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Abstract 
 

Differing from the physical connectivity of the topology structure, the logical connectivity 

of VANET considers both the interior network configuration and the external communication 

environment. Hence, the traditional mathematical analysis and modeling methods which are 

usually used in physical connectivity research are no longer suitable for the logical 

connectivity prediction. Taking the AODV protocol as an example, this paper simulates the 

effects of different road traffic parameters on logical connectivity probability and selects 

three main effect factors, roadway length, vehicle number and vehicle speed. Furthermore, 

the inner relation between the logical connectivity and the three road traffic parameters is 

studied based on data mining technique and then two logical connectivity prediction models 

are presented, the nonlinear regression-based model and the extreme learning machine-

based model. Simulation results show that the two models are both with high accuracy in 

predicting the network logical connectivity under different road traffic environments. 

Keywords: VANET, logical connectivity, nonlinear regression, ELM, AODV 

1. Introduction 

As a special type of mobile ad hoc networks (MANETs), vehicular ad hoc networks 

(VANETs) allow vehicles to form a self-organized network without the requirement of 

permanent infrastructures. It is a promising application-oriented network deployed along a 

roadway for 1) vehicular safety-related applications such as collision warning systems, road 

condition warning, lane-changing assistance [1, 2], 2) transportation efficiency-related 

applications such as traffic light control, vehicle navigation [3, 4] and 3) entertainment 

applications. Unlike conventional ad hoc wireless types of networks, a VANET may be 

required to deal with some new issues caused by the road traffic environment. For example, 

the vehicles move in high speeds randomly, causing dynamic and rapidly changing topologies 

of VANET. Further, because of obstacles to wireless signal by large objects, e.g. skyscrapers 

in cities, communications between vehicles must have line-of-sight and the paths are confined 

in the zonal roadway structure. What’s more, influenced by human driving behavior and the 

traffic regulations, the distribution of vehicles on roads is uneven, and it is hard to be modeled 

using a simple mathematical method.  

The peculiar characteristics of VANET bring great challenges to a real-time, efficient, 

reliable transmission of messages. The multi-hop communication network connectivity is a 

fundamental performance measure when transmitting messages in VANET. Two vehicles in 

the network are connected if they can exchange information with each other, either directly or 

indirectly [5]. Employing the ideas of network layering, VANET connectivity research can be 
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classified into two cases: physical connectivity and logical connectivity [6].The physical 

connectivity refers to the topology connection between two nodes at the physical layer. In 

practical application, it can be tested by sending and receiving electrical level. Good physical 

connectivity is the prerequisite for providing reliable service to network users and the basis 

for the logical connectivity. While the logical connectivity implies the reachability of 

messages when running MAC protocol, routing protocol and topology control mechanism in 

the network under the condition that the physical topology is connected. Generally, the 

logical connectivity can be described by the packet loss probability index.  

VANET is a typical self-organizing network, the performance of which is highly 

dependent on the road traffic conditions. The point-to-point data transmission is affected not 

only by the configurations, protocols and bandwidth of the network, but also by the 

characteristics of roadway and the traffic flow, such as roadway length, lane number, vehicle 

number, vehicle velocity and vehicle density. In this paper, taking the AODV protocol as an 

example, we simulate and analyze the relationship between the VANET logical connectivity 

probability and the traffic parameters. Further, using two different data mining technologies, 

the nonlinear regression and the extreme learning machine (ELM), we present two logical 

connectivity prediction models according to three main effect factors which are roadway 

length, vehicle number and speed. Simulation results show that, given certain traffic 

parameters, the two proposed models can forecast the logical connectivity of VANET 

accurately. 

The rest of the paper is organized as follows. Section 2 exhibits the related work on 

connectivity research in VANET. In Section 3, the simulation data acquisition process is 

presented and the main effect factors on the connectivity are analyzed. In Section 4, the 

logical connectivity prediction models based on nonlinear regression and ELM are presented 

respectively. The performed simulations together with the result evaluations are presented in 

Section 5. In Section 6, we conclude the paper. 

 

2. Related Work 

Network connectivity is one of the most important issues in VANETs to ensure reliable 

dissemination of time-critical information. While in the road traffic communication 

environment, the dynamic and rapidly changing topologies of vehicular networks can cause 

frequent link disconnections, which has been a bottleneck in designing protocols and 

transmitting messages in VANET [7]. In recent years, many scholars and institutions have 

devoted to the VANET connectivity research and a number of studies concerning VANET 

connectivity modeling and analysis have been reported.  

