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Abstract 
Wireless Sensor Networks (WSNs) enable applications where target state estimation is 

essential. To deal with the energy source and communication bandwidth constraints, an 
energy-aware adaptive probabilistic tracking mechanism based on quantization was 
proposed. According to the relationship between the sensing radius and node properties 
which include stored information and position, a part of redundant nodes were removed 
under the condition on accuracy. An energy optimization model was established using the 
quantitative observations and an adaptive sampling interval strategy to reduce traffic for 
communication between sensor nodes. After that, a probabilistic sensor selection algorithm 
based on the sensing model of the node is creatively proposed to further reduce energy. In 
order to show the ascendant functions of the proposed mechanism, numerical simulation 
results including two scenarios, the single target and multiple Targets, showed that the 
algorithm can achieve the required tracking accuracy, effectively reduce energy 
consumption, and distinctly improve the performance of  WSNs. 
 

Keywords: Wireless sensor networks, Optimization quantization, Adaptive sampling 
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1. Introduction 

Wireless sensor networks have been utilized in a variety of special applications including 
monitoring [1] and target tracking [2] in last decades. Due to the limited power supplies of 
sensor nodes, how to minimize the energy consumption is a key challenge which is faced 
within the lifetime of the application [3].In order to realize appointed performance like data 
collection, WSNs are deployed in the complicated circumstance [4]. Then, one problem how 
to take advantage of existing network condition to achieve QoS of WSNs rises.  

As far as energy conservation, the collected data of sensor nodes are quantized into 
discrete data channel to determine the optimal quantization value and the transmission power 
in [5, 6], respectively. In the target tracking process, considering energy resources and 
bandwidth-constrained channel, [7] exploits a probability quantization strategy to solve the 
bandwidth scheduling problem and energy consumption at the same time, and also to meet 
the requirements for tracking accuracy. 

To save energy, an optimal sampling interval adaptively using discrete search algorithm 
based on prediction variance is proposed in [8] taking into account the sampling time 
intervals impacting on energy consumption. Another method to replace fixed sampling 



International Journal of Future Generation Communication and Networking 

Vol.6, No.5 (2013) 

 

 

138    Copyright ⓒ 2013 SERSC 

interval is investigated according to the prediction accuracy and energy costs in [9, 10]. Yilin 
Mo [11] proposes a multi-step sensor selection strategy to schedule sensors to solve a large 
class of optimization problems over energy constrained WSNs for an estimate of the process 
state by means of a Kalman filter. 

In this paper, we study the problem of energy conservation by three aspects including 
adaptive sampling intervals, bandwidth constraint, and sensor selection in the process for 
target tracking. Under the framework of the extended Kalman filter, an optimization problem 
is formed with the goal of minimizing an objective function. Furthermore, a subset of one-hop 
sensors is selected to send their collected data to a fusion center because of channel capacity 
constraints and limited energy budget. 
 
2. Problem Formulation 

In this paper, nonlinear discrete dynamic model is utilizes to express the following state 
evolution: 

          ( 1) ( ) ( ) ( , )k kX k F t X k k tω+ = ∆ + ∆                                        (1) 

where ( )X k is the state variable of target in time k , kt∆ is the sampling interval between two 
adjacent state, ( )kF t∆ is a state transition matrix, and ( , )kk tω ∆ stands for the process noise. 
In this process, given the observation ( )iz k of sensor node i at time k , the observation model 
is presented by 

       ( ) ( ( )) ( )Z k h X k V k= +                                                  (2) 

where 1 2( ) ( ( ), ( ), , ( ))T
NZ k z k z k z k=  ， 1 2( ( )) ( ( ( )), ( ( )), , ( ( )))T

Nh X k h X k h X k h X k=  ，

1 2( ) ( ( ), ( ), , ( ))T
NV k v k v k v k=  , ( )ih ⋅ and ( )iv k indicate observation equation and 

observation noise of sensor node i , respectively. For the sake of convenience, the assumption 
is essential, that is, ( , )kk tω ∆ and ( )iv k are of mutual independence, whose covariance 
matrixes are ( , )kQ k t∆  and ( )R k , respectively. 

According to EKF [10], 

1) predictive equation is presented by 

ˆ ˆ( 1/ ) ( ) ( / )kX k k F t X k k+ = ∆                                                 (3) 

and the corresponding covariance matrix is showed by 

( 1/ ) ( ) ( / ) ( ) ( , )T
k k kP k k F t P k k F t Q k t+ = ∆ ∆ + ∆                                    (4) 

2) then, the predictive process is expressed by 

ˆ ˆ( 1/ ) ( ( 1/ ))Z k k h X k k+ = +                                                         (5) 

3) on the basis of the above predictive process, update process is signified by 

ˆ( 1) ( 1) ( 1/ )k Z k Z k kδ + = + − +                                                     (6) 

where the covariance matrix is 
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( 1) ( 1) ( 1/ ) ( 1) ( 1)TC k H k P k k H k R k+ = + + + + +                                   (7) 

where, ( )H ⋅ and ( )jh ⋅ are Jacobian matrix, therefore, the gain matrix is given by 

