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Abstract 

The DV-Hoplocalization method has a series of superiorities, such as high distributiveness 

and expandability, which is perfectly fit for large-scale deployment. Moreover, it may lead to 

reasonable positioning accuracy merely in isotropous dense network. In practical 

environment, most scenes are anisotropic, with unevenly distributed nodes. In this paper, 

kernel PCR method is applied to collect and utilize the correlation between hop count and 

real distance, so as to build an optimal relationship model, converting hop count information 

between nodes into the value of real distance, so that DV-Hop method may be applicable to 

different environment. Compared with existing similar and typical methods, the method 

proposed in this paper has higher environment adaptability, as well as higher positioning 

accuracy and stability. 

Keywords: Wireless Sensor Network; Range -Free Localization; Kernel Principal 

Component regression  

 

1. Introduction 

Wireless sensor network(WSN)[1-2] refers to a new type network integrating 

communication, imbedding, sensor and other technologies altogether, which is able to 

sensing, collecting and processing the information of objects in the deployment area, as well 

as to converge the sensed information to information center via random self-organizing 

wireless communication network by multi-hop relay. It is different from traditional network, 

with a series of distinctive features, such as self-organizing and dynamic nature, centering on 

data, etc. Currently, the technology has been widely applied in military, environment 

monitoring and prediction, healthcare, and other fields [3-5]. Among all these applications, it 

is an important factor to determine the occurrence position of event. Show by related 

literatures[6], approximately 80% context sensing information is correlated with node 

position. 

It is relatively a more simple method to determine the position of nodes by outfitting GPS 

to each node. However, owning to high cost, in large-scale WSN, it is actually impractical to 

deploy GPS on all nodes. By contrast, a more economical way is to deploy GPS on a small 

number of sensor nodes, so as to transform them into known nodes. On this basis, localization 

model or algorithm may be figured out according to location information of these nodes, so as 

to determine the location of unknown nodes. At present, plenty of researchers have put 

forward many models or algorithms for WSNnode localization. These algorithms may be 

divided into range-based algorithm and range-free algorithm[7,8]. The range-based algorithm 

has to measure the real distance or direction of adjacent nodes, so as to calculate the location 

of unknown nodes. This algorithm may help to improve the accuracy of distance. Yet, it 
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proposes higher requirement on nodes' hardware configuration, consumes more energy, and is 

easily affected by temperature, barrier and other environmental factors. As for this, it is not 

applicable to large-scale application. The range-free algorithm needs not to measure the real 

distance or direction between nodes. Instead, it determines the position according to network 

connectivity and other relevant information. Such algorithm is free from extra hardware 

support, leading to smaller communication consumption. Although the localization accuracy 

is low, compared with the rough precision of WSN, it is quite sufficient. As for this, range-

free method is being increasingly noticed by researchers. 

 

2. Background 

DV-Hopalgorithm [9,10] is a typical range-free location estimation algorithm, with high 

distributiveness and expandability. It is one of the distributive localization methods proposed 

based on distance vector routing and GPSlocalization ideology. The localization accuracy of 

DV-Hop algorithm mainly relies on the accuracy of estimated average distance of each hop. 

Compared with the real distance between nodes, there might be certain error. Moreover, 

topological structure of network may as well affect the localization accuracy. As for this, 

generally, DV-Hop algorithm is only applicable to isotropous dense network. The major 

reason leads to low localization accuracy of DV-Hop is fuzziness of hop distance. In other 

words, nodes with the same hop count may still come about different distances. Similarly, the 

same distance is not always created by the same hop count. Especially, in network with 

unevenly distributed nodes, average hop distance calculated with DV-Hop algorithm is hard 

to describe the average distance between nodes. Such uneven distribution is mainly resulted 

by anisotropic property of network topology. 

For a WSN, it is assumed that there is a mapping function 𝑓ℎ: ℝ2𝑑 →
ℝ,whichdescribing the real distance and hop count mapping relationship between node 

pairs. Assuming that the measured distance from node𝑐𝑖to node𝑐𝑗is described asℎ𝑖𝑗 =

𝑓ℎ(𝑐𝑖, 𝑐𝑗) , while the real Euclidean distance between nodes is 𝑑𝑖𝑗 ,if  ℎ𝑖𝑗 = 𝑓ℎ(𝑐𝑖, 𝑐𝑗) =

𝑔𝑑(𝑑𝑖𝑗), where𝑔𝑑: ℝ → ℝ then such WSN is referred to as isotropy; or else, it is called 

anisotropy[3]. Isotropous network is quite rare in true environment. Instead, most 

existing network are anisotropic[11]. Anisotropy is mainly resulted by barriers, uneven 

distribution, and failure of certain nodes, which leads to significant holes in node 

deployment area. Figure 1 shows isotropous and anisotropic network topology. 

 

  

(a)Isotropic network (b)Anisotropic network due to geographic 

structures 

Figure 1. Sensor Network Topologies 
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In order to minimize localization performance reduction caused by anisotropy of 

network topology, Doherty and other scholars [12] took point-to-point communication 

links between nodes as geometrical limiting condition of node location. Moreover, such 

link relationship was further described as a set of convex set limiting condition, 

acquiring global optimal solution with semi-definite programming and linear 

programming methods, so as to figure out nodes' location. Convex programming is a 

centralized localization algorithm, with high computation cost. In order to improve the 

efficiency, beacon nodes shall be deployed on network borders. Or else, estimation of 

nodes' location may deviate towards the center of the network. Because of these 

problems, optimal localization method may not be taken as a feasible location 

estimation strategy. 

