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Abstract 

In program testing, the accurate information of path feasibility can improve the 

efficiency of static analysis. The dynamic judgment method of path feasibility needs to 

execute program, and the resultis usually not sound. On the basis of symbolic execution, 

this paper proposes a new static judgmentmethod, whichsimultaneouslycomputes two 

interval sets of each symbolic variable: possible value set and necessary value set. 

According to these range information, we can easily give the definitejudgment of a path: 

feasible, infeasible or uncertain. Experiment shows that the method is appropriate and 

efficient in case of the weakly relevant input. 
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1. Introduction 

The problem of path feasibilityjudgment, which is an important part of structure 

testing, has been studied since 1970s. The accurate information about path feasibility can 

improve the efficiency of static program analysis. Moreover, it is beneficial for testers to 

detect infeasible paths in early times, because generating test data for infeasible paths will 

consume a great deal of human and material resources in the subsequent dynamic testing 

stage. 

Weyuker
 
[1] has proved that it is an unsolvable problem to determine whether a 

program path is feasible or not. According to the study progress on path feasibility, there 

are three main strategies. 

1) To select feasible paths based on fewer decision nodes, since the fewer predicates 

means the smaller probability of infeasible paths
 
[2]. 

2)To judge infeasible paths dynamically. That is to say, to evaluate whether one path is 

feasible by the effort when generating test cases for the path [3-4]. 

3) To judge infeasible paths statically by analyzing the satisfication of path conditions 

or the effect of branch correlation
 
[5-6]. 

However, because of the uncertainty of the checking results, the first two methods are 

just suitable for most of the program paths. Although the static method cannot determine 

the feasibility of all the paths definitely, its checking result is sound, which presents the 

path feasibility accurately, and it is much useful for the program testing. 

In this paper, we propose a new judging method based on symbolic execution and 

static range analysis, which uses the extended interval arithmetic. As one of the static 

methods, it can accurately identify not only part of infeasible paths, but also part of the 

feasible paths, and this is the main contribution of this paper. 

The remainder of this paper is organized as follows. Section 2 defines the possible 

value set and necessary value set of a variable in the condition expression and gives the 
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method to compute them, Section 3 proposes the path feasibility judgment approach based 

on symbolic execution and interval analysis, and Section 4 shows our experiment results. 

Finally, Section 5 is our conclusion. 

 

2. Possible Value Set and Necessary Value Set 

The classic Interval Arithmetic is often said to have begun with Moore's book [7]
 
in 

1966 and used to solve the reliable boundary problem of numerical calculation in early 

times. Under Moore's direction and influence, general purpose interval analysis became 

available for use on physics, engineering, economy, and early computers. 

We extended the theory of interval arithmetic in paper [8] and introduced several 

concepts, such as numeric interval-set, the Boolean arithmetic and the pointer arithmetic. 

In paper [8], we defined two interval value sets of variables:possible value set and 

necessary value set, to compute the ranges of variables in a condition expression easily 

and without changing the structure of abstract syntax tree. 

Let C be a condition in program and let variables v0, v1, ..., vn be included in C, where n 

is the number of variables involved in the current scope. 

Def 1. Let E(vi) be the interval value of viright before executing the condition C, and it 

is also called the current universal value set. Then, C(v0, v1,..., vn)is a two-value function 

from E(v0)×E(v1)×…×E(vn)to {0, 1}. 

Def 2. Let          (    )denotethe possible value set of variable vi under the 

condition that C is true. Then, 

         (    ) =
{𝑥|∃ 0∃ 1…∃  −1∃  +1…∃ 𝑛 ( 0  1 …    −1 𝑥   +1 …   𝑛)}. 

Def 3.Let          (    ) denote the necessary values set of variable vi under the 

condition that C is true. Then, 

         (    ) =
{𝑥|∀ 0∀ 1…∀  −1∀  +1…∀ 𝑛 ( 0  1 …    −1 𝑥   +1 …   𝑛)}. 

According to the definitions stated above, we can obtain the following two properties. 

Property 1. 