   1( 1) ( 1/ ) ( 1) ( 1)TK k P k k H k C k−+ = + + +                                  (8) 

4) In the end, the estimation process is 

ˆ ˆ( 1/ 1) ( 1/ ) ( 1) ( 1)X k k X k k K k kδ+ + = + + + +                                (9) 

and the covariance matrix is presented by 

                                    ( 1/ 1) ( 1/ ) ( 1) ( 1) ( 1)TP k k P k k K k C k K k+ + = + − + + +                            (10) 

Especially, for the sake of target tracking in two-dimensional space in this paper, the state 
variable is signified by   

( ) [ ( ) ( ) ( ) ( )]TX k x k x k y k y k=                                                     (11) 

 
3. Quantization Mechanisms 
 
3.1. Energy Model 

Considering indexes of wireless sensor networks, the problem of energy consumption is a 
very important reference [12]. 

Given the transmission bandwidth b -bit of sensor node is who transmits signal and the 
transmission distance d , the energy consumption for transmission of sensor node is  is 
presented by 

( )( ) (2 1)ib k
i iE k β= −                                                        (12) 

where ln(2 / )i
i i bd Pαβ ρ= indicates energy density. ρ  depends on noise signifies a scaling factor, 

iα  is a channel attenuation factor, and bP  is a bit error rate.  
 
3.2. Quantization based on EKF Update 

According to (12), due to the ( )b k , that is, transmission information influence the energy 
consumption. One way to save energy is to reduce the information between sensor nodes by 
quantization. The mechanisms of quantization in [13] for sensor node is  at time k  is 
considered by 

0 1

1 2

( 1)

0,            <z <
1,             <z <
                        

1,       <z <

i ib i

i ib i
ik

i L ib iL

m
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where ikm signifies the quantified value of sensor node is , scalars, 0 , ,i iLγ γ⋅⋅⋅  are quantified 
thresholds to 2logK L=  bits. If the condition [ , ]ikm M M∈ −  is satisfied, then the 
following equations  0i Mγ = −  and iL Mγ =  are stood. 

According to equation (6), ( )kδ  is quantified as follows. 

( ) ( ) ( )M k k kδ η= +                                                              (14) 

where the vector  1 2( ) ( ( ), ( ), , ( ))T
Nk k k kη η η η=   indicates the quantization error vector, 

and due to equation ( ) ( ) ( )i i ik q k v kη = + and quantified noise ( )iq k , noise variance can be 

described as 2 2 2
i i iv qησ σ σ= + . Seen from [14], the inequality 2 2 2/ (2 1)i

i

b
q Wσ ≤ −  is held.  

 
4. Optimization Framework 

Since sampling time decides the energy consumption, one way to reduce the frequency of 
information transmission between sensor nodes is to maximize the sampling time for saving 
energy. According to EKF, the covariance matrix ( 1/ )P k k+  of  ˆ ( / )X k k  at time  k  is 
expressed by [10] 

2 2
11 12 22 13 14 23 24

2 2
13 14 23 24 33 34 44

2 ( )
( )

( ) 2
k k k k

k
k k k k

t t t t
t

t t t t
σ σ σ σ σ σ σ

σ σ σ σ σ σ σ
 + ∆ + ∆ + ∆ + + ∆

Σ ∆ =  + ∆ + + ∆ + ∆ + ∆ 
           (15) 

In order to achieve desired bandwidth and sampling intervals, the optimal model is 
designed according to energy equation ( )i iE b  and the sampling interval kt∆  of sensor 

node is . Given 2 2(2 1)ib
iB = − , the above mentioned optimal model can be expressed by 
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                                    (16) 

where, 1
0Φ  and  2

0Φ  indicate allocated parameters.  
 
5. Node Selection 

At first, the sensor node which is nearest target and owes maximum residual energy is 
selected as cluster header. According to sensing radius, sensor node selection is chosen from 
Figure 1. 
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Figure 1. Relationships of Energy Increment  E∆  and the Distance 

Then, the property of every sensor node is allocated by 

r
r

z w

( , ) (1 )  E ENP N E
N E

−
= − ⋅                                                     (17) 

where the number N  signifies the used times of the sensor node over one time step. Number 

zN  describes the total used times of all sensor node in current cluster. rE  represents the 
current residual energy, and  wE  indicates the total energy. 

In order to improve performances of the current cluster, the probability of energy levels is 
described as follows 

2 2 2 2
1Pr( ) ( ) / ( )j j j jE E d d d d+= = − −                                   (18) 

2 2 2 2
1 1Pr( ) 1 ( ) / ( )j j j jE E d d d d+ += = − − −                             (19) 

Therefore, the sensor node marked rmax( ( , ))iP N E  is selected as an activated node 
between every energy interval E∆  controlled by a parameterδ . 
 
