given in Section 6.

2. The System Model and the Problem

The system model is described in Figure 1. There exist three kinds of entities in

the cloud storage system, a cloud storage provider, some users, and a cloud storage

which is made up of some storage servers. The cloud storage provider owns and

manages these cloud storage servers. A user outsources his files to a cloud storage

server first and entrusts the cloud storage provider to maintain his files, then deletes

his files from his local disk. In the subsequent time, the user checks the possession

status of his files remotely.

In our cloud storage system model, the cloud storage provider only considers his

economy benefit, he will delete some file blocks that hardly be accessed by his users

to save his storage space. In the subsequent time, he tries to use some tricks to cheat

his user that he preserves these files intact. In the following section, we regard the

malicious cloud storage provider as an adversary, and his goal is to pass the file

integrity checking without access the file completely. Note that in the following

section, we use the cloud storage provider and cloud storage server interchangeably.

The file possession checking problem can be described formally as follows:

International Journal of Future Generation Communication and Networking

Vol. 8, No. 6 (2015)

Copyright ⓒ 2015 SERSC 117

Cloud storage server

Manage

User

Data flow and Control flow

Cloud storage provider

Figure 1. The Cloud Storage System Model

When a user decides to outsource a file F to the cloud storage, he generates a pair

of public key and private key (pk, sk), and keeps the sk secret, and publish pk

publicly. He uses the private and public key pair to generate some tags of F. We

denote the tags as σi (1≤i≤n), where n=len(F)/L, L is the length of the file block.

Finally, the user sends F and σi (1≤i≤n) to the cloud storage. After that, the user

checks the possession of F. That is to say, the cloud storage server cannot cheat the

user successfully without being found. In this work, we regard all these files as a

collection of blocks. That is, F=b1b2…bn. The length of the blocks is L bytes, which

can be 128 bytes, 256 bytes or 512bytes etc. If the length of the last block doesn’t

equal L, it will be padded with some 0s.

3. A Remote File Possession Checking Protocol

In the previous section, we have defined the remote file possession checking

problem in a cloud storage system. In this section, we design the remote file

possession checking protocol whose security is based on the discrete logarithm

problem (DLP). The protocol consists of the following algorithms:

(1) Keygen (1
l

) → {sk,pk}. This algorithm is run by the user. It takes the security

parameter 1
l

as input and outputs the secure key sk and the public key pk. Its

concrete algorithm steps can be described as follows:

① Let q be a l -bit prime, and p be another large prime such that q|(p-1).

② Select h1 and h2 uniformly at random from zp
*

such that the order of h1 and h2

are q.

③ Select u1, u2 uniformly at random from zp
*

and set 1 2

1 2
m o d

u u

h h h p  .

④ Let sk={(p,k,u1,u2)} and pk={(p,h1,h2,h,g
k
)}

⑤ The coefficient domain C is [0, q] and the block space is B=[0,q]
m

(2) GenTag(sk,bi) →{σi}. This algorithm is run by the user. It takes sk and b i as

input and outputs the verification tag of file block b i(1≤i≤n). For
i

b B , the tag σi is

computed by selecting r i (1≤i≤n) uniformly at random from zq
*
. σi=(xi,yi),

where () m o d
i

r

i
x h p , and m o d

k

i i i
y r b g q   .

(3) Genchal (1
k
)→{k1,k2,m}. This algorithm is run by verifier. In following

section, the verifier denotes the user, the prover denotes the cloud storage server. To

improve its efficiency, we use the probability checking method to select some

challenged blocks. That is to say, to check the possession of file F, the verifier

challenges the cloud server to prove possession of a random subset of blocks of F. It

takes the security parameter 1
k

as input and output k1, k2, and m. The verifier’s

challenge to the cloud server is made up of k1, k2 and m. m is the number of

challenged blocks. k1 is the key of the pseudorandom permutation ∏1 which

determines the indexes of the challenged blocks and k2 is the key of the

International Journal of Future Generation Communication and Networking

Vol. 8, No. 6 (2015)

118 Copyright ⓒ 2015 SERSC

pseudorandom permutation ∏2 which is used to determine some random numbers.