The existing research of VANET connectivity can be classified into two aspects: 

connectivity analysis and connectivity prediction. The connectivity analysis research aims to 

search for the main effect factors on the logical connectivity and how these factors affect it, 

and the necessary conditions of a completely-connected network. The connectivity prediction 

research is to establish connectivity prediction models for the network performance 

evaluation and the routing protocol design under different road traffic environments, vehicle 

movements and distributions, and network configurations. 

Paper [6] provides a probability analysis algorithm to calculate the necessary condition of 

1-connected VANET in highway scenarios. It makes a conclusion that the radio 

communication range of each node must be subject to 1/(| log(1 ) | / )np n   in order to 

ensure that there is no isolated node within the entire network. Further, in [8], authors 

investigate the k-connectivity of 1-D linear vehicular ad hoc network based on matrix of 
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decomposition. The analysis indicates that the expectation of the maximum number of 

tolerable vehicle departures almost linearly increases with the total number of vehicles. 

In [9], authors investigate the VANET connectivity properties from a physical layer 

perspective. The minimum transmitting power used by all vehicles, sufficient to guarantee 

network connectivity, is studied. As opposed to the conventional graph-theoretic approach, 

the network connectivity problem is analyzed according to a physical layer-based quality of 

service constraint. The analysis provides a frame work for investigating the impact of traffic 

dependent parameters such as vehicle arrival rate, vehicle density, mean and standard 

deviation of vehicle speed, highway length and physical layer based parameters.  

In [10], authors present an analytical model for multi-hop connectivity of IVC in a traffic 

stream, in which positions of vehicles are no longer described by certain geometric 

distributions, but through observations, traffic simulators or traffic theories. They derive a 

recursive model of node and hop probabilities and define a number of performance measures 

of multi-hop connectivity. The model is applied to study multi-hop connectivity of IVC in 

both uniform and non-uniform traffic. The proposed model is efficient without repeating 

traffic simulations while capable of capturing the impact of arbitrary distribution patterns of 

vehicles and is suitable for evaluating connectivity of IVC for different traffic congestion 

patterns. 

In [11], authors propose a cell-based connectivity model for VANET in a road segment. 

The road segment, which is a portion of a street between two adjacent intersections, is divided 

into several cells, the length of which is set as the average length of vehicles. Each cell can 

obtain at most one vehicle and each vehicle can occupy only one cell. With the assumption of 

uniformly distributed vehicles, the probability that the network is disconnected equals to the 

probability that the length of successive empty cells on the road segment is longer than the 

communication range. Given the parameters of roadway length, number of lanes and vehicles, 

network connectivity probability of the road segment can be calculated using the model. 

Summarizing the literatures mentioned above, we conclude the current status and the 

existing issues of VANET connectivity study from the major research contents and the 

methods. On one hand, the main research work concentrates on the physical connectivity 

analysis and modeling. Actually, influenced by the node mobility, traffic environment and the 

routing protocol performance, messages cannot be guaranteed to reach the target node even 

though the physical topology is connected. While the logical connectivity research takes into 

account all the possible effect factors when transmitting messages and directly determines the 

messages reachable or not. Hence the logical connectivity study is also necessary in VANET. 

On the other hand, the mainstream research methods of VANET connectivity include graph 

theory based, probability analysis based, statistics based [12] and percolation theory based 

[13] methods. These methods are usually applied on the basis of some assumptions of vehicle 

distributions and movements. For example, vehicles on the road are distributed following 

some geometric distribution, the Poisson distribution or uniform distribution. The movement 

of vehicles mainly adopts the random way point (RWP) model. However, influenced by the 

human driving behavior and the traffic regulations, these assumptions cannot reflect the 

distribution and movement of vehicles on road truly. Therefore, the current VANET 

connectivity research methods have more or less limitations. 

 

3. Simulation Data Acquisition and Effect Factors Analysis 

Before introducing our work, we first make some necessary and reasonable assumptions: 

(1) Roadways which we study are bi-directional and have the same lane number for the 

two directions. 
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(2) All vehicles are equipped with wireless communication devices and they can send 

messages to each other. 

(3) Vehicles on the roadway are in the status of free flow, regardless of the impacts caused 

by traffic lights. 

