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Abstract 

In modern world, communication service providers are continuously met with the challenge 

of accommodating more users with in a limited allocated bandwidth.  Due to this motivation 

service providers and manufactures are continuously in search of low bit rate speech coders 

that deliver high quality speech. The main objective of speech compression is to reduce the bits 

rate of speech for communication or storage without significant loss of its intelligibility. 

Wavelet based speech coding is a new technique used for speech compression. The main issue 

regarding wavelet based speech coding is to choose optimal wavelet to transform the speech 

signal. In this experiment we use two types of wavelets orthogonal and bi-orthogonal wavelets 

to transform the speech signal. Run length encoding algorithm is used to encode the threshold 

coefficient. Performance of this experiment is evaluated in terms of MSE, SNR, PSNR, RSE, 

and in terms of compression percentage 

Keywords: orthogonal wavelet, bi-orthogonal wavelet, compression 

 

1. Introduction 

The goal of compressing a signal is to minimize the storage or medium capacity needed to 

hold or to convey the information contained in the signal.  The main approaches towards data 

compression are removing redundancy, thresholding and coding the remaining signal 

efficiently.  Removing redundancy means removing away the correlated data from the original 

signal and it can be done through a transforms. The thresholding is to set small data to zero 

when their absolute values are lower than threshold. The coding methods are to code the data 

with special strategies which are mainly for reducing the transferring volume of data through a 

communication link. 

Speech synthesizing systems generally carry out synthesis via time frequency 

representations such as Short Time Fourier Transforms (STFT) or Linear Predictive Coding 

(LPC) techniques. The FT assumes that signals are stationary within a given time frame and 

may therefore lack the ability to analyze localized events accurately. The main disadvantage of 

a Fourier expansion however, is that it has only frequency resolution and no time resolution. 

So, on looking at the signal we cannot say when a particular event occurs. That means in 

frequency domain we lost the time information. 

Speech coding is a vital area of research because of its economical importance. Various 

algorithms are already applied in different levels of speech coding. If compression is applied on 

speech data more users can be accommodated at the same time because less bandwidth is 

required. So it cuts down the cost of communication. Speech compression plays an important 
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role in teleconferencing, wireless communication, and audio for videophones or video 

teleconferencing systems. Other applications include the storage of speech synthesis and play 

back, or for the transmission of voice at a later time applications. Wavelet is a new tool for 

analyzing and compressing non stationary signals like speech and audio. Wavelet is a small 

wave with limited duration and that has an average value of zero. More over wavelets have a 

beginning and an end. In this paper we are evaluating the performance of two subclasses of 

discrete wavelet such as orthogonal and bi-orthogonal wavelets in speech coding. Haar, 

Daubechies, Symlets, Coiflets and Discrete Meyer wavelets are the examples of orthogonal 

wavelets and Bior is an example of the second category. These are the two classes of wavelet 

which are commonly used for 1-D and 2-D signal analysis and compression. 

Much of the later work in speech compression was motivated by military research s digital 

communications for secure military radios, where very low data rates were required to allow 

effective operation in a hostile radio environment. At the same time, far more processing power 

was available, in the form of VLSI integrated circuits, than was available for earlier 

compression techniques. As a result, modern speech compression algorithms could use far 

more complex techniques than were available in the 1960s to achieve far higher compression 

ratios. 

These techniques were available through the open research literature to be used for civilian 

applications, allowing the creation of digital mobile phone networks with substantially higher 

channel capacities than the analog systems that preceded them.Speech encoding is an important 

category of audio data compression. The perceptual models used to estimate what a human ear 

can hear are generally somewhat different from those used for music. The range of frequencies 

needed to convey the sounds of a human voice are normally far narrower than that needed for 

music, and the sound is normally less complex. As a result, speech can be encoded at high 

quality using a relatively low bit rate. 

If the data to be compressed is analog (such as a voltage that varies with time), quantization 

is employed to digitize it into numbers (normally integers). This is referred to as analog-to-

digital (A/D) conversion. If the integers generated by quantization are 8 bits each, then the 

entire range of the analog signal is divided into 256 intervals and all the signal values within an 

interval are quantized to the same number. If 16-bit integers are generated, then the range of the 

analog signal is divided into 65,536 intervals. 