In recent years, learning machine method [13-15] is adopted to excavate knowledge 

concealed in data collection, so as to figure out the localization model. This has become 

a development tendency of researches on localization of sensor network. For range-free 

method, learning machine method may be used to calculate the similarity between nodes 

based on their connectivity, i.e. training a prediction model according to the similarity 

or dissimilarity between nodes. On this basis, nodes' relative coordinates or absolute 

coordinates may be predicted with the prediction model. As the prediction model 

preserves topological information of network to the largest extent, the influence of 

anisotropy of network topology is greatly reduced[16-18]. In addition, localization 

algorithm based on learning is able to tolerate certain measurement noise. Some 

algorithms are even insensitive to measurement noise. As for this, there is no high 

requirement on applying which measurement technology to compute similarity or 

dissimilarity between nodes. 

MDS-MAP(P)[19]is a typical learning-based localization method. Based on the 

original centralized MDS-MAPalgorithm, a distributive localization strategy MDS-

MAP(P) was developed. Drawing support from local sub-graph connectivity 

information, the method figures out relative coordinate sub-graph within its range with 

MDS-MAP method. Finally, the sub-graph is merged into a global graph. As MDS-

MAP is not directly applied in the whole network, the performance of MDS-MAP(P) in 

anisotropic network topology is greatly improved. Such divide-and-conquer method 

improves localization accuracy to some extent. However, Method MDS-MAP is 

complicated in computation, and high in communication volume. Moreover, it is 

affected by the size of local area. Furthermore, when merging sub-graph into global 

graph, the method may as well be affected by accumulative error. HCQ(hop-count 

quantization)algorithm[20]is mentioned in literatures. The algorithm divides neighbor 

nodes within one hop's distance into three disjoint sets according to their practical hop 

count. Drawing support from certain calculation methods, hop count between nodes is 

corrected to a non-integer value. On this basis, multi-dimensional calculation method is 

adopted to figure out the location of unknown nodes according to the precise hop count. 

In order to avoid the size problem of local area, and to reduce the dependency of 

network deployment condition, Hyuk et al. proposed thePDM(Proximity Distance 

Map)algoritm [18]. The PDM correlated collected real distance with hop distance, so as 

to build an optimal linear conversion matrixT. Drawing support from the matrixT, hop 

distance between nodes is converted into estimated distance, so as to compensate 

measurement error caused by uneven distribution of nodes. In addition, in the 

conversion process, TSVD(Truncated Singular Value Decomposition) is applied for 

truncation to reduce the influence caused by noise and co-linearity. However, the 

fuzziness between hop distance and distance is not a linear relationship, but a nonlinear 
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relationship. For nonlinear problems, linear method is unable to correctly describe 

nonlinear structure in data. Researchers have found that, to build model with kernel 

trick [22, 23] is an effective solution. As is shown in Figure 2, a certain kernel function 

is adopted to map the raw data into proper high-dimensional feature space. As for this, 

nonlinear problem hard to be solved in the input space is converted into linear problem 

in feature space. 
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Figure 2. The Kernel Function𝝓 Transform the Data into a Higher 
Dimensional Feature Space to Make it Possible to Perform the Linear 

Separation 

 
Jaehun et al. [16, 17]put to use Kernel-based SVM(Support Vector Machine) 

regression method, which perfectly solves the hop-distance ambiguityprolem. The 

algorithm perfectly solved the nonlinear relationship between hop-count and real 

distance, further improving the localization accuracy. SVM [23,24]is a learning 

algorithm developed by Vapnik based on statistical learning theory. It minimizes 

practical risk with structural risk minimization principle, with high generalization 

ability, and may be used to process high-dimensional small sample data. SVM training 

algorithm has to solve a linear constraint quadratic programming problem. However, 

Jaehun only considered utilizing kernel method to make nonlinear data linearly 

detachable, and that SVM regression (SVR)method based on traditional approach was 

adopted.SVR is traditionally used with only one output, which repeatedly constructs the 

relationship between distance and hop distance node by node, increasing the 

computation volume. In addition, in order to avoid collinearity problem in regressive 

process, traditional SVR method normalizes parameters manually, so that estimation 

method is hard to adapt to localization scale variation. 

PCR(Principal component Rgression) [25,26]is an approach similar to TSVD. It is 

actually a multiple regression method, putting to use truncation method to reduce the 

influence of noise and co-linearity. Yet, PCR is still different from TSVD. The major 

differences include: PCR employs PCA(Principal component Analysis) [26] as the 

pioneer to seek for linear regressor. After data centralization, PCA method measure data 

variance by identifying the so-called principal axis. Such principal axis shows the 

direction of maximum variance following the descending order of significance. After 

abandoning main direction when certain variances are lower than a certain threshold, 

PCR method is endowed with noise reduction ability, so as to reduce regressive 

variance's influence on regression prediction precision. As for this, PCR has high 

prediction ability. In addition, before PCA computation, data shall be standardized, i.e., 
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being subtracted by their respective mean value, and being divided by their respective 

standard deviation, so as to eliminate data submergence caused by dimension difference. 