         (¬    ) 
= {𝑥|∃ 0∃ 1…∃  −1∃  +1…∃ 𝑛¬ ( 0  1 …    −1 𝑥   +1 …   𝑛)} 
= {𝑥|¬∀ 0∀ 1…∀  −1∀  +1…∀ 𝑛 ( 0  1 …    −1 𝑥   +1 …   𝑛)} 

=～         (    ) 

= E(  ) −          (    ) 
Property 2. 

         (    ) 
= {𝑥|∃ 0∃ 1…∃  −1∃  +1…∃ 𝑛 ( 0  1 …    −1 𝑥   +1 …   𝑛)} 
= {𝑥|¬∀ 0∀ 1…∀  −1∀  +1…∀ 𝑛¬ ( 0  1 …    −1 𝑥   +1 …   𝑛)} 

=～         (¬    ) 

= E(  ) −          (¬    ) 
Let VA be the variable set consisting of all variables appeared in expression A, and let 

VB be the variable set of expression B. Thus,   = {  1     …    𝑛}, and   =
{  1     …    𝑛}. 

(1)  “NOT”(¬ ) 
         (¬  𝑥) = E(𝑥) −          (  𝑥) 
         (¬  𝑥) = E(𝑥) − posb     (  𝑥) 

(2)  “OR”( =    ) 
The possible value set of a variable x in an OR-expression and its corresponding 

condition are shown in Table 1. 
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Table 1. Posb Value of a Variable  in an OR-Expression 

posb     (  𝑥) Condition 

posb     (  𝑥)  posb     (  𝑥) 𝑥        

 (𝑥) 𝑥     𝑥     ∃ (         (   )        ) 
 (𝑥) 𝑥     𝑥     ∃ (         (   )        ) 

posb     (   ) 𝑥     𝑥     ∀ (         (   ) =       ) 
posb     (   ) 𝑥     𝑥     ∀ (         (   ) =       ) 

 

The necessary value set of a variable x in an OR-expression and its corresponding 

condition are shown in Table 2. 

Table 2. Necs Value of a Variable   in an OR-Expression 

   s     (  𝑥) Condition 

   s     (  𝑥)     s     (  𝑥) 𝑥        

   s     (  𝑥) 𝑥     𝑥     ∀ (         (   )  E( )      ) 
   s     (  𝑥) 𝑥     𝑥     ∀ (         (   )   ( )      ) 

E( ) 𝑥     𝑥     ∃ (         (   ) =  ( )      ) 
E( ) 𝑥     𝑥     ∃ (         (   ) =  ( )      ) 

 

(3) “AND” ( =      ) 
The possible value set of a variable x in an AND-expression and its corresponding 

condition are shown in Table 3. 

Table 3. Posb Value of a Variable   in an AND-Expression 

posb     (  𝑥) Condition 

posb     (  𝑥)  posb     (  𝑥) 𝑥        

posb     (   ) 𝑥     𝑥     ∀ (         (   )        ) 
posb     (   ) 𝑥     𝑥     ∀ (         (   )        ) 

  𝑥     𝑥     ∃ (         (   ) =       ) 
  𝑥     𝑥     ∃ (         (   ) =       ) 

 

The necessary value set of a variable x in an AND-expression and its corresponding 

condition are shown in Table 4. 

Table 4. Necs Value of a Variable   in an AND-Expression 

   s     (  𝑥) Condition 

   s     (  𝑥)     s     (  𝑥) 𝑥        

  𝑥     𝑥     ∃ (         (   )  E( )      ) 
  𝑥     𝑥     ∃ (         (   )   ( )      ) 

   s     (  𝑥) 𝑥     𝑥     ∀ (         (   ) =  ( )      ) 
   s     (  𝑥) 𝑥     𝑥     ∀ (         (   ) =  ( )      ) 

 

3. The Method of Path Feasibility Judgment 

According to the definitions of possible value set and necessary value set, we can see 

that the former is an overestimation of the actual value, and the latter is an 

underestimation. For a pathp, we assign a symbol for each input variable, and 

symbolically execute the path, meanwhile perform interval analysis for each symbol. 