Wavelet provides an alternative approach to traditional signal processing techniques such as 

Fourier analysis for breaking a signal in to its constituent parts. In wavelet transform the basic 

functions are compact in time. This feature allows the wavelet transform to obtain time 

information about a signal in addition to frequency information. In DWT the original signal is 

successively decomposed in to low frequency and high frequency components. The high 

frequency components are not analysed any further. The approximation signal is subsequently 

divided into new approximation and detailed signals. The process of down sampling by 2 is 

that of keeping every second sample of x[n] and removing them in between samples thus 

generating an output sequence d2[n] .The successive high pass and low pass filtering of the 

signal can be depicted by the following equations: 

Yhigh=∑nx[n]g[2k-n]------(1) 

Ylow=∑nx[n]h[2k-n]-------(2) 

A wavelet is a wave-like oscillationwith an amplitude that begins at zero, increases, and 

then decreases back to zero. 
There are two types of discrete wavelets (a) Orthogonal wavelets (b) Bi-Orthogonal 

wavelets 
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Orthogonal Wavelets 

An orthogonal wavelet is a wavelet whose associated wavelet transform is orthogonal. That 

is, the inverse wavelet transform is the adjoint of the wavelet transform. If this condition is 

weakened you may end up with bi-orthogonal wavelets. 

The scaling function is a refinable function. That is, it is a fractal functional equation, called 

the refinement equation. 

,  

where the sequence of  is called a scaling sequence or scaling mask. The 

wavelet proper is obtained by a similar linear combination, 

, 

where the sequence of real numbers is called a wavelet sequence or wavelet 

mask. 

A necessary condition for the orthogonality of the wavelets is that the scaling sequence is 

orthogonal to any shifts of it by an even number of coefficients: 

 

In this case there is the same number M=N of coefficients in the scaling as in the wavelet 

sequence, the wavelet sequence can be determined as . 

 

Properties of Orthogonal Wavelets 

 

Vanishing moments 

A wavelet has m vanishing moments if and only if its scaling function can generate 

polynomials of degree smaller than or equal to m. While this property is used to describe the 

approximating power of scaling functions, in the wavelet case it has a "dual" usage, e.g., the 

possibility to characterize the order of isolated singularities.The number of vanishing moments 

is entirely determined by the coefficients h[n] of the filter h which is featured in the scaling 

equation. 

If the Fourier transform of the wavelet is p continuously differentiable, then the three 

following conditions are equivalent: 

 The wavelet y has p vanishing moments  

 The scaling function j can generate polynomials of degree smaller than or equal to p  

 The transfer function of the filter h and its p-1 first derivatives vanish at w=p.  

 

Compact Support 

Compactly supported wavelets and scaling functions exist. The scaling function is 

compactly supported if and only if the filter h has a finite support, and their supports are the 

same. If the support of the scaling function is [N1,N2], then the wavelet support is [(N1-

N2+1)/2,(N2-N1+1)2].Atoms are thus compactly supported if and only if the filter h is 
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Daubechies has proved that, to generate an orthogonal wavelet with p vanishing moment, a 

filter h with minimum length 2p had to be used. Daubechies filters, which generate Daubechies 

wavelets, have a length of 2p. The Daubechies filter coefficients are available as ASCII text 

files which can be used in a spreadsheet, for instance. 

 

Regularity 

Wavelet regularity is much less important than their vanishing moments. Il is studied in a 

theorem by TchamitchianThe following two properties are important:  

 There is no compactly supported orthogonal wavelet which indefinitely differentiable  

 For Daubechies wavelets with a large p, the scaling function and wavelet are l-

Lipschitz, where l is of the order of 0.2 p. For large classes of orthogonal wavelets, 

more regularity implies more vanishing moments.  

Meyer wavelets are indefinitely differentiable orthogonal wavelets, with an infinite support. 

They are generally implemented in the Fourier domain. 

 

Symmetry 

Symmetric scaling functions and wavelets are important because they are used to build bases 

of regular wavelets over an interval, rather than the real axis. Daubechies has proved that, for a 

wavelet to be symmetric or anti-symmetric, its filter must have a linear complex phase, and the 

only symmetric compactly supported conjugate mirror filter is the Haar filter, which 

corresponds to a discontinuous wavelet with one vanishing moment. Besides the Haar wavelet, 

there is no symmetric compactly supported orthogonal wavelet. 