For range-free localization algorithm, data standardization is helpful in solving the 

inconsistency between hop-count and real distance, so as to make predicted value closer 

to practical prediction direction. Inspired by kernel method, Schölkopf et al., [27] put 

forward KPCA(Kernel Principal component analysis). In high-dimensional space, 

samples have better linear divisibility, so that compared with PCA, KPCA has better 

identification performance. Based on KPCA, Rosipal et al., [28] promoted linear PCR 

to nonlinear KPCR(Kernel Principal component Rgression). Similarly, KPCR has 

higher prediction precision than linear PCR. Owing to the superiorities of PCA and 

KPCA, they have been successfully applied in range-based localization approaches, 

with high loclization accuracy achieved. However, they are seldom applied in range-

free localization approaches, especially KPCR-based method. 

The paper is devoted to research on range-free DV-Hoplocalization problems. In 

order to reduce the influence of network anisotropy range-free localizationaccuracy, a 

KPCR-based range-free localization method is raised, referred to as KPCR-DVHop. 

The algorithm reserves all advantages of the original DV-Hop method, which is able to 

effectively identify anisotropic network. The computation efficiency is higher than 

latest SVR-based localization method. 

The rest of the paper is organized as fellows. Section 3 proposes the model and 

presents the localization scheme of KPCR-DVHop. Simulations are provided in Section 

4 and 6 concludes the paper. 

 

3. Relevant Theory Review 

KPCR [25,29]is realized based on KPCA. Drawing support from KPCA method, the 

dimensionality is reduced. New variables obtained are taken as independent variables in 

multiple regressions, for regression calculation and analysis. It may as well be 

considered that, KPCR is to map data into feature space, and to perform PCR in the 

space. As for this, KPCA is the key to successful locazation. KPCA is an effective 

method to extract raw sample. It adopts kernel trick to stealthily project raw data into 

high-dimensional feature space, and then to realize data feature extraction in this high-

dimensional space. In the following, we are to introduce the invention of kernel 

method, and then to discuss KPCA-related problems. 

 

3.1. Kernel Trick 

Kernel trick is an effective method to extract nonlinear feature of raw sample. It adopts 

kernel method to stealthily project raw data into high-dimensional feature spaceℱ, and then to 

realize data feature extraction in this high-dimensional space. 

In the year of 1995, Vapnik[24]put forward a theory based on statistical learning theory 

rule in small sample circumstance, which was an important development and supplement to 

traditional statistical learning, providing theoretical framework for learning theory and 

method with limited samples. With the theory as the foundation, a new universal learning 

algorithm is developed: SVM. Compared with previous approaches, SVM has plenty of 

theoretical and practical advantages. Initially, Support Vectors (SV) is used to solve mode 

identification problems, with the aim to find decision-making rules with better generalization 

performance. As a matter of fact, SV is a sub-set of training set. Optimal classification of SV 

is equal to classification of training set. At present, statistical learning theory and SVM have 

been taken as research hotspots by scholars in machine learning community. 
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Definition 1: For any two samples in the raw input space𝑥, 𝑦 ∈ Δ, assuming that𝜙：Δ →
ℱ is a mapping from a non-linearly detachable raw input spaceΔ to a linearly detachable high-

dimensional feature spaceℱ, if there is functionκcomplying with: 

 κ(𝑥, 𝑦) = (𝜙(𝑥), 𝜙(𝑦)) (1) 

Functionκ is hereby referred to as inner product function or kernel function. 

In general, kernel function has the following two features: 

(1) Symmetry 

 κ(𝑥, 𝑦) = κ(𝑦, 𝑥) (2) 

(2)  Satisfying Cauchy-Schwarz inequation 

 (κ(𝑥, 𝑦))
2

≤ κ(𝑥, 𝑥) ∙ κ(𝑦, 𝑦) (3) 

The below two lemmas gives necessary and sufficient condition as a kernel function: 

Firstly, kernel function is known to be symmetrical. Moreover, for any real vector V =
(𝑣1, , 𝑣𝑚)𝑇, there is: 

 

V𝑇𝐾𝑉 = ‖∑ 𝑣𝑖𝜙(𝑥𝑖)

𝑚

𝑖=1

‖

2

≥ 0 (4) 

Where,  K = (𝜅(𝑥𝑖 , 𝑥𝑗))
𝑖,𝑗=1,⋯,𝑚

is a matrix with element as 𝑚 × 𝑚 ; x𝑖 ∈ Δ(𝑖 =

1, ⋯ , 𝑚);mrefers to the number of samples. Hereby, the following lemmas are true: 

Lemma 1: Assumingκ(𝑥, 𝑦)that is a real symmetric function in a finite space,κ(𝑥, 𝑦)is 

kernel function, if and only if K = (𝜅(𝑥𝑖, 𝑥𝑗))
𝑖,𝑗=1,⋯,𝑚

 is positive semi-definite matrix. 

