
International Journal of Future Generation Communication and Networking

Vol.7, No.3 (2014), pp.205-212

http://dx.doi.org/10.14257/ijfgcn.2014.7.3.19

ISSN: 2233-7857 IJFGCN

Copyright ⓒ 2014 SERSC

A Method of Path Feasibility Judgment Based on Symbolic

Execution and Range Analysis

Ya-Wen Wang
1,2

, Ying Xing
1,3

 and Xu-Zhou Zhang
1

1
State Key Laboratory of Networking and SwitchingTechnology,Beijing University

of Posts andTelecommunications,Beijing, China
2
State Key Laboratory of Computer Architecture, Institute of Computing

Technology, Chinese Academy of Sciences, Beijing, China
3
Liaoning Technical University, Huludao, China

wangyawen@bupt.edu.cn,lovelyjamie@yeah.net, laomao22311@126.com

Abstract

In program testing, the accurate information of path feasibility can improve the

efficiency of static analysis. The dynamic judgment method of path feasibility needs to

execute program, and the resultis usually not sound. On the basis of symbolic execution,

this paper proposes a new static judgmentmethod, whichsimultaneouslycomputes two

interval sets of each symbolic variable: possible value set and necessary value set.

According to these range information, we can easily give the definitejudgment of a path:

feasible, infeasible or uncertain. Experiment shows that the method is appropriate and

efficient in case of the weakly relevant input.

Keywords:path feasibility, symbolic execution, intervalcomputation, static analysis

1. Introduction

The problem of path feasibilityjudgment, which is an important part of structure

testing, has been studied since 1970s. The accurate information about path feasibility can

improve the efficiency of static program analysis. Moreover, it is beneficial for testers to

detect infeasible paths in early times, because generating test data for infeasible paths will

consume a great deal of human and material resources in the subsequent dynamic testing

stage.

Weyuker

[1] has proved that it is an unsolvable problem to determine whether a

program path is feasible or not. According to the study progress on path feasibility, there

are three main strategies.

1) To select feasible paths based on fewer decision nodes, since the fewer predicates

means the smaller probability of infeasible paths

[2].

2)To judge infeasible paths dynamically. That is to say, to evaluate whether one path is

feasible by the effort when generating test cases for the path [3-4].

3) To judge infeasible paths statically by analyzing the satisfication of path conditions

or the effect of branch correlation

[5-6].

However, because of the uncertainty of the checking results, the first two methods are

just suitable for most of the program paths. Although the static method cannot determine

the feasibility of all the paths definitely, its checking result is sound, which presents the

path feasibility accurately, and it is much useful for the program testing.

In this paper, we propose a new judging method based on symbolic execution and

static range analysis, which uses the extended interval arithmetic. As one of the static

methods, it can accurately identify not only part of infeasible paths, but also part of the

feasible paths, and this is the main contribution of this paper.

The remainder of this paper is organized as follows. Section 2 defines the possible

value set and necessary value set of a variable in the condition expression and gives the

International Journal of Future Generation Communication and Networking

Vol.7, No.3 (2014)

206 Copyright ⓒ 2014 SERSC

method to compute them, Section 3 proposes the path feasibility judgment approach based

on symbolic execution and interval analysis, and Section 4 shows our experiment results.

Finally, Section 5 is our conclusion.

2. Possible Value Set and Necessary Value Set

The classic Interval Arithmetic is often said to have begun with Moore's book [7]

in

1966 and used to solve the reliable boundary problem of numerical calculation in early

times. Under Moore's direction and influence, general purpose interval analysis became

available for use on physics, engineering, economy, and early computers.

We extended the theory of interval arithmetic in paper [8] and introduced several

concepts, such as numeric interval-set, the Boolean arithmetic and the pointer arithmetic.

In paper [8], we defined two interval value sets of variables:possible value set and

necessary value set, to compute the ranges of variables in a condition expression easily

and without changing the structure of abstract syntax tree.

Let C be a condition in program and let variables v0, v1, ..., vn be included in C, where n

is the number of variables involved in the current scope.

Def 1. Let E(vi) be the interval value of viright before executing the condition C, and it

is also called the current universal value set. Then, C(v0, v1,..., vn)is a two-value function

from E(v0)×E(v1)×…×E(vn)to {0, 1}.

Def 2. Let ()denotethe possible value set of variable vi under the

condition that C is true. Then,

 () =
{𝑥|∃ 0∃ 1…∃ −1∃ +1…∃ 𝑛 (0 1 … −1 𝑥 +1 … 𝑛)}.

Def 3.Let () denote the necessary values set of variable vi under the

condition that C is true. Then,

 () =
{𝑥|∀ 0∀ 1…∀ −1∀ +1…∀ 𝑛 (0 1 … −1 𝑥 +1 … 𝑛)}.