 

Bi-Orthogonal Wavelets 

A bi-orthogonal wavelet is a wavelet where the associated wavelet transform is invertible 

but not necessarily orthogonal. Designing bi-orthogonal wavelets allows more degrees of 

freedom than orthogonal wavelets. One additional degree of freedom is the possibility to 

construct symmetric wavelet functions. 

 

Scaling Equation 

As in the orthogonal case, y(t) and j(t/2) are related by a scaling equation which is a 

consequence of the inclusions of the resolution spaces from coarse to fine: 

 

Similar equations exist for the dual functions which determine the filters h2 and g2. 

 

Properties of Bi-Orthogonal Wavelets 

 

Vanishing Moments 

A bi-orthogonal wavelet has m vanishing moments if and only if its dual scaling function 

generates polynomials up to degree m. This can be verified by looking at the bi-orthogonal 

decomposition formulas. Hence there is an equivalence theorem between vanishing moments 

and the number of zeroes of the filter's transfer, provided that duality has to be taken into 

account. Thus the following three properties are equivalent: 

http://cas.ensmp.fr/~chaplais/wavetour_presentation/Tables/Daubechies/
http://cas.ensmp.fr/~chaplais/wavetour_presentation/Tables/Daubechies/
http://cas.ensmp.fr/~chaplais/wavetour_presentation/ondelettes/TchamitchianUS.gif
http://en.wikipedia.org/wiki/Wavelet
http://en.wikipedia.org/wiki/Discrete_wavelet_transform
http://en.wikipedia.org/wiki/Invertible
http://en.wikipedia.org/wiki/Orthogonality
http://en.wikipedia.org/wiki/Orthogonal_wavelet
http://cas.ensmp.fr/~chaplais/wavetour_presentation/ondelettes/decompjBiortho.gif
http://cas.ensmp.fr/~chaplais/wavetour_presentation/ondelettes/decompjBiortho.gif


International Journal of Future Generation Communication and Networking 

Vol.7, No.5 (2014) 

 

 

Copyright ⓒ 2014 SERSC  233 

 The wavelet y has p vanishing moments  

 The dual scaling function j2 generates polynomials up to degree p  

 The transfer function of the dual filter h2 and it p-1 first derivatives vanish at w=p  

and the dual result is also valid. Duality appears naturally, because the filters determine the 

degree of the polynomials which can be generated by the scaling function, and this degree is 

equal to the number of vanishing moments of the dual wavelet. 

 

Compact Support 

If the filters h et h2 have a finite support, then the scaling functions have the same support, 

and the wavelets are compactly supported. If the supports of the scaling functions are 

respectively [N1,N2] and [M1,M2], then the corresponding wavelets have support [(N1-

M2+1)/2,(N2-M1+1)/2] and [(M1-N2+1)/2,(M2-N1+1)] respectively. The atoms are thus 

compactly supported if and only if the filters h et h2 are. 

 

Regularity 

Tchamitchian's theorem provides again a sufficient regularity condition. Remember that this 

condition bears on the filter h which determines the scaling equation. Hence the regularity of 

the primal atoms are related to the primal filters. 

 

Wavelet Balancing 

Consider the following decomposition of f:  

 

The number of vanishing moments of a wavelet is determined by its dual filter. It 

corresponds to the approximating power of the dual multiresolution sequence. This is why it is 

preferred to synthesize a decomposition filter h with many vanishing moments, and possibly 

with a small support. 

On the other hand, this same filter h determines the regularity of j, and hence of y. This 

regularity increases with the number of vanishing moments, that is, with the number of zeroes 

of h. 

 

Symmetry 

Unlike the orthogonal case, it is possible to synthesize bi-orthogonal wavelets and scaling 

functions which are symmetric or antisymmetric and compactly supported. This makes it 

possible to use the folding technique to build wavelets on an interval. 

If the filters h and h2 have and odd length and are symmetric with respect to 0, then the 

scaling functions have an even length and are symmetric, and the wavelets are also symmetric. 

If the filters have an even length and are symmetric with respect to n=1/2, then the scaling 

functions are symmetric with respect to n=1/2, while the wavelets are anti-symmetric. 