Then, if the possible value set of some symbolsS1 is  , there exists some contradiction on 

S1and p is infeasible. Similarly, if the necessary value set of all the symbols isNOT  , p 

is feasible and the arbitrary combination of values from the necessary value sets can be a 

test case which drives the program run along the path p exactly. 
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Withthe consideration above, we give the following algorithm which calculates the 

possible value set and the necessary value set of each input variable. According to the 

output range information, we canjudgethe feasibility of the given path. Two definitions 

used in the algorithm follow. 

Def 4. Symbolic Environment    
         bE p ,where     denotes the set of 

variables, and    bE p is the set of symbolic expressions. 

Def 5. Interval Range Environment     
     b   osb            s        , 

where    b denotes the set of the symbols generated during the symbolic execution, 

 osb         is the set of possible value intervals, and   s        is the set of 

necessary value intervals. 

Algorithm 1: Path-Wise Symbolic Interval Computation 

input：a program path p、the input variable set vars 

output：the possible value set and the necessary value set of each input variable  

1: procedurepathAnalysis(Path p, VarSet vars) { 

2: for eachedgeinp { 

3:  Xitv
#
(edge)=  ; 

4:  Xsym
#
(edge)=  ; 

5: } 

6: out = entry.outEdge(); //the edgeto be analyzed in path p 

7: foreachvin vars{ 

8: updateSymbolEnv(Xsym
#
(out), v, sym}; 

9: updateIntervalEnv(Xitv
#
(out), sym, ⊤, ⊤); // to generate a new symbol sym whose interval 

is the upper bound ⊤ 

10: } 

11: node = edge.headNode(); 

12: while (node != exit) { 

13: Edge in = node.inEdge(); // the in-edge of the current node 

14:   Edge out = node.outEdge();//the out-edge of the current node 

15:   Xsym
#
(out)= Xsym

#
(in);  Xitv

#
(out)= Xitv

#
(in); //to initialize the environment of the 

out-edge with the one of the in-edge 

16: if (nodeinCalls) { //function call statement 

17: updateIntervalEnv(Xitv
#
(out), sym, sum.retValue()); // to generate a new symbol sym,and 

sumis the function summary of the called function 

18: } 

19: casenodein{ 

20: Declarations: // declaration statement 

21: for eachvinnode{ 

22: updateIntervalEnv(Xitv
#
(out), sym, ⊤);// to generate a new symbol sym whose 

interval is the upper bound ⊤ 

23: updateSymbolEnv(Xsym
#
(out), v, sym}; 

24: } 

25: Assignments: // assignment statement 

26: Varv = node.id(); // the left-hand assigned variable 

27:       convert(node.expr(), symExpr); // to replace the right-hand expression with 

its corresponding symbolic expression symExpr 

28: updateSymbolEnv(Xsym
#
(out), v, symExpr}; 

29: Tests: //condition statement 

30: convert(node.expr(),symExpr); // to replace the condition expression with its 

corresponding symbolic expression 

31: for eachsymVarinsymExpr 

32: updateIntervalEnv(Xitv
#
(edge), symVar, Interval(symExpr, symVar, boolFlag)); 

33: } 
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34: node=out.headNode(); 

35: } 

36:} 

37: procedure updateSymbolEnv(SymbolEnv se, Variable var, Expression exp) { 

38: if ( se.getExpr(var) !=null )  

39:   se.delete(var); 

40: se = se⋃{var exp}; 

41: } 

42: procedureupdateIntervalEnv(IntervalEnv ie, Symbol sym, Interval posb, Interval necs) 

{ 
43:  if ( ie.getInterval(sym) !=null ) { 

44:   if ( ie.getposbValue(sym) == ) { 

45:   abort(); 

46:  p.setStatus(“infeasible”);  

47:  } 

48:   elseie.delete(sym); 

49:  } 

50:  ie = ie⋃{sym <posb, necs>}; 

51: } 

 
Here we give an example to illustrate this algorithm. Figure 1 gives a code fragment of 

function f written in C Language. We choose two paths from the entry to the exit, P1: 1→