According to the definitions stated above, we can obtain the following two properties.

Property 1.

 (¬)
= {𝑥|∃ 0∃ 1…∃ −1∃ +1…∃ 𝑛¬ (0 1 … −1 𝑥 +1 … 𝑛)}
= {𝑥|¬∀ 0∀ 1…∀ −1∀ +1…∀ 𝑛 (0 1 … −1 𝑥 +1 … 𝑛)}

=～ ()

= E() − ()
Property 2.

 ()
= {𝑥|∃ 0∃ 1…∃ −1∃ +1…∃ 𝑛 (0 1 … −1 𝑥 +1 … 𝑛)}
= {𝑥|¬∀ 0∀ 1…∀ −1∀ +1…∀ 𝑛¬ (0 1 … −1 𝑥 +1 … 𝑛)}

=～ (¬)

= E() − (¬)
Let VA be the variable set consisting of all variables appeared in expression A, and let

VB be the variable set of expression B. Thus, = { 1 … 𝑛}, and =
{ 1 … 𝑛}.

(1) “NOT”(¬)
 (¬ 𝑥) = E(𝑥) − (𝑥)
 (¬ 𝑥) = E(𝑥) − posb (𝑥)

(2) “OR”(=)
The possible value set of a variable x in an OR-expression and its corresponding

condition are shown in Table 1.

International Journal of Future Generation Communication and Networking

Vol.7, No.3 (2014)

Copyright ⓒ 2014 SERSC 207

Table 1. Posb Value of a Variable in an OR-Expression

posb (𝑥) Condition

posb (𝑥) posb (𝑥) 𝑥

 (𝑥) 𝑥 𝑥 ∃ (())
 (𝑥) 𝑥 𝑥 ∃ (())

posb () 𝑥 𝑥 ∀ (() =)
posb () 𝑥 𝑥 ∀ (() =)

The necessary value set of a variable x in an OR-expression and its corresponding

condition are shown in Table 2.

Table 2. Necs Value of a Variable in an OR-Expression

 s (𝑥) Condition

 s (𝑥) s (𝑥) 𝑥

 s (𝑥) 𝑥 𝑥 ∀ (() E())
 s (𝑥) 𝑥 𝑥 ∀ (() ())

E() 𝑥 𝑥 ∃ (() = ())
E() 𝑥 𝑥 ∃ (() = ())

(3) “AND” (=)
The possible value set of a variable x in an AND-expression and its corresponding

condition are shown in Table 3.

Table 3. Posb Value of a Variable in an AND-Expression

posb (𝑥) Condition

posb (𝑥) posb (𝑥) 𝑥

posb () 𝑥 𝑥 ∀ (())
posb () 𝑥 𝑥 ∀ (())

 𝑥 𝑥 ∃ (() =)
 𝑥 𝑥 ∃ (() =)

The necessary value set of a variable x in an AND-expression and its corresponding

condition are shown in Table 4.

Table 4. Necs Value of a Variable in an AND-Expression

 s (𝑥) Condition

 s (𝑥) s (𝑥) 𝑥

 𝑥 𝑥 ∃ (() E())
 𝑥 𝑥 ∃ (() ())

 s (𝑥) 𝑥 𝑥 ∀ (() = ())
 s (𝑥) 𝑥 𝑥 ∀ (() = ())

3. The Method of Path Feasibility Judgment

According to the definitions of possible value set and necessary value set, we can see

that the former is an overestimation of the actual value, and the latter is an

underestimation. For a pathp, we assign a symbol for each input variable, and

symbolically execute the path, meanwhile perform interval analysis for each symbol.

Then, if the possible value set of some symbolsS1 is , there exists some contradiction on

S1and p is infeasible. Similarly, if the necessary value set of all the symbols isNOT , p

is feasible and the arbitrary combination of values from the necessary value sets can be a

test case which drives the program run along the path p exactly.

International Journal of Future Generation Communication and Networking

Vol.7, No.3 (2014)

208 Copyright ⓒ 2014 SERSC

Withthe consideration above, we give the following algorithm which calculates the

possible value set and the necessary value set of each input variable. According to the

output range information, we canjudgethe feasibility of the given path. Two definitions

used in the algorithm follow.

Def 4. Symbolic Environment
 bE p ,where denotes the set of

variables, and bE p is the set of symbolic expressions.

Def 5. Interval Range Environment
 b osb s ,

where b denotes the set of the symbols generated during the symbolic execution,

 osb is the set of possible value intervals, and s is the set of

necessary value intervals.

