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Abstract 
Emerging demands for high data rate services and high spectral efficiency are the key 

driving forces for the continued technology evolution in wireless communications. MIMO 
technology has attracted attention in wireless communications, because it offers significant 
increases in data throughput and link range without additional bandwidth or transmit power. 
It achieves this by higher spectral efficiency (more bits per second per hertz of bandwidth) 
and link reliability or diversity (reduced fading). Orthogonal space-time block codes 
(STBC’s) have received considerable attention in recent open-loop multiple-input-multiple-
output (MIMO) wireless communication because they allow low decoding complexity and 
guarantee full diversity. Trellis-Coded Modulation (TCM) is a kind of channel coding with 
improving the coding gain. Therefore, concatenation of STBC and TCM is a combined 
channel coding to achieve both diversity gain and coding gain advantages. This paper 
presents a detailed study of space-time block coding (STBC) schemes including orthogonal 
STBC for 3×4 antennas and high-coding rate STBC. In this paper the performance of OSTBC 
along with TCM is evaluated using QPSK.  
 

Keywords: Diversity, Multiple Input and Multiple Output (MIMO), orthogonal space- time 
coding (OSTBC), Channel State information (CSI), Pair-wise Error Probability, Trellis-
Coded Modulation (TCM) 
 
1. Introduction 

MIMO wireless systems have captured the attention of international standard 
organizations. The use of MIMO has been proposed multiple times for use in the high-speed 
packet data mode of third generation cellular systems (3G) as well as the fourth generation 
cellular systems (4G). MIMO has also influenced wireless local area networks (WLANs) as 
the IEEE 802.11n standard exploits the use of MIMO systems to acquire high throughputs. 
MIMO systems employing space-time coding strategies to support greatly enhanced 
performance. Space-Time coding [5, 4], uses the advantage of transmitter diversity, is an 
effective technique to improve the performance of wireless communication systems. In space-
time coding, different signals are simultaneously transmitted from different transmit antennas. 
The signal which is received is the superposition of the different transmitted signals, and the 
detection process needs estimates of the channel parameters [3]. All these designs were based 
on the assumption that channel state information is perfectly known at the receiver, but 
unknown at the transmitter. 

The work presented in this paper is motivated by the observation that for the special case 
of STBC 3×4(3transmitter and 4 receiver) and high code-rate STBC, it is possible to obtain 
exact closed-form expression for the pair-wise error probability. An exact PEP expression 
would serve as an attractive alternative to previously derived bounds for evaluating 
performance [6]. Our expressions are derived from the PDF of the phase of the received 
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signal. Simulated PEP results of STBC 3×4, TCM and concatenation of STBC with TCM 
using QPSK are presented. 
 
2. System Model: MIMO 

When a transmitter and a receiver, with an appropriate channel coding and decoding 
scheme, are equipped with multiple antennas, the presence of multipath fading can be 
improved over a Raleigh fading channel. Space-time-coded MIMO systems with 𝑁𝑇 transmit 
antennas and 𝑁𝑅 receive antennas is showed in the figure. In the space-time coded MIMO 
systems, bit stream is mapped into symbol stream {𝑥�𝑖}𝑖=1𝑁  𝑎s depicted in Figure a symbol 
stream of size N is space-time-encoded into {𝑥�𝑖}𝑖=1𝑁  t=1, 2, 3….T, where i is the antenna 
index and t is the symbol time index. Note that the number of symbols in a space-time 
codeword is 𝑁𝑇 .T (i.e., N =𝑁𝑇 × T). In other words {𝑥�𝑖}𝑖=1𝑁 , t=1, 2, 3…T, forms a space-time 
codeword. As N symbols are transmitted by a codeword over T symbol times, the symbol rate 
of the space-time-coded system example shown in the figure is given as 

                                     R = N
T

 (Symbols / Channel use)                           (1) 

At the receiver side, the symbol stream {x�i}i=1N  is estimated by using the receive signal 
�y�i(t)�i=1

NR , t=1,2,………….T. Let hij
t denotes the Rayleigh-distributed channel gain from the 

ith  transmit antenna to the 𝑗𝑡ℎ receive  antenna over the 𝑡𝑡ℎ  symbol period ( i = 1; 2; . . . ; , 
𝑁𝑇),( j = 1; 2; . . . ; 𝑁𝑅 ) and t = 1; 2; . . . ; T). If we assume that the channel gains do not 
change during T symbol periods, the symbol time index {{h}ijt  can be omitted. Furthermore, 
as long as the transmit antennas and receive antennas are spaced sufficiently apart, 𝑁𝑇 ×𝑁𝑅 
fading gains can be assumed to be statistically independent [3]. 