Here k1 and k2 are chosen for each challenge randomly.

(4) GenProof(k1,k2,F,m,σi) →{(x,y,b)}. This algorithm is run by the prover. To

reduce the network bandwidth, we use the tag aggregation method to aggregate the

challenged blocks and tags in the proof. Once the sever receives a challenge, it uses

the pseudorandom permutation ∏1 keyed with k1 to determine the index i of the

challenged blocks, where i=∏1,k1(j) (1≤j≤m), and uses the pseudorandom

permutation ∏2 keyed with k2 to generate these pseudorandom coefficients ci, where

ci=∏2,k2(j) (1≤j≤m). Then the server generates a proof of possession R=(x,y,b) for

these blocks and return it to the challenger, and x,y,b satisfies the following

formulas respectively.

1

1 1
() () m o d

m

i i

i i i i

c r
m mc r c

ii i
x x h h p

 



    (1)

1 1 1 1

() m o d

m m m m

k k

i i i i i i i i i

i i i i

y c y r b g c r c g c b q

   

        (2)

1
m o d

m

i ii
b c b q


  (3)

(5) VerifyProof((k1,k2,x,y,b))→{(‘true’,‘false’)}. Upon receiving the responses

from the sever, the challenger checks if x equals (.)
k

y g b

h
 . If (.)

k
y g b

h
 equals x then it

outputs ‘true’, otherwise it outputs ‘false’. It can be verified that
1

m

i ii

b c b


  matches

the aggregated tag σ because:

1 1 1

1

()

(.)

m m m

k k
i i i i i i

k
i i i

m

i i

i

r c g c b g c b

y g b

r c

h h

h

x

  



 


  








4. Security Analysis

From previous discussion, we know that the cloud storage provider is always

selfish. He only considers his economy benefit; he will delete some file blocks that

are hardly accessed by the user to save his storage space, and tries to use some

tricks to cheat the user that all these files are intact. Hence, the goal of our protocol

is try to catch all these cheating acts which are captured by Theorem 1.

Theorem 1. Under discrete logarithm problem (DLP) is hard, no cloud storage

providers can pass our protocol in polynomial time without access the file

completely.

Proof. The malicious cloud storage provider acts as the prover A and the user acts

as the challenger. We show that no A can win the following security game with a

non-negligible probability.

The security game is described as follows:

Setp1. The challenger runs KeyGen(1
l
) to generate a public-private key pair

(pk,sk), and gives pk to A.

International Journal of Future Generation Communication and Networking

Vol. 8, No. 6 (2015)

Copyright ⓒ 2015 SERSC 119

Setp2. A may adaptively make oracle queries the tag σi of bi. The challenger

computes σi (1 i n ) and returns σi (1 i n ) to A. A keeps a list of blocks and tags:

(b1,…,bn) and (σ1…, σn).

Setp3. A may make oracle queries to the challenger by selecting a vector of

coefficients (c1,c2…cm) and obtains the aggregated tag σ and the aggregated

block
1

m

i ii
c b


 , this can be performed in polynomial many times.

Step4. Finally, A selects a vector of coefficients ĉ = (c1,c2…cm).

Step5. The adversary A wins the game, if verfyproof(pk, b
’
, σ)=’true’, where

'

1

n

i ii
b c b


  and σ= (σ1,...,σm) is the tag vector that corresponds to the block vector

(b1,...,bm) and the coefficient vector ĉ = (c1,...,cm) is provided by the adversary A.

We say the protocol is secure if A can not win the game with a non-negligible

probability in the security parameter l .