Algorithm 1: Path-Wise Symbolic Interval Computation

input：a program path p、the input variable set vars

output：the possible value set and the necessary value set of each input variable

1: procedurepathAnalysis(Path p, VarSet vars) {

2: for eachedgeinp {

3: Xitv
#
(edge)= ;

4: Xsym
#
(edge)= ;

5: }

6: out = entry.outEdge(); //the edgeto be analyzed in path p

7: foreachvin vars{

8: updateSymbolEnv(Xsym
#
(out), v, sym};

9: updateIntervalEnv(Xitv
#
(out), sym, ⊤, ⊤); // to generate a new symbol sym whose interval

is the upper bound ⊤

10: }

11: node = edge.headNode();

12: while (node != exit) {

13: Edge in = node.inEdge(); // the in-edge of the current node

14: Edge out = node.outEdge();//the out-edge of the current node

15: Xsym
#
(out)= Xsym

#
(in); Xitv

#
(out)= Xitv

#
(in); //to initialize the environment of the

out-edge with the one of the in-edge

16: if (nodeinCalls) { //function call statement

17: updateIntervalEnv(Xitv
#
(out), sym, sum.retValue()); // to generate a new symbol sym,and

sumis the function summary of the called function

18: }

19: casenodein{

20: Declarations: // declaration statement

21: for eachvinnode{

22: updateIntervalEnv(Xitv
#
(out), sym, ⊤);// to generate a new symbol sym whose

interval is the upper bound ⊤

23: updateSymbolEnv(Xsym
#
(out), v, sym};

24: }

25: Assignments: // assignment statement

26: Varv = node.id(); // the left-hand assigned variable

27: convert(node.expr(), symExpr); // to replace the right-hand expression with

its corresponding symbolic expression symExpr

28: updateSymbolEnv(Xsym
#
(out), v, symExpr};

29: Tests: //condition statement

30: convert(node.expr(),symExpr); // to replace the condition expression with its

corresponding symbolic expression

31: for eachsymVarinsymExpr

32: updateIntervalEnv(Xitv
#
(edge), symVar, Interval(symExpr, symVar, boolFlag));

33: }

International Journal of Future Generation Communication and Networking

Vol.7, No.3 (2014)

Copyright ⓒ 2014 SERSC 209

34: node=out.headNode();

35: }

36:}

37: procedure updateSymbolEnv(SymbolEnv se, Variable var, Expression exp) {

38: if (se.getExpr(var) !=null)

39: se.delete(var);

40: se = se⋃{var exp};

41: }

42: procedureupdateIntervalEnv(IntervalEnv ie, Symbol sym, Interval posb, Interval necs)

{
43: if (ie.getInterval(sym) !=null) {

44: if (ie.getposbValue(sym) ==) {

45: abort();

46: p.setStatus(“infeasible”);

47: }

48: elseie.delete(sym);

49: }

50: ie = ie⋃{sym <posb, necs>};

51: }

Here we give an example to illustrate this algorithm. Figure 1 gives a code fragment of

function f written in C Language. We choose two paths from the entry to the exit, P1: 1→

2→3→4→5→6→7→10, Let X and Y be the symbols corresponding to the input variables

x and y. After performing algorithm 1 on P1, we obtain the symbolic environment and the

interval range environment of each edge, listed in Table 5. At the edge6→7 of P1,

posbValue(X) is ,then P1 is identified as infeasible pathwhose execution cannot be

caused by any set ofdata. Similarly, for another path P2: 1→2→3→4→5→6→8→9→10,

at the last edge 9→10, necsValue(X) is {[65, 90]}and necsValue(Y) is {(- ,96]}, neither

of them is , P2 is a feasible path. Selected data from necsValue(X) and necsValue(Y)

arbitrarily, we can construct one possible test case for P2,{x=75, y=10}.

Figure 1. A Code Fragment of Function f

1: int f(int x, int y){

2: if(x>64&&x<91)

3: x+=32;

4: if(y<x)

5: y+=10;

6: if (y>256)

7: return 0;

8: else

9: return 1;

10: }

International Journal of Future Generation Communication and Networking

Vol.7, No.3 (2014)

210 Copyright ⓒ 2014 SERSC

Table 5. The Symbolic Environment and Interval Range Environment on Path
P1

Initialization：input vars={x, y}

edge

Xsym
#
(edge) Xitv

#
(edge)

symExpr(

x)

symExpr(

y)

posbValue(

X)

necsValue(

X)

posbValue

(Y)

necsValue

(Y)