2→3→4→5→6→7→10, Let X and Y be the symbols corresponding to the input variables 

x and y. After performing algorithm 1 on P1, we obtain the symbolic environment and the 

interval range environment of each edge, listed in Table 5. At the edge6→7 of P1, 

posbValue(X) is  ,then P1 is identified as infeasible pathwhose execution cannot be 

caused by any set ofdata. Similarly, for another path P2: 1→2→3→4→5→6→8→9→10, 

at the last edge 9→10, necsValue(X) is {[65, 90]}and necsValue(Y) is {(- ,96]}, neither 

of them is  , P2 is a feasible path. Selected data from necsValue(X) and necsValue(Y) 

arbitrarily, we can construct one possible test case for P2,{x=75, y=10}. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. A Code Fragment of Function f 

 

 

 

1: int f(int x, int y){ 

2:  if(x>64&&x<91) 

3:  x+=32; 

4: if( y<x ) 

5:  y+=10; 

6: if (y>256) 

7:  return 0; 

8:  else 

9:  return 1; 

10: } 
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Table 5. The Symbolic Environment and Interval Range Environment on Path 
P1 

Initialization：input vars={x, y} 

edge 

Xsym
#
(edge) Xitv

#
(edge) 

symExpr(

x) 

symExpr(

y) 

posbValue(

X) 

necsValue(

X) 

posbValue

(Y) 

necsValue

(Y) 

1→2 
X Y {(－∞, +∞)} {(－∞, +∞)} 

{(－∞, 

+∞)} 

{(－∞, 

+∞)} 

2→3 
X Y {[65, 90]} {[65, 90]} 

{(－∞, 

+∞)} 

{(－∞, 

+∞)} 

3→4 
X+32 Y {[65, 90]} {[65, 90]} 

{(－∞, 

+∞)} 

{(－∞, 

+∞)} 

4→5 
X+32 Y {[65, 90]} {[65, 90]} 

{(－∞, 

121]} 

{(－∞, 

96]} 

5→6 
X+32 Y+10 {[65, 90]} {[65, 90]} 

{(－∞, 

121]} 

{(－∞, 

96]} 

6→7 X+32 Y+10 {[65, 90]} {[65, 90]}     

7→10 - - - - - - 

 

4. Experiment 

We selected several typical C programs as the experiment input. Table 6 lists the basic 

information, including the number of LOC(Line of Code), branches, parameters, and 

paths based on the branch coverage criterion. The experiment environment was set as 

follows: Intel Pentium 2.50 GHz CPU, 4.0 GB Memory and Windows 7Ultimate OS. 

Performing Algorithm 1 on each path respectively, we calculated the number of infeasible 

paths and feasible paths, the average time cost by every path, and the result is added in the 

last 3 columns. It can be seen that the number of paths identified definitely accounts for 

about 90.2%, and the average time is only 8.1ms.This approach is efficient and rapid for 

the general program. 

Table 6. The Testing Result of 10 C Programs 

Function  

name 

Metric information Result 

LOC 

Numbe

r of 

branches 

Number 

of 

parameters 

Number 

of 

paths 

Number  

of infeasible 

paths 

Number 

offeasible 

paths 

Averag

e 

time(μs) 

bonus 29 10 1 6 0 6 18,684  

days  33 17 3 52 25 27 14,684  

division 26 6 1 5 2 2 4,919  

equation 31 6 3 4 0 4 10,303  

pingpang 17 6 3 4 0 0 3,178  

prime  20 8 1 9 5 4 5,471  

lsqrt  99 10 1 14 14 0 6,045  

star  17 6 3 4 1 3 2,925  

statistics  21 8 5 5 0 5 5,524  

triangle  52 28 3 89 59 0 9,172  

 

5. Conclusion 

In static program analysis, it usually requires very difficult work to definitely judge the 

feasibility of a given path. This paper introduces a simple method of path feasibility 

judgment based on symbolic execution and extended interval arithmetic, and the checking 
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result is sound. If the result tells that one path is feasible or infeasible, it is true with the 

fact. Of course, limited by the approximation of interval arithmetic, the method is 

effective for the functions with weakly relevant input, and there may exist quite many 

paths identified uncertain. Our next work is to improve the precision of interval 

computation with complex expressions and operators. By this way, a significant accuracy 

enhancement of path feasibility identification will be achieved. 
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