More generally, according to Hilbert-Schmidt theoryκ(𝑥, 𝑦)might be any symmetrical 

function satisfying the below ordinary condition: 

Lemma 2(Mercer theorem)[23]: Symmetrical Functionκ(𝑥, 𝑦)under 𝐿2shall be ensured to 

be expanded as Positive Coefficientα𝑘 > 0: 

 
κ(𝑥, 𝑦) = ∑ 𝛼𝑘𝜙𝑘

∞

𝑘=1

(𝑥)𝜙𝑘(𝑦) (5) 

In other words, κ(𝑥, 𝑦)describes an inner product in a certain feature space, the necessary and 

sufficient condition shall be: 

 ∫ 𝑔2(𝑢) 𝑑𝑢 < ∞ (6) 

For all𝑔 ≠ 0, the below conditions shall be satisfied: 

 ∬ 𝜅(𝑥, 𝑦) 𝑔(𝑢)𝑔(𝑣)𝑑𝑢𝑑𝑣 > 0 (7) 

At present, frequently studied kernel functions are divided into three categories[22]. All of 

them may be matched up with existing methods. 

(1) Inner product function adopting polynomial form, i.e.: 

 𝜅(𝑥, 𝑦) = ((𝑥 ∙ 𝑦) + 𝑐)
𝑞
 (8) 

(2) Inner product function adopting radial basis (RB), i.e.: 

 𝜅(𝑥, 𝑦) = 𝑒𝑥𝑝 (
−|𝑥 − 𝑦|2

2𝜎2⁄ ) (9) 

(3) Sigmoid inner product function, such as: 

 𝜅(𝑥, 𝑦) = tanh(𝑣(𝑥, 𝑦) + 𝑐) (10) 

In the aforementioned three commonly applied kernel functions, Parameterq, σ, v, c,are 

constant. Selection of these constants is based on experience. Currently, selection of these 

parameters is lack of an effective and universal standard. As is known to all, selecting an 
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appropriate parameter is quite significant to the solution of problem. Model selection 

technology provides a principle for selection of kernel parameter. Gaussian kernel function 

reserves the distance similarity of input space. In this paper, Gaussian kernel function is 

adopted to calculate the similarity between nodes. 

 

3.2. Kernel Principal Component Analysis 

The basic ideology of KPCA: firstly, nonlinear mapping is adopted to project raw sample 

nonlinearly detachable from input space into a linearly detachable high-dimensional (or even 

infinite-dimensional) feature space. On this basis, principal component analysis is to be 

performed in this new space. In order to avoid linearly un-detachable problem, kernel 

technology in SVM is introduced, i.e., to replace inner product computation of sample in 

feature space with kernel function satisfying Mercer condition. New, the principal component 

analysis algorithm is described as follows: 

A group of training data  X = [𝑥1,⋯,𝑥𝑚]in raw space is given, while the corresponding 

covariance matrix shall be: 

 
𝑆𝑡

𝜙
=

1

𝑚
∑(𝜙(𝑥𝑖) − 𝑚0

𝜙
)

𝑚

𝑖=1

(𝜙(𝑥𝑖) − 𝑚0
𝜙

)
𝑇
 （11） 

Where,  𝜙(𝑥𝑖) refers to corresponding data of 𝑥𝑖 in feature space via mapping 

function𝜙;m0is the mean value of all samples in the high dimensional space ℱ, with the 

expression form shown in Equation 12. 
 

𝑚0
𝜙

=
1

𝑚
∑ 𝜙(𝑥𝑖)

𝑚

𝑖=1

 （12） 

Similar to the extraction process of linear PCA feature, our purpose is to extract feature 

vector corresponding to non-zero eigenvalue, so as to constitute the projection space. Yet, it is 

quite complicate to realize data centralization with the above formula. Schölkopf put forward 

a solution method assuming that the data had already been centralized. As for this, covariance 

matrix in high-dimensional space may be figured out via the below formula: 

 
𝑆𝑡

𝜙
=

1

𝑚
∑ 𝜙(𝑥𝑖)𝜙(𝑥𝑖)𝑇

𝑚

𝑖=1
 （13） 

Order: 
 Q = [𝜙(𝑥𝑖), ⋯ , 𝜙(𝑥𝑚)] （14） 

At this point, covariance matrix𝑆𝑡
𝜙

may be converted to the below form: 

 
𝑆𝑡

𝜙
=

1

𝑚
𝑄𝑄𝑇 （15） 

We firstly define the below𝑚 × 𝑚kernel matrixK = Q𝑇𝑄. Elements in the matrix may be 

acquired via kernel trick: 
 K𝑖𝑗 = 𝜙(𝑥𝑖)𝑇𝜙(𝑥𝑖) = (𝜙(𝑥𝑖) ∙ 𝜙(𝑥𝑖)) = 𝜅(𝑥𝑖 , 𝑥𝑗) (16) 

Through calculation, feature vectorv1, v2, ⋯ , v𝑚corresponding to the first𝑚largest non-

zero eigenvalueλ1 ≥ λ2 ≥ ⋯ ≥ λ𝑚 in matrixKmay be figured out. As for this, orthogonal 

eigenvector φ1, ⋯ , φ𝑙 corresponding to the firstlnon-zero eigenvalue λ1 ≥ λ2 ≥ ⋯ ≥ λ𝑙 in 

covariance matrix𝑆𝑡
𝜙

shall be: 

 𝜑𝑖 =
1

√𝜆𝑖

𝑄v𝑖  𝑖 = 1,2, ⋯ , 𝑙 (17) 



International Journal of Future Generation Communication and Networking 

Vol.7, No.5 (2014) 

 

 

170  Copyright ⓒ 2014 SERSC 

Now, the problem is to acquire the eigenvector in Formula (18). Actually, if matrixKis 

centralized, we may get: 
 K̃ = K − 1𝑚 ∙ K − K ∙ 1𝑚 + 1𝑚 ∙ K ∙ 1𝑚 (18) 

Where,1mis unit matrix with the element as1 m⁄ . 