 
Figure 1. Block Diagram of Space-time Coded MIMO Systems 

If 𝑥𝑖𝑡 is the transmitted signal from the  𝑖𝑡ℎ transmit antenna during 𝑡𝑡ℎ symbol period, the 
received signal at the receive antenna during 𝑗𝑡ℎ symbol period is 

                       𝑌j(t)=�
EX

N0NT
�hj1

(t)hj2
(t) … . hj3

(t)� + Zj
(t)                                            (2) 

Where 𝑍𝑗𝑡 is the noise process at the  𝑗𝑡ℎ receive antenna during 𝑡𝑡ℎsymbol period, which is 
modeled as the ZMCSCG noise of unit variance, and 𝐸𝑋 is the average energy of each 
transmitted signal. Meanwhile, the total transmitted power is constrained as 
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�E{⃓xi
(t)⃓2} = NT,

NT

i=1

           𝑡 = 1,2, … …𝑇                                                                 (3) 

Variance is assumed to be 0.5 for real and imaginary parts of ℎ𝑖𝑗. 
Considering the relationship i Equation (2) for 𝑁𝑅 receive antennas, while assuming quasi-

static channel gains (i.e.hij
t = ℎ𝑖𝑗, t=1 ,2,….T), the system equation is given as 

 

⎣
⎢
⎢
⎢
⎡y1

(1) y1
(2) ⋯ y1

(T)

⋮ ⋱ ⋮

yNR
(1) yNR

(2) ⋯ yNR
(T)
⎦
⎥
⎥
⎥
⎤

 = 

       � Ex
NONT

 �

h11 h12. . h1NT
⋮ ⋮ ⋮

hNR1 hNR2. . hNRNT

�

⎣
⎢
⎢
⎢
⎡x1

(1) x1
(2). . x1

(T)

⋮ ⋮ ⋮

xNT
(1) xNT

(2). . xNT
(T)
⎦
⎥
⎥
⎥
⎤

+

⎣
⎢
⎢
⎢
⎡Z1

(1) Z1
(2). . Z1

(T)

⋮ ⋮ ⋮

ZNR
(1) ZNR

(2). . ZNR
(T)
⎦
⎥
⎥
⎥
⎤
 (4) 

 
3. Orthogonal Space Time Block Codes 

In higher order STBC in-order to facilitate computationally-efficient ML detection at the 
receiver, the following property is required: 

𝑋𝑋𝐻 = c(∣ xi1 ∣2+∣ xi2 ∣2+ … .  ∣ xiT ∣2)INT 

                                                 =   c ∣∣ xi ∣∣2 INT                                                   (5) 

Consider transmitting antennas 𝑁𝑇=3 transmitting complex space time block codes in 8 
time slots with coding rate of 1/2, while satisfying a full rank condition 

X3,complex
low rate =�

x1 −x2 −x3 −x4 x1∗ −x2∗ −x3∗ −x4∗
x2 x1 x4 −x3 x2∗ x1∗ x4∗ −x3∗
x3 −x4 x1 x2 x3∗ −x4∗ x1∗ x2∗

�                                (6) 

Space-time block codes can be used for various numbers of receive antennas. However, 
only a single receive antenna is assumed. We express the received signals from a single 
receive antenna as 

[y1y2y3y4y5y6y7y8] =  � Ex
3N0

 [h1h2h3] �
x1 −x2 −x3 −x4 x1∗ −x2∗ −x3∗ −x4∗
x2 x1 x4 −x3 x2∗ x1∗ x4∗ −x3∗
x3 −x4 x1 x2 x3∗ −x4∗ x1∗ x2∗