(4) Wireless transmission range is definite. The reason is that once VANET and the 

corresponding applications are commercialized, the physical criterion of wireless 

communication devices would be standardized. Wireless transmission range can be 

considered as a definite value. 

 

3.1. Simulation Data Acquisition 

Besides the internal network configuration, the logical connectivity of VANET is mainly 

concerned with the external communication environment, which can be shown in two aspects: 

the roadway physical properties and distribution of vehicles. The roadway physical properties 

include length and lane number. The distribution of vehicles can be described by the macro 

statistical characteristics of traffic flow, such as vehicle number, vehicle speed and density. In 

this paper, the logical connectivity research aims to seek the internal relationship between the 

connectivity probability and road traffic factors under certain protocol condition.  

In order to acquire actual data for the connectivity analysis, a large number of simulation 

experiments are done by the use of VanetMobiSim/NS-2. The vehicle movement model we 

use in the simulation is the Intelligent Driver Model with Lane Changes (IDM_LC). In the 

model, vehicles can implement lane change behavior in reality according to the acceleration 

variation. Using the model, an approximate real road traffic scenario will be simulated and the 

unreasonable assumptions in the traditional analytical model will be avoided. Parameters of 

the road traffic and the network configuration are shown in Table 1 and Table 2 respectively. 

Table 1. Parameters of Road Way and Vehicles 

Parameters Value 

Maximum acceleration(m/s
2
) 0.6 

Comfortable deceleration(m/s
2
) 0.9 

Maximum safe deceleration(m/s
2
) 4 

Lane changing acceleration 

threshold(m/s
2
) 

0.2 

Roadway length(m) 
600, 800, 1000, 1200, 1400, 1600, 

1800, 2000 

Vehicle number 10, 15, 20, 25, 30,35, 40, 45, 50 

Vehicle speed(m/s) 5, 10, 15, 20, 25, 30,35, 40, 45, 50 

Lane number(bi-directional) 2, 4, 6 

Table 2. Parameters of Network Configuration 

Parameters Values 

Propagation model TwoRayGround 

MAC protocol IEEE 802.11 

Routing protocol AODV 

Maximum segment size 50 

Communication range (m) 250 

Simulation time(s) 2000 
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Under the conditions with different parameters shown in Table 1, the packet loss rate is 

simulated. Each condition is simulated 10 times independently. The average packet loss rate 

of the 10 times simulation 'p  is calculated as the result of each condition. Let 1 'p p   as 

the measure indicator of logical connectivity probability. 

 

3.2. Effects of Vehicle Density on Logical Connectivity Probability 

The vehicle density can be calculated by (1), where n is the vehicle number and l is the 

roadway length. 

/n l                                                                   (1) 

In the traditional physical connectivity research, the connectivity probability is usually 

considered as a definite value in case the vehicle density is constant. Generally, this kind of 

conclusion is acquired based on the assumption that the locations of vehicles follow some 

certain geometric distributions. However, influenced by driving behavior such as vehicle 

queuing, lane changing and vehicle following, the vehicle distributions are always different 

on the roadways which have different lengths and vehicle numbers but the same vehicle 

density. Figure 1 shows the connectivity probabilities where the vehicle density is 12.5/km 

but roadway length, vehicle speed and vehicle number are different. 

 

 

Figure 1. Connectivity Probabilities under the Same Vehicle Density but 

Different Roadway Lengths, Vehicle Speeds and Vehicle Numbers 

From the results, we can see that the connectivity probabilities are different even though 

the vehicle density is constant. With the increase of roadway length and vehicle number, the 

connectivity probability decreases. That’s because the larger the roadway length and the 

vehicle number is, the more probability of driving behavior occurs, and the more frequently 

the topology changes. Therefore, the vehicle density index which is usually used in physical 

connectivity research is no longer suitable for logical connectivity analysis. Since the vehicle 

density can be seen as a correlation value of roadway length and vehicle number, we use 

these two parameters instead of the density index for logical connectivity analysis in our 

paper. 
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3.3. Effects of Lane Number on Logical Connectivity Probability 

Since the communication range is far larger than lane width, the connectivity of VANET 

will be weakly influenced by the lane number. In order to verify this conclusion, this paper 

simulates the network connectivity under different roadway length, vehicle number and 

vehicle speed as the bi-directional lane numbers are 2, 4 and 6 respectively. 