If having obtainedmeigenvector ofK̃, it is possible to obtainmeigenvectorφ1, ⋯ , φm,ofSt
ϕ

. 

As for this, for a new sample𝑥, projection realized by KPCA is shown below: 
 y = P𝑇𝜙(𝑥) (19) 

Where P = [φ1, ⋯ , φm] 
Putting Formula (15) and Formula (18) into the above Equation (19), we may obtain: 

 

𝑦 = 𝑃𝑇𝜙(𝑥) = [
𝑣1  

√𝜆1

, ⋯ ,
𝑣𝑚  

√𝜆𝑚

]

𝑇

𝑄𝜙(𝑥) 

    = [
𝑣1  

√𝜆1

, ⋯ ,
𝑣𝑚  

√𝜆𝑚

]

𝑇

[𝜅(𝑥1, 𝑥), ⋯ , 𝜅(𝑥𝑚, 𝑥)]𝑇   𝑖 = 1,2, ⋯ , 𝑚 

(20) 

As for this, in the new feature space, KPCA has all mathematical feature of PCA, as well 

as other unique superiorities: 

(1) When principal component of the same amount is adopted, KPCA leads to better 

identification performance than PCA. 

(2) KPCA may further improve the identification performance by providing more 

components than linear situation. In other words, KPCA is able to extract components 

exceeding the dimensionality of raw input space. Assuming that the number of sample𝑚is 

larger than the dimensionality𝑑of raw input space, linear PCA may only figure outdnon-zero 

eigenvalue. By contrast, KPCA is able to extractmnon-zero eigenvalue, which is impossible 

to linear PCA. 

(3) Computation complexity of KPCA may not increase along with the rapid growth of 

dimensionality converted space. It is only related with the dimensionality of raw input space, 

while irrelevant with the dimensionality of converted space. 

(4) Different from other nonlinear PCA, the essence of KPCA is to figure out the 

eigenvalue and eigenvector of matrixK = (𝜅(𝑥𝑖 , 𝑥𝑗))
𝑖,𝑗=1,⋯,𝑚

 (𝑚 refers to the number of 

training sample), which does not involve nonlinear optimization. 

Owing to the above superiorities, KPCA is perfect applied in mode identification, data 

compression and other related fields. However, we know that, matrix K in feature space ℱ is 

a𝑚 × 𝑚 matrix. When the number of training sample 𝑚is large, the computation efficiency of 

KPCA will be greatly improved. Currently, plenty of literatures have made explanation on 

this problem via different angles. In addition, Suykens put to use the ideology of least square 

SVM classifier, explaining PCA and KPCA from the angle of constrained optimization, 

providing us with a brand new knowledge on PCA and KPCA. Traditional PCA is lack of 

probability model structure, while such structure is quite significant to mixed model and BA 

decision-making. On the other hand, traditional PCA is only able to extract second order 

information. Zhou studied KPCA from the angle of probability, combining probability PCA 

(PPCA) with KPCA, and put forward the method of KPPCA, which overcame the two 

disadvantages of PCA. At present, kernel principle component analysis has become an 

effective method for kernel-based feature extraction. 
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4. Localization Algorithm with Kernel Principal Regression 
 

4.1. Problem Statement 

The paper is mainly designed to study location estimation of 𝑛 sensor nodes in two-

dimensional area. Assuming that there are𝑛 nodes deployed in the area, listed as𝑋1, ⋯ , 𝑋𝑛,. 

ID of these nodes is separately1, ⋯ , 𝑛. The real coordinates of node𝑋𝑖(𝑖 ∈ 𝑛)shall bec𝑖(c𝑖 ∈
ℝ2) . Assuming that the first 𝑚(𝑚 ≪ 𝑛)nodes in𝑛  are beacon nodes, while the rest𝑛 −
𝑚nodes are unknown nodes, their coordinates have to be estimated via localization algorithm, 

so as to make estimated coordinates closer to the real coordinates of unknown nodes. 

DV-Hoplocalization algorithm [9,30]is range-free algorithm proposed by DragosNiculescu 

et al. of Rutgers University. Its localization principle: firstly, typical distance vector exchange 

protocol is applied to figure out the hop count all nodes from known nodes. Having obtained 

the location of known nodes and the hop count, known nodes will calculate network average 

hop distance via ∅𝑖 = ∑ 𝑑𝑖𝑗
𝑚
𝑗=1 ∑ ℎ𝑖𝑗

𝑚
𝑗=1⁄ . Where, 𝑑𝑖𝑗 and  ℎ𝑖𝑗 are separate beacon node 𝑖 to 

beacon node. When receiving correction value, unknown node𝑠will be able to figure out its 

distance𝑑̂𝑠𝑖 = ∅𝑖ℎ𝑠𝑖 from known nodes according to hop countℎ𝑠𝑖 and correction value𝑑̂𝑠𝑖 . 