 

  

http://cas.ensmp.fr/~chaplais/wavetour_presentation/ondelettes/TchamitchianUS.gif
http://cas.ensmp.fr/~chaplais/wavetour_presentation/ondelettes/ScalingEq.gif
http://cas.ensmp.fr/~chaplais/wavetour_presentation/ondelettes/Interval_Wavelets.html#repliement
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Table 1. Comparison of Orthogonal Wavelets 

P
ar

am
et

er
s 

 
Orthogonal wavelets 

db2 db4 db6 db8 db10 db12 db16 db20 

MSE 0.0021 0.0018 0.0017 0.0017 0.0017 0.0016 0.0016 0.0016 

PSNR 73.5096 74.1765 74.3443 74.3309 74.4223 74.5539 74.5368 74.6164 

RSE 83.4198 83.5799 83.5433 83.5755 83.5671 83.4865 83.5427 83.4387 

COMP

% 
85.6167 87.6639 88.1314 88.0949 88.3429 88.6908 88.6460 88.8523 

SNR 28.0998 29.1726 29.2835 29.3714 29.3791 29.7240 29.5096 29.7104 

 

 

Figure 1. Analysis of Orthogonal Wavelet based Speech Coding 
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Table 2. Comparison of Bi-orthogonal Wavelets 

parameters 

Bi-orthogonal wavelets 

Bior1.3 Bior2.2 Bior2.6 Bior3.1 Bior3.5 Bior3.9 Bior5.5 

MSE 0.0024 0.0019 0.0017 0.0023 0.0017 0.0016 0.0020 

PSNR 72.9149 73.8476 74.2456 72.9827 74.3968 74.6115 73.7335 

RSE 82.3288 83.3138 83.0536 82.5323 82.4590 82.3445 84.1007 

COMP% 
86.1010 

 
91.6526 92.5422 96.2514 95.7644 95.8277 81.1037 

SNR 27.1069 27.8556 28.8233 26.1467 28.9790 29.4704 28.2812 

 

 

Figure 2. Analysis of Bi-orthogonal Wavelet based Speech Coding 
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Table 3. Comparison of Orthogonal Wavelets 

P
ar

am
et

er
s 

Decomposition Levels Constant 

3 4 5 6 18 19 20 21 

Db2 85.6167 84.3031 83.6538 83.2518 85.6167 84.5290 83.5815 82.4704 

Db4 87.6639 86.4964 85.8077 85.4005 87.6639 86.7998 85.7909 84.9962 

Db6 88.1314 86.9898 86.3850 85.9619 88.1314 87.1355 86.2612 85.3964 

Db8 88.0949 87.0472 86.3594 85.9369 88.0949 87.2858 86.4258 85.3435 

Db10 88.3429 87.1977 86.4993 86.0685 88.3429 87.4485 86.6885 85.6160 

Db12 88.6908 87.5208 86.8431 86.4080 88.6908 87.6123 86.6752 85.6991 

Db16 88.6460 87.5002 86.7956 86.3556 88.6460 87.8167 86.9400 86.1746 

Db20 88.8523 87.8360  87.1137 86.6244 88.8523 87.8669 86.9581 86.9581 

Table 4. Comparison of Bi-orthogonal Wavelets 

P
ar

am
et

er
s Decomposition Levels Constant 

 

3 4 5 6 18 19 20 21 

Bior1.3 86.1010 84.7951 84.0922 83.7017 86.1010 82.0250 83.8049 82.6952 

Bior2.2 91.6526 90.9988 90.5052 90.2035 91.6526 91.0031 90.3315 89.6310 

Bior2.6 92.5422 91.9170 91.3426 90.9695 92.5422 91.9087 91.3410 90.7768 

Bior3.1 96.2514 97.2052 97.7624 98.3075 96.2514 95.8968 95.5735 95.2326 

Bior3.5 95.7644 95.7430 95.3992 95.2319 95.7644 95.3475 94.9869 94.6482 

Bior3.9 95.8277 95.4333 95.0946 94.8569 95.8277 95.4487 95.0532 94.6961 

Bior5.5 81.1037 80.1149 79.5003 78.9972 81.1037 79.6118 78.2225 76.9045 
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This paper discusses the merit of orthogonal and bi-orthogonal wavelet based speech 

encoding and decoding. We also evaluate the performance in terms of qualitative and 

quantitative parameters. The difference between the original and the reconstructed speech 

signal is insignificant. This proves that wavelet is a good tool for speech coding. It may be 

observed from out study that there is no significant difference between orthogonal and bi-

orthogonal wavelets. 

Our future work will be to encode continuous speech signal with frames. We shall also 

examine the performance of different wavelets in speech synthesis and also try to improve the 

compression ratio by removing silence and noises from the speech signal. 
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