As 1

1 1
() () m o di i i

m

i i
i

m mc r c

ii i

c r

x x h h p

 
  


  and the discrete logarithm problem

(DLP) is hard, we know that no adversary can forge 'x that makes 'x equate x in

polynomial time. So we suppose the adversary A can construct
' '

1 1 1 1 1 1
.

i i i i i i m m
b c b c b c b c b c b

   
      

1

m

i ii
c b b


  that passes the verification with

non-negligible probability in polynomial time. Therefore according to our remote

file possession checking protocol. We get 1 (. ') (.)

m
k k

i i
i

c r y g b y g b
x h h h  
   . That is to

say, (. ') (.)
k k

y g b y g b
h h

 
 , then we can get (')

1
k

i i i
g c b b

h


 .

Since
'

1 2
. ()

1 2
(.) 1

k

i i i
c g b bu u

h h


 , and 1 2

1 2
. 1

u u
h h  , we can get '

() 0
k

i i
b b g  . This is to say,

'
b b .

From the previous assumption, we know '
b b , this is contradiction. Therefore,

the adversary A cannot construct '
b b that pass the protocol in polynomial time

without access the file completely. This completes the proof.

5. Experiment

In this section, we evaluate the performance of our remote file possession

checking protocol (EFPCP). We compare the performance of our protocol with that

of the two state-of-the-art protocols [4-5]. We call the protocol in [4] E-PDP, and

call the protocol in [5] PPRDCP. The experiments are running on a PC with an Intel

Pentium Dual E2160 processor clocked at 1.8 GHz and a Linux Fedora operating

system with kernel 2.6.23.1. The RAM of the PC is 2GB. The Disk of the machine

is Western Digital Caviar SE Hard Drive that has 320GB capacity, 7200rpm with 8

MB Cache. We use the OpenSSL[6] cryptographic library (version 0.98g). In all the

experiments, all the experiment data represents the mean of 10 trials.

We first evaluate the space efficiency of our protocols. To offer the same level of

security, we use comparable parameters that offer the same level of security for our

EFPCP, E-PDP and PPRDCP. In our EFPCP, the parameter q is 140-bit and p is

512-bit, the parameters modulus N of E-PDP and PPRDCP both are 1024-bit. The

tag size in our EFPCP is 792 bits, and the tag size in [4-5] is 1024 bits. As the tags

in our protocol is shorter than those in [4-5], the storage-space of our solution is

more efficient than those in [4-5]. We then compare the computation performance of

our EFPCP with those of E-PDP and PPRDCP. Figure 2 shows computation costs of

the client and server when challenge 460 blocks for different file size. The size of

the file blocks in Figure 2 is 4KB. This challenge represents 99% confidence that

less than 1% of the data have been damaged [4]. Our EFPCP protocol outperforms

all the other protocols in the experiment, it decreases the server computation time

International Journal of Future Generation Communication and Networking

Vol. 8, No. 6 (2015)

120 Copyright ⓒ 2015 SERSC

when a number of verifiers are connected to the server that causes enormous

computation overhead over the server, and it also decreases the verifiers’

computation time.

(a) Server Computation Time (b) Verifier Computation Time

Figure 2. Comparison of Computation Performance

6. Conclusion

Currently, cloud storage has become an important storage pattern and users can

outsource their files there. This storage pattern provides several benefits for users,

including scalability and accessibility, and considerable cost saving. It also brings

some security risks to users. In this paper, we have studied the file possession

checking problem. We propose a remote file possession protocol that achieves our

goals. We have showed that our proposed protocol is provably security through

some security analysis. Currently we are still working on improving the efficiency

of our protocol and extending it to support data dynamic. We will use some other

new cipher technology and some useful data structures to extend our protocol.

Acknowledgments

This work was supported in part by a Grant-in-Aid for Science and technology plan

project in Hunan province (No. 2014GK3157, No. 2014FJ3054).

References

[1] “Amazon simple storage service (Amazon S3)”, http://aws.amazon.com/s3/.