When unknown nodes have acquired the distance to three or more known nodes, trilateration 

localization shall be performed in the third phase. As for this, two kind of information is 

mainly considered in this paper: hop count and real Euclidean distance between nodes. 

Assuming that measured data and real data collected by sensor node 𝑖(𝑖 ∈ 𝑚) may be 

separately described by two groups of data sets, denoting 𝐡𝑖 = [ℎ𝑖1, ℎ𝑖2, ⋯ ℎ𝑖𝑚]𝑇 as the 

minimum hop count to𝑚known nodes, while𝐝𝑖 = [𝑑𝑖1, 𝑑𝑖2, ⋯ , 𝑑𝑖𝑚]𝑇 as the real distance 

between corresponding nodes. After a period of time, two data matrixes may be obtained 

between beacon nodes, i.e. minimum hop count matrix 𝐇 = [𝐡1, 𝐡2, ⋯ , 𝐡𝑚] and real 

Euclidean distance matrix𝐃 = [𝐝1, 𝐝2, ⋯ , 𝐝𝑚]. 
KPCR-DVHop method put forward in this paper is improved based on PDM method. 

According to PDM method, there is certain relationship between hop count and real 

Euclidean distance of beacon nodes. However, affected by environment, such relationship is 

nonlinear. According to kernel learning principle, data is projected into high-dimensional 

feature spaceℱ(with the dimensionality asM, M ≤ ∞), while the orginally non-detachable 

data becomes detachable. Drawing support from mapping functionΦ, dimensionality of hop 

count matrix 𝐇 is increased to feature space, obtaining Φ(𝐇) = (𝜙(𝐡1), ⋯ , 𝜙(𝐡𝑚))
𝑇

. 

Assuming that the data has been centralized, i.e. ∑ 𝜙(𝐡𝑖)𝑚
𝑖=1 = 0 ; Then, the relationship 

between hop count and real distance shall be described as: 
 𝐃 = Φ(𝐇)𝛈 + 𝛜 (21) 

Where, 𝛈 = (𝜂1𝜂2   ⋯  𝜂M)𝑇refers to regression coefficient vector; 𝛜refers to random error 

vector in feature space. 

In order to figure out the optimal relationship between hop count and real distance, the 

equation has to figure out the optimal estimation value 𝛈̂of 𝛈 . As for this,‖𝛈‖2 shall be 

minimized. When‖𝛈‖2is minimized, we may get: 
 Φ𝑇Φ𝛈̂ = Φ𝑇 ⋅ 𝐃 (22) 

For Equation (22), there might be certain linear correlation between some vectors and other 

vectors in the same feature space. At the moment, their contribution to regression is limited. 

In addition, there might be noise in feature space as well. As for this, estimated regression 

coefficient may be acquired by calculation. Yet, the given model parameter is quite sensitive 

to sample data.In order to reduce the dimensionality for variable calculation, an effective 

way to reduce regression calculation is to perform principal analysis on independent 
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variable, using the obtained principal component to execute regression, so as to 

eliminate the influence caused by correlation between independent variables.  

4.2. Localization Algorithm With KPCR 

In learning-based WSN localization mechanism, estimation process of nodes is often 

comprised by two phases: offline training phase and online localization phase[31]. In 

offline training phase, the mapping relation is figured out according to the measured data (hop 

count) and distance of known nodes, so as to build localization model. In online localization 

phase, the obtained mapping is applied to estimate the location of unknown nodes. As KPCR 

is regression method based on KPCA, when having acquired the first𝑙principal components, 

Equation (21),(22) regression coefficient vector may be obtained. 

 𝛈̂ = 𝐏𝒍(𝐓𝒍
𝑻𝐓)

−𝟏
𝐓𝒍

𝑻𝐃 (23) 

Where,𝐏𝒍 = Φ𝑇Α𝑙, while the value ofΑ𝑙 = [φ1, ⋯ , φl], φiis shown in Equation 17. Equation 

23may as well be described as: 

 𝛈̂ = 𝚽𝑇𝚨𝑙(𝐓𝒍
𝑻𝐓)

−𝟏
𝐓𝒍

𝑻𝐃 (24) 

In the training phase, KPCR method may be used to figure out the relationship between 

hop count and distance of known nodes (Equation 24). At the moment, according to the 

model built in training phase, it is possible to figure out the prediction equation for the 

distance from unknown nodes to known nodes. 

 𝐃̂ = 𝚽𝛈̂ 

     = 𝚽𝚽𝑻𝚨𝑙(𝐓𝒍
𝑻𝐓)

−𝟏
𝐓𝒍

𝑻𝐃 

     = 𝐊𝚨𝑙(𝐓𝒍
𝑻𝐓)

−𝟏
𝐓𝒍

𝑻𝐃 

(25) 

From Equation (25), we may find that, in each principal component analysis, it is only 

necessary to extract the first 𝑙 eigenvectors in kernel matrix 𝐊 , so as to figure out 

corresponding𝚨𝑙  and there is no need to calculate 𝐏𝒍 and 𝛈̂  Equation 25 may as well be 

described as: 
 

𝑓(𝐡) = ∑ 𝜂𝑖𝐊(𝐡, 𝐡𝑖)

𝑚

𝑖=1

 (26) 