6. Simulations and Results 
 
6.1. Signal Target 

In these simulations, we assume the number of sensors N=100, sensor radius 10R m=  and 
sampling interval 1sT s= . They are randomly deployed in a square field 60*40 2m . We also 
assume that the measurement noise variance of each sensor is 1. At time 0t = , the initial 
state 0 (30, 2,30,0)Tx = − , and the tracking time last for 25.7t s= . We set the sampling 
interval[0.1 ,0.5 ]s s , and to test optimization framework and sensor selection strategy, we set 
the target moving along a trajectory in Figure 2. 
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Seen from Figure 2 and Figure 3, the effect with quantization is a little lower than the 
one without quantization under the condition on tracking threshold. However, the 
reason is to reduce energy through sacrificing accuracy. 
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Figure 2. Target Tracking Trajectories 
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Figure 3. Root mean Square Errors 
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Figure 4. Sampling Intervals 
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Figure 5. Energy Consumption 

Figure 4 is the tracking sampling intervals based on quantization. At the beginning of 
initialization, the minimum sampling interval is set as 0.1s, then, it is adjusted to 0.42s 
according to the tracking accuracy. Seen from Figure 4, the average sampling interval for 
nonlinear trajectory is lower than linear trajectory, 0.3040 and 0.401, respectively. The reason 
is that the error of nonlinear trajectory is larger than the linear one. 

In Figure 5, due to short sampling interval and no quantization, energy consumption for 
single sensor node exceeds the way of multiple sensor node collaboration. With the strategy 
of adaptive sampling, energy consumption with quantization is cut down by 48.6%. 
 
6.2. Multiple Targets 

For further analysis, we consider the scenario of two targets. For the scenario of more 
targets, we can obtain the similar results. Conveniently, we consider sensor selection for the 
multi-target tracking case under the assumption that sensors exactly know the tags of targets 
in tracking [6] and all the simulation parameters are the same as the scenario of single target 
except for the initial state and the trajectory. The initial state of target indicated in blue dotted 
line in the figure 6 is 0 [0 -100 2 1]Tx = , and the initial state of target signed in red solid line 

curve in the figure 7 is equivalent to 0 [0 -50 2 1]Tx = . 
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Figure 6. Sensor Selections for all Sensor Nodes at the Crossing of Two 

Targets 
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Figure 7. Sensor Selections for Strategies in Section 5 at the Crossing of Two 

Targets 

Figure 6 and Figure 7 present the case of sensor selection for cluster head and tasking 
sensors. For Figure 6, the two nearest sensors close to the predicted position of two targets at 
crossing are selected cluster heads respectively, and all sensors with the tags of targets collect 
tracking information as tasking sensors. However, for Figure 7, cluster heads are selected 
according to the schemes discussed in Section 5, and tasking sensors are selected by property 
(17) with (18) and (19). Seen from two figures, cluster heads are obviously different by 
considering the residual energy and a suboptimal sensor set is selected to satisfy the tracking 
performances in Figure 7. 
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Figure 8. Sensor Ratios of Strategies in Section 5 Compared with all Sensor 

Nodes 
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Figure 9. Energy Consumption Ratios of Strategies in Section 5 Compared with 

all Sensor Nodes 

Figure 8 demonstrates the number of sensors in Section 5 compared with all nodes in a 
cluster for two targets over the tracking intervals. From the figure, the ratios are 1 at the 
beginning of the initial phase to guarantee the detection for two targets. Owing to the sparse 
sensors, more sensors are utilized to track for target 1 in the initial time step. The ratio is 
equivalent to 1 at seventh and eighth time steps, when the tasking sensors are 4 and 3 
respectively. They are all selected within the framework of Section 5. Ratios for target 2 are 
similar. With the tendency which two targets close to each other, the relative density for each 
target become less, that is, more and more sensors appear in the intersection of the sensing 
region such that sensors are divided into two parts according to the tags of targets. Especially, 
two targets encounter at the crossing point. After the crossing point, the scenario is on the 
contrary. When sensors in WSNs are dense, the ratios become descended. For the red dotted 
line, it tends to increase because of sparse sensors in sensing regions. 

Energy consumption is proportional to the number of tracking sensors, and the ratios of 
two targets are generally consistent with Figure 9. However, the energy consumption of every 
sensor is confined by the position to the cluster head and the role at every time step. Therefore, 
the chart presents local difference as far as total energy consumption in the respective cluster. 
Another influence factor also comes from the local density of WSNs as the ratios in Figure 9.  
 
6. Conclusions 

To deal with the energy source and communication bandwidth constraints, an adaptive 
tracking optimization mechanism based on quantization of collected data and sensor selection 
strategy was proposed. According to the relationship between the incremental energy 
consumption and the sensing radius of one node with the addition of the node properties, 
which include stored information and position, a part of redundant nodes were removed to 
reduce the redundancy information. The energy optimization objective function is established 
using quantitative observation mechanisms and adaptive sampling strategy to reduce traffic 
between nodes, and adjust tracking sampling time adaptively. In the future, we will focus on 
data-intensive energy consumption and the problem of how to choose sensor nodes for 
transmitting data to save energy in wireless sensor networks. 
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