 

 

Figure 2. Connectivity Probabilities under Different Lane Numbers 

Figure 2 shows the connectivity probability under different lane numbers as 1) the vehicle 

number and vehicle speed are constant, roadway length changes (line ①, ④, ⑦), 2) the 

roadway length and vehicle speed are constant, vehicle number changes (line ②, ⑤, ⑧), 3) the 

roadway length and vehicle number are constant, vehicle speed changes (line ③, ⑥). From the 

results we can conclude that the connectivity probabilities are almost the same in different 

lane number cases. The lane number index almost makes no effect to the logical connectivity 

of VANET. In order to simplify work, we ignore the effects of lane number on connectivity 

probability in this paper. 

 

3.4. Effects of Roadway Length, Vehicle Number and Vehicle Speed on Logical 

Connectivity Probability 

The effects of roadway length, vehicle speed and vehicle number on connectivity 

probability are show in Figure 3, where the speed changes from 5 to 55 (m/s), vehicle number 

changes from 10 to 50 and roadway lengths are 800, 1200, 1600, 2000 (m) respectively. 
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Figure 3. Connectivity Probabilities Distribution under Different Speeds, 
Vehicle Numbers and Roadway Lengths ((a) Roadway Length=800m, (b) 

Roadway Length=1200m, (c) Roadway Length=1600m, (d) Roadway 
Length=2000m) 

From the simulation results we can conclude that the connectivity is positive correlation 

with vehicle number and negative correlation with roadway length and vehicle speed. 

As previous analysis, we select three key influencing factors, roadway length, vehicle 

number and vehicle speed, as the main parameters to explore the statistical regularity of 

logical connectivity of VANET. Construct the relationship function between the dependent 

value (connectivity probability (p)) and three independent values (roadway length (l), vehicle 

number (n) and vehicle speed (v)), as is shown by (2) 

( , , )p f l n v                                                                      (2) 

Since the logical connectivity takes into account all possible factors both in the internal 

network configuration and the external communication environment, the traditional analysis 

methods used in physical connectivity research are no longer suitable. Based on large amount 

of simulation data, we build connectivity prediction models using two different data mining 

technologies, the nonlinear regression and the extreme learning machine respectively. 

 

3. Logical Connectivity Prediction Models based on Nonlinear Regression 

and ELM 
 

3.1. Connectivity Prediction Model based on Nonlinear Regression 

There is a certain nonlinear correlation between connectivity and the three parameters. In 

this section, using the nonlinear regression method, we seek the internal relation and build a 

simulation model for connectivity prediction. 

In statistics, nonlinear regression is a form of regression analysis in which observational 

data are modeled by a function which is a nonlinear combination of the model parameters and 
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depends on one or more independent variables. Since the effect of the independent variables 

on connectivity probability is nonlinear, the logical connectivity prediction belongs to the 

technical field of multivariate nonlinear regression analysis. Making convenience of 

computation, a cubic regression equation is used to express the mathematical model of the 

connectivity probability, as (3). 

33 3

, ,

0 0 0

( , , )
i ji

i j k

i j k

i j k

p f l n v a l n v
 

  

  , ( 0, ,3, 0, ,3 , 0, ,3 )i j i k i j         (3) 

Where , ,i j ka  is the coefficient. 

The aim for nonlinear regression is to calculate the coefficient matrix in (3) by the sample 

of the simulation connectivity values. According to the least square principle, the regression 

equation takes the minimum sum of squared residuals of the predicted values and the 

simulated values as the fitting criterion, which can be expressed by (4). 

33 3
2 2

, ,

1 0 0 0

ˆmin ( )
i jN i

i j k

i j k t t t t

t i j k

e a l n v p
 

   

                                    (4) 

Where ˆ
tp  is the simulated value of connectivity probability. 

According to the multivariate function extreme value theorem, the necessary condition to 

gain a minimum sum of squared residuals is: 

2

, ,

0
i j k

e

a





                                                              (5) 

Equation (5) can be expressed as (6) and further transformed as (7) 

0 0 0

0 0 0

33 3

, ,

1 0 0 0

ˆ2 ( ) 0
i jN i

i j ki j k

i j k t t t t t t t

t i j k

a l n v p l n v
 



   

                                (6) 

0 0 0 0 0 0

0 0 0

33 3

, ,

1 0 0 0 1

ˆ
i jN i N

i j k i j ki j k

i j k t t t t t t t t t t

t i j k t

a l n v l n v p l n v
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 

    

                       (7) 

Equation (7) can be expressed by a linear matrix equation, as is shown by (8). 