In online localization phase, when unknown nodes have obtained the hop count to known 

nodes, the prediction model (Equation 25 or 26) will be applied to estimate the distance to 

known nodes. Before the estimation, kernel function𝐊(𝐡, 𝐡𝑖)shall be centralized with the 

below method: 
 𝐊́ = (𝐊́ − (𝟏 𝒎⁄ )𝟏𝒏−𝒎𝟏𝒎

𝑻 𝐊̅)(𝐈𝒎 − (𝟏 𝒎⁄ )𝟏𝒎𝟏𝒎
𝑻 ) (27) 

In the equation,𝐊̅ refers to kernel matrix on building of the model,𝐊́stands for kernel 

matrix obtained with the measured distance between unknown nodes and known nodes, 

𝟏𝑛−𝑚 is full 𝟏  column vector of 𝑛 − 𝑚 dimensionalities. When the hop count between 

unknown nodes and known nodes is put into Equation (25-27) to estimate corresponding 

physical distance of unknown nodes, trilateration or polygon method will be applied to 

estimate the coordinate location of unknown nodes. 

 

5. Performance Evaluation 

One of the important features of range-free localization method is that, it is quite fit for 

large-scale deployment. This requires thousands of sensor nodes, while in labs, it is difficult 

to realize such large-scale real network. As for this, in researches on large-scale range-free 
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node localization algorithm, software simulation is often applied to estimate the advantages 

and disadvantages of localization algorithm. 

In this section, the performance of KPCR-DVHop algorithm is to be analyzed and assessed 

via simulation experiment. Matlab2013b software is employed to analyze and compare 

methods proposed in this paper. In the experiment, all nodes are evenly distributed in two-

dimensional space. In order to reduce the one-sidedness of single experiment, each 

deployment goes through 50 simulations while nodes in each experiment are randomly re-

distributed in the experiment area. Mean value of 50RMS(Root Mean Squares)[32] is taken as 

the assessment basis. 

In order to assess the performance of methods proposed in this paper, nodes are assumed to 

be randomly or regularly deployed in the monitoring area. In addition, in order to evaluate the 

adaptability of the proposed methods to network topology anisotropy, obstruction is added in 

the aforementioned two deployment strategies, i.e. assuming that there is a large obstruction 

in the deployment area, impeding the direct communication between nodes. Such area is of C- 

shape. In allusion to different network topology structure, nodes are re-deployed in the same 

area for several times, assessing the average localization error. This experiment also compare 

our method with three previous methods: (1)The classic DV-Hop method proposed in[9]; (2) 

PDM proposed in[18];and (3) SVR proposed in [16]in two group experiments.Furthermore, 

for fairness, in PDM localization, we denoted abandoning threshold in TSVD as 3, i.e. 

abandoning eigenvectors with eigenvalue less than or equal to 3. There is certain relationship 

between kernel parameterσand the distance between training samples. In the experiment, we 

assumeσas 50 times of the average distance between sample nodes. Configuration of C and ε 

in SVR method uses for reference related literature[33], while C is also configured based 

onσ according to related literature[34]. 

 

5.1. Localization Results with Regularly Deployed Sensors 

The main purpose of regular deployment of nodes in the monitoring area is to investigate 

the influence of beacon node collinearity on localization accuracy. C-shaped deployment is 

designed to test the influence of none-line-of-sight problem on localization accuracy. 

In the experiment, nodes are regularly deployed in195units × 195units, while the side 

length of grid is15units. Without obstruction, have totally 196 nodes. Obstruction150units ×
75unitsis deployed in C-shaped area, while the number of nodes is changed to 156. 10-20 

nodes are selected from these nodes as beacon nodes, while location of these beacon nodes is 

assumed having been given. Fig.3 shows the final localizationresult of 12 beacon nodes in a 

square area. Circles refer to unknown nodes, while squares refer to beacon nodes. Straight 

lines connect the real coordinates and estimated coordinates of unknown nodes. Fig.3(a) 

shows a certain localization result with regularly deployed 12 beacon nodes, and the RMS is 

3.75. Fig.3(b) shows a certain localization result with regularly deployed 12 beacon nodes in 

C-shaped area, while the R is 4.005. 
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(a)RMS error is 3.75 (b) RMS error is 4.005 

Figure 3. Localization Results with Regularly Deployed in 2D Environment 

 

Figure 4(a-b) shows RMS variation curve of 4 localization methods, with the number of 

beacon nodes varying from 10 to 20. Figure a is RMS variation curve for regular deployment 

in square area. Figure b is R variation curve for regular deployment in C-shaped area. It may 

be easily seen from Figure 4(a-b) that, RMS value of DV-Hop is the highest, while the curve 

fluctuates up and down. RMS value of C-shaped area is higher than square area. There are 

mainly three reasons leading to the result: 

1. DV-Hop algorithm is a localization method using for reference distance vector 

routing, replacing straight line distance between nodes with hop distance between nodes. As 

for this, the localization performance is high only when nodes are evenly distributed. 

2. The final estimation of DV-Hop relies on LS(Least Squares). LS is an unbiased 

estimation method, quite sensitive to ill-posed problem. For location estimation algorithm, co-

linearity or approximate co-linearity of beacon nodes for localization may lead to major 

estimation error. Increment of beacon nodes also improved the probability of beacon node co-

linearity or approximate co-linearity. 