[2] M. Armbrust, A. Fox and R. Griffith, “Above the clouds: A berkeley view of cloud computing”,

Technical Report UCB/EECS-2009-28, EECS Department, University of California, Berkeley, (2009).

[3] M. Paul, “Amazon's S3 storage service suffers downtime”, http://www.techrepublic.com/blog/tech-

news/amazons-s3- storage -service-suffers-downtime/2064.

[4] G. Ateniese, R. Burns and R. Curtmola, “Provable data possession at untrusted stores”, Proceedings of

the 14th ACM conference on Computer and communications security(CCS'07), Alexandria, Virginia,

USA, (2007) , pp.598-609.

[5] Z. Hao, S. Zhong and N.H. Yu, “A Privacy-Preserving Remote Data Integrity Checking Protocol with

Data Dynamics and Public Verifiability”, IEEE Trans. Knowl. Data Eng (TKDE), vol. 23, no. 9, (2011),

pp.1432-1437.

[6] “OpenSSL: The Open Source toolkit for SSL/TLS”, www.openssl.org/.

[7] M.A. Shah, M. Baker, J. C. Mogul and R. S. Swaminathan, “Auditing to keep online storage services

honest”, Proceedings of the 11th USENIX workshop on hot topics in operating systems, USENIX

Association, (2007), pp. 1-6.

[8] O. Goldreich, “Foundations of cryptography: Basic applications vol. 2”, Cambridge University Press,

(2004).

[9] G. Ateniese, R. D. Pietro, L. Mancini and G. Tsudik, “Scalable and efficient provable data possession”,

Proceedings of the 4th international conference on Security and privacy in communication networks

(SecureComm '08), ACM,New York, (2008), pp. 1-10.

International Journal of Future Generation Communication and Networking

Vol. 8, No. 6 (2015)

Copyright ⓒ 2015 SERSC 121

[10] W. J. Bolosky, J. R. Douceur, D. Ely and M. Theirmer, “Feasability of a serverless distributed file

system deployed on an existing set of desktop PCs”, Proceedings of the 2000 ACM SIGMETRICS

international conference on Measurement and modeling of computer systems (SIGMETRICS '00), ACM

Press, New York, (2000), pp. 34-43.

[11] P. Maniatis, M. Roussopoulous and T. Giuli, “The LOCKSS peer-to-peer digital preservation system”,

ACM Transactions on computing Systems, vol. 23, no.1, (2005), pp.2-5.

[12] M. Waldman and D. Mazieres, “Tangler: a censorship-resistant publishing system based on document

entanglements”, Proceedings of the 8th ACM conference on Computer and communications security

(CCS '01). ACM Press, New York, (2001), pp. 126-135.

[13] P. S. Kumar and R. Subramanian, “Homomorpic Distributed Verification Protocol for Ensuring Data

Storage Security in Cloud Computing”, Information-An International Interdisciplinary Journal, vol. 14,

no.1, (2001), pp. 3465-3476.

[14] M. Bellare and O. Goldreich, “On defining proofs of knowledge”, Advances in Cryptology—CRYPTO’

92, Lecture Notes in Computer Science 740, Springer, (1993), pp. 390-420.

Authors

Zuojie Deng, he is born in September 1972, received the M.S.

degree in Department of Computer Engineering from Hunan

University, Changsha, China, in 2004. He is an associate

professor in School of Computer and Communication, Hunan

Institute of Engineering and he is a Ph.D. candidate in the School

of Computer Science and Technology at Huazhong University of

Science and Technology, Wuhan, China. His research areas

include storage security, searchable encryption, network security

and privacy enhanced technologies.

Xiaolan Tan, she is born in July 1973, and received the

bachelor in computer science from Hunan Normal University in

2004 and he is an instructor in School of Computer and

Communication at Hunan Institute of Engineering, Xiangtan,

China. Her research interests include network security and

information privacy.

International Journal of Future Generation Communication and Networking

Vol. 8, No. 6 (2015)

122 Copyright ⓒ 2015 SERSC