0,0,0 0,0,0 0,0,0 0,0,1 0,0,0 3,0,0

1 1 1
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1 1 1
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        (8) 

Where 

, ,i j k i j k

t t t tl n v                                                          (9) 
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Let C represent the coefficient matrix in equation (9), 
T

0,0,0 0,0,1 3,0,0=[ , , , ]C a a a . Given N 

samples of the connectivity probabilities under different roadway length, vehicle number and 

vehicle speed, C can be calculated and then regression equation (3) can be established. 

 

3.2. Connectivity Prediction Model based on ELM 

The artificial neural network is an important method for data mining. The traditional Back-

Propagation Network (BP Network) adjusts the weight parameters by the gradient descent 

iterative algorithm. It has apparent defects: 1) Slow training speed and long computation time, 

2) Easy to run into the local least value, 3) Poor generalization ability caused by overtraining. 

To overcome these defects, Huang [14, 15] proposes the extreme learning machine algorithm 

based on Moore-Penrose generalized inverse matrix. As a new learning algorithm for single-

hidden layer feed-forward neural network, the ELM doesn’t need to adjust the input weights 

and the hidden layer biases. It can obtain the unique optimal solution just by one step 

calculation. The learning algorithm has advantages as fast learning speed and good 

generalization performance. 

The network training model of ELM employs single-hidden layer feed-forward structure. 

Let m, M, n be the numbers of nodes of input layer, hidden layer and output layer 

respectively. ( )g x  is the hidden layer function and ib  is the threshold. Suppose there are N 

samples ( , )i ix t , 1 i N  , where 
T

1 2[ , , , ]i i i imx x x x ,
T

1 2[ , , , ]i i i int t t t , the 

networking training model of ELM can be shown in Figure 4. 

 

 

Figure 4. Network Training Model of ELM 

The mathematical expression of the training model is as (10). 

1

( ) , 1,2, ,
M

i i i i j

i

g x b o j N 


                                        (10) 

Where 
T

1 2[ , , , ]i i i mi    , which denotes the input weights. 
T

1 2[ , , , ]i i i in    , 

which denotes the network output weights. 
T

1 2[ , , , ]j j j jno o o o , which denotes the 

network output vector. 

The cost function of ELM can be expressed by (11). 

1

( , ) || ||
N

j j

j

E S o t


                                                 (11) 
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Where ( , , 1,2, , )i iS b i M  , which contains the network input weights and the 

hidden layer thresholds. The ELM training process aims to find the optimal S  and   to 

minimize the errors between the network output value and the actual value, that is 

min( ( , ))E S  . The min( ( , ))E S   can be further expressed by (12). 

1 1 1
, ,

min( ( , )) min || ( , , , , , , , , ) ||
i i

M M N
b

E S H b b x x T
 

                 (12) 

In (12), H is the hidden output matrix calculated by input samples.   is the output weights 

matrix and T is the objective value matrix. The H,  , T are defined as follows, respectively. 

1 1 1 1

1 1 1

1 1

( ) ( )

( , , , , , , , , )

( ) ( )

M M

M M N

N M N M N M

g x b g x b

H b b x x

g x b g x b

 

 

 


  
 


 
   

   (13) 

T

1

T

M M n








 
 

  
 
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,

T

1

T

M N n

t

T

t


 
 

  
 
 

                                                (14) 

The network training process of ELM can be treated as a nonlinear optimization problem, 

the objective function of which is expressed by (12). In case the hidden layer function is 

infinitely continuously derivable, the input weights and the hidden layer thresholds can be 

randomly assigned, and H would be a constant matrix. Therefore, the learning process of 

ELM can be equated with the calculation of the least square solution with minimum norm of 

the linear system H T  . The calculation equation is as follows: 

†ˆ H T                                                           (15) 

Where †H  is the Moore-Penrose generalized inverse matrix of H. The network training 

can be realized by calculating ̂ . In the logical connectivity model, there are three inputs and 

one output. The inputs include the roadway length, vehicle number and vehicle speed. The 

output is the connectivity probability. 