3. DV-Hop method takes advantage of LS to figure out the regression coefficient 

between hop distance and coordinate. LS method applied has not yet performed 

standardization operation on data. As for this, direct computation between data of different 

dimensionality may inevitably lead to data submergence, and the estimation value is 

inevitably unstable. 

Because of the aforementioned three problems, as for DV-Hop algorithm, in regular 

deployment, the RMS value of square area is larger than 4, while the RMS value of C-shaped 

area is larger than 6 or even close to 7. 

From Fig.4, we may find that, in allusion to the rest improved DV-Hop methods, in regular 

deployment, the RMS value of square area varies from 3 to 4, while the RMS value of C-

shaped area is most between 5 and 4. Where, the RMS descending tendency of RMS value of 

PDM method is obviously smaller than that of DV-Hop algorithm along with the increment of 

beacon nodes. PDM method makes use of T to construct the relationship between hop count 

and distance. To some extent, TSVD compensates distance estimation in network with 

unevenly distributed network. However, TSVD is a linear method, which is difficult to realize 

optimal conversion matrix in nonlinear hop count and distance relationship. In addition, P 

also ignores the dimensionality factor between hop count and distance. The method based on 
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SVR, as well as KPCr-DVHop method proposed in this paper decreases along with the 

decrement of beacon nodes, while the RMS value is smaller than that of PDM method. 

Localizationmethod based on SVR and KPCR-DVHop method are based on kernel learning. 

To some extent, the two methods may effectively differentiate the fuzzy relationship between 

hop count and distance. SVR method partition data by constructing optimal classification 

hyper-plane, which is a multi-input and single-output method. However, for range-free 

localization methods, there is multi-value to multi-value relationship between hop count and 

distance. When adopting SVR, correlation between multiple values is not considered, while 

parameter adjustment is quite complicated. KPCR is a multiple regression method, and its 

regression takes into consideration the correlation between parameters, while parameter 

adjustment is quite simple. As for this, localization performance of such KPCR-DVHop 

method is better than SVR. 

 

  

(a) RMS error of regular deployment in 

square area 

(b) RMS error of regular deployment in C-

shape area 

Figure 4. Simulation Results of the Regularly Deployed Sensor Network with 
Different Number of Beacons 

 

5.2. Localization Results with Randomly Deployed Sensors 

As random deployment is more close to practical situation, the experiment is mainly 

designed to test whether the algorithm is applicable to different real situations. Similarly, 

random deployment experiment also includes two situations, C-shaped area with obstruction 

and square area without obstruction. In the two experiments, 200 nodes are randomly 

deployed in200units × 200unitsmonitoring area. Similar to regular deployment, compare 

DV-Hop ,PDM and SVR three localization methods, so as to evaluate RMS variation of the 

four algorithms along with the change of node quantity. In situation with obstruction, 

an150units × 75unitsobject is placed in the deployment area, so as to manually impede 

communication between nodes in this area. 10 to 20 beacons nodes are selected from these 

nodes as beacon nodes, and their location is assumed to be known. 

Figure 5(a) shows the final localization result of 12 beacon nodes in a square area. Figure a 

shows a certain localization result with regularly deployed 12 beacon nodes, and the RMS is 

about 3.371; Figure 5(b) shows a certain localization result with regularly deployed 12 beacon 

nodes in C-shaped area, while the RMS is about 4.05. 
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(a)RMS error is 3.371 (b) RMS error is 4.05 

Figure 5. Localization Results with Randomly Deployedin 2D Environment 

 

Figure 6(a-b) shows RMS variation curve of fourlocalization methods, with the number of 

beacon nodes varying from 10 to 20. Figure 6(a) is RMS variation curve for random 

deployment in square area. Figure 6(b) is RMS variation curve for random deployment in C-

shaped area. Similarly, nonlinear relationship between hop count and distance, beacon node 

collinearity and unification of different dimensionality are not considered, so that the 

localization result of DV-Hop is poor and unstable. Especially in C-shaped area, network 

topology anisotropy even enlarged the RMS of DV-Hop. The rest three methods are more or 

less improved than DV-Hop algorithm. Compared with Figure 4, their RMS values are more 

closer, decreasing gradually with the increment of beacon node quantity. SVR method, also 

based on kernel method, is superior to linear PDM method. KPCR-DVHop, taking into 

consideration data correlation, is superior to SVR. 

 

  

(a) RMS error of random deployment 

insquare area 

(b) RMS error of random deployment in C-

shape area 

Figure 4 Simulation Results of the Randomly Deployed Sensor Network with 
Different Number of Beacons 
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6. Conclusion 

In this paper, a KPCR-DVHop range-free localization model is proposed. The algorithm 

fully makes use of hop count and real distance information of known nodes in WSN. 

Moreover, kernel PCR method is applied to measure covariance between variables. On the 

basis of reserving the required identification information, the algorithm is able to effectively 

eliminate the correlation between information, as well as to describe samples with few 

features. On the basis of eliminating noise between variables, the method is able to avoid ill-

posed problem, which may play an effective role in WSN environment with major possible 

errors in data mining, so as to overcome issues of existing algorithm or model, such as low 

localization accuracy, and poor robustness, etc. 

Compared with similar researches, KPCR-DVHop range-free localization model shows 

high localizationaccuracy and stable performed in different network topology situations. 
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