1→2
X Y {(－∞, +∞)} {(－∞, +∞)}

{(－∞,

+∞)}

{(－∞,

+∞)}

2→3
X Y {[65, 90]} {[65, 90]}

{(－∞,

+∞)}

{(－∞,

+∞)}

3→4
X+32 Y {[65, 90]} {[65, 90]}

{(－∞,

+∞)}

{(－∞,

+∞)}

4→5
X+32 Y {[65, 90]} {[65, 90]}

{(－∞,

121]}

{(－∞,

96]}

5→6
X+32 Y+10 {[65, 90]} {[65, 90]}

{(－∞,

121]}

{(－∞,

96]}

6→7 X+32 Y+10 {[65, 90]} {[65, 90]}

7→10 - - - - - -

4. Experiment

We selected several typical C programs as the experiment input. Table 6 lists the basic

information, including the number of LOC(Line of Code), branches, parameters, and

paths based on the branch coverage criterion. The experiment environment was set as

follows: Intel Pentium 2.50 GHz CPU, 4.0 GB Memory and Windows 7Ultimate OS.

Performing Algorithm 1 on each path respectively, we calculated the number of infeasible

paths and feasible paths, the average time cost by every path, and the result is added in the

last 3 columns. It can be seen that the number of paths identified definitely accounts for

about 90.2%, and the average time is only 8.1ms.This approach is efficient and rapid for

the general program.

Table 6. The Testing Result of 10 C Programs

Function

name

Metric information Result

LOC

Numbe

r of

branches

Number

of

parameters

Number

of

paths

Number

of infeasible

paths

Number

offeasible

paths

Averag

e

time(μs)

bonus 29 10 1 6 0 6 18,684

days 33 17 3 52 25 27 14,684

division 26 6 1 5 2 2 4,919

equation 31 6 3 4 0 4 10,303

pingpang 17 6 3 4 0 0 3,178

prime 20 8 1 9 5 4 5,471

lsqrt 99 10 1 14 14 0 6,045

star 17 6 3 4 1 3 2,925

statistics 21 8 5 5 0 5 5,524

triangle 52 28 3 89 59 0 9,172

5. Conclusion

In static program analysis, it usually requires very difficult work to definitely judge the

feasibility of a given path. This paper introduces a simple method of path feasibility

judgment based on symbolic execution and extended interval arithmetic, and the checking

International Journal of Future Generation Communication and Networking

Vol.7, No.3 (2014)

Copyright ⓒ 2014 SERSC 211

result is sound. If the result tells that one path is feasible or infeasible, it is true with the

fact. Of course, limited by the approximation of interval arithmetic, the method is

effective for the functions with weakly relevant input, and there may exist quite many

paths identified uncertain. Our next work is to improve the precision of interval

computation with complex expressions and operators. By this way, a significant accuracy

enhancement of path feasibility identification will be achieved.

Acknowledgement

This paper is supported by the National Natural Science Foundation of China (No.

61202080), the National Grand Fundamental Research 863 Program of China (No.

2012AA011201), the Key Project of the National Natural Science Foundation of China

(No. 91318301) and the Open Funding of State Key Laboratory of Computer Architecture

(CARCH201201).

References

[1] E. J. Weyuker, “The Applicability of Program Schema Results to Programs”, Int. J. Comput. Inf. Sci.,

vol. 8, (1979), pp. 387-403.

[2] D. Yates and N. Malevris, “Reducing the Effects of Infeasible Paths In Branch Testing”, ACM

SIGSOFT Software Engineering Notes, vol.14, no. 8, (1989), pp. 48-54.

[3] R. P. Pargas, M. J. Harrold and R. R. Peck, “Test data generation using geneticalgorithms”, Journal of

Software Testing, Verification and Reliablility, (1999) September, pp. 263-282.

[4] P. M. S. Bueno, M. Jino, “Identification of potentially infeasible program paths bymonitoring the search

for test data”, Proceedings ASE2000. The Fifteenth IEEE International Conference on Automated

Software Engineering, (2000), pp. 209-218.

[5] A. Goldberg, T. C. Wang and D. Zimmerman, “Applications of feasible path analysis toprogram testing”,

Proceedings of the 1994 International Symposium on SoftwareTesting and Analysis (ISSTA), (1994),

pp.80-94.

[6] F. Mueller and D. B. Whalley, “Avoiding conditional branches by code replication”, Proceedings of the

ACM SIGPLAN’95 Conference on Programming LanguageDesign and Implementation, SIGPLAN

Notices, (1995), pp. 56-66

[7] R. E. Moore, Interval Analysis. Englewood Cliffs, NJ: Prentice-Hall, (1966).

[8] Y. Wang, Y. Gong and J. Chen, “An application of interval analysis in software static analysis”,

Proceedings of The 5th International Conference on Embedded and Ubiquitous Computing, Shanghai,

China, (2008), pp. 367-372.

International Journal of Future Generation Communication and Networking

Vol.7, No.3 (2014)

212 Copyright ⓒ 2014 SERSC