 

4. Simulations and Results 

We compare the accuracy of the two proposed different network connectivity models for a 

set of parameters: roadway length, vehicle number and vehicle speed, which are shown in 

Table 1. Changing different values of the three parameters, 720 sets of data are collected 

through NS-2 simulation. These data constructs a four-dimensional data space (p-lnv). Part of 

the data is shown in Table 3. 
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Table 3. Part of the Simulation Data 

l(m) n v(m/s) p l(m) n v(m/s) p l(m) n v(m/s) p 

800 10 5 0.3663 1400 30 5 0.5782 2000 50 5 0.454 

800 10 10 0.2941 1400 30 10 0.5325 2000 50 10 0.5616 

800 10 15 0.1746 1400 30 15 0.3057 2000 50 15 0.4060 

800 10 20 0.1313 1400 30 20 0.1941 2000 50 20 0.2029 

800 10 25 0.1148 1400 30 25 0.1607 2000 50 25 0.1917 

800 10 30 0.1051 1400 30 30 0.1380 2000 50 30 0.1682 

800 10 35 0.0943 1400 30 35 0.1302 2000 50 35 0.1468 

800 10 40 0.0951 1400 30 40 0.1283 2000 50 40 0.1336 

800 10 45 0.0782 1400 30 45 0.1192 2000 50 45 0.1305 

800 10 50 0.0773 1400 30 50 0.1256 2000 50 50 0.1426 

… … … … … … … … 720×4 

 

600 of the 720 sets of data are selected for nonlinear regression and ELM training, and 

others are used for testing. Making any two of the three parameters constant and the third one 

variable, we test the connectivity prediction results in three cases: 1) Case Ⅰ, the roadway 

length and vehicle number are constant, vehicle speed changes, 2) Case Ⅱ, the roadway 

length and vehicle speed are constant, vehicle number changes, 3) Case Ⅲ , the vehicle 

number and vehicle speed are constant, roadway length changes. Part of the prediction results 

are shown in Figure 5~7, respectively. 

 

 

Figure 5. Case I: Roadway Length and Vehicle Number are Constant, Vehicle 
Speed Changes (l=1200m, n=25) 
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Figure 6. Case II: Roadway Length and Vehicle Speed are Constant, Vehicle 

Number Changes (l=1600m, v=5m/s) 
 

 

Figure 7. Case III: Vehicle Number and Vehicle Speed are Constant, Roadway 
Length Changes (n=35, v=20m/s) 

As is shown in Figure 5-7, with different roadway lengths, vehicle speeds and vehicle 

numbers, the two connectivity models match the simulation value very well. In order to 

compare the accuracy of the two models, we use the root mean squared error (RMSE), which 

is expressed by (16), to analyze the predictions. 

2

1

1
ˆ[ ( , , )]

N

k k k k

k

RMSE p f l n v
N 

                                       (16) 

The smaller the value of RMSE is, the closer the prediction data approximates to 

simulation data, and the better performance the model is with. The RMSEs of all testing 

samples and the samples used in Figure 5-7 are calculated respectively. The results are shown 

in Table 4. 
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Table 4. RMSEs of Different Samples 

Samples 
All testing 

samples 

Samples of Case 

Ⅰ 

Samples of Case 

Ⅱ 

Samples of Case 

Ⅲ 

RMSE 

Regression 

Model 
0.0364 0.0384 0.0276 0.0411 

ELM model 0.0231 0.0149 0.0164 0.0104 

 

From Table 4, we can find that the two models offer an extremely high accuracy (both the 

mean square errors of the two models are less than 5%). It implies that the two data mining 

methods are suitable for the VANET logical connectivity analysis and prediction. 

Furthermore, the ELM model is better than the regression model. The reason is that the 

regression method we used in our work is the basic least square method, which can smooth 

some characteristics of the training data (this inference can also be verified by curves shown 

in Figure 5-7), causing bigger errors. 

 

5. Conclusions and Future Work 

In this paper, taking the AODV protocol as an example, we study the logical connectivity 

of VANET by simulations. Firstly, we discuss the effects of different road traffic parameters 

on logical connectivity probability and select three main factors, the roadway length, vehicle 

number and vehicle speed. Furthermore, we propose two different connectivity prediction 

models based on nonlinear regression and ELM. Simulation results show that both of the two 

models are with high accuracy in predicting the connectivity under different road traffic 

status.  

The future work includes two aspects. On one hand, to weaken the smoothing effect of 

regression function and improve the predicting accuracy, we will take the weight function and 

the Bicubic interpolation method into consideration in regression analysis. On the other hand, 

since AODV is the only protocol we analyze and model in this paper, future research also 

considers the logical connectivity of other routing protocols which are usually used in 

VANET, such as DSDV, GSR and GPSR. 
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