� + 

                                              [Z1Z2Z3Z4Z5Z6Z7Z8]                                               (7) 

The above input-output relation can be also expressed as 
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⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
y1
y2
y3
y4
y5
y6
y7
y8⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

=� Ex
3N0

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
h1 h2 h3 0
h2 −h1 0 −h3
h3 0 −h1 h2
0 h3 −h2 −h1
h1∗ h2∗ h3 0
h2∗ −h1∗ 0 −h3∗
h3∗ 0 −h1∗ h2∗
0 h3 −h2∗ h1∗ ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

�
x1
x2
x3
�+

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
Z1
Z2
Z3
Z4
Z5
Z6
Z7
Z8⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

                                                     (8) 

  



International Journal of Future Generation Communication and Networking 

Vol. 6, No. 4, August, 2013 

 

 

103 

Again, using the orthogonality of the above effective channel matrix, the received signal is 
modified as 

 yeff = Heff
H  yeff                                                      

                                              = 2�
Ex

3No
 � �hj�

23

j=1
I4 Xeff + Zeff                                  (9) 

Using the above result, the ML signal detection in which detector searches over the whole 
set of transmit signals and decides in favor of the transmit signal that minimizes the Euclidian 
distance to the receive vector is performed as 

xi,ML = Q

⎝

⎛ yeff,i

2� EX
3N0

∑ |hi|23
1 ⎠

⎞        i = 1,2,3,4                                                                  (10) 

If a decoding complexity at the receiver is compromised, however, higher coding rates can 
be achieved by the following codes: 

X3,complex
high rate  = 

⎣
⎢
⎢
⎢
⎡x1 −x2∗

x3∗

√2
x3∗

√2

x2 x1∗
x3∗

√2
−x3∗

√2
x3
√2

x3
√2

(−x1−x1∗+x2−x2∗ )
2

(x2+x2∗+x1−x1∗ )
2 ⎦

⎥
⎥
⎥
⎤

                                      (11) 

Coding rate is R = 3
4
 

Decoding of higher coding rates can be achieved by the following equations 

[y1y2y3y4] =  

� Ex
3N0

 [h1h2h3]

⎣
⎢
⎢
⎢
⎡x1 −x2∗

x3∗

√2
x3∗

√2

x2 x1∗
x3∗

√2
−x3∗

√2
x3
√2

x3
√2

(−x1−x1∗+x2−x2∗ )
2

(x2+x2∗+x1−x1∗ )
2 ⎦

⎥
⎥
⎥
⎤

+ [Z1Z2Z3Z4]                   (12) 

Using the equation (12), the ML signal detection is performed as 

xi,ML = Q

⎝

⎛ yeff,i

2� EX
3N0

∑ |hi|23
1 ⎠

⎞        i = 1,2,3,4                                                                (13) 

Effective channel construction for X3,complex
high rate   is rather more complex than the previous 

coding. 
 
4. Trellis-Coded Modulation 

TCM is a modulation scheme which allows highly efficient transmission of information 
over band-limited channels such as telephone lines. The functions of a TCM consist of a 
Trellis Code and a Constellation Mapper as shown in Figure 2 TCM combines the functions 
of the convolutional coder of rate: R=k/(k+1) and a M-ary signal mapper that maps M=2k 



International Journal of Future Generation Communication and Networking 

Vol. 6, No. 4, August, 2013 

 

 

104 

input points into a larger constellation of M=2k+1 constellation points. TCM is a 
convolutional coding. Unlike a true Convolutional code, not all incoming bits are coded and 
only 1 extra bit is always added. Increasing the constellation size reduces Euclidean distances 
between the constellation points but sequence coding offers a coding gain that overcomes the 
power disadvantage of going to the higher constellation. The decoding metric is the Euclidean 
distance and not the Hamming distance. TCM uses set-partitioning and small number of 
states. 

 

Figure 2. General Trellis Coded Modulation 

Assuming that 𝑥𝑖(k) is the transmitted signal from antenna i at time k, the received signal at 
the jth antenna corresponding to this time interval is given by 

y(k)=�ρ∑ hi,jxi(k) + zi(k)Nt
i=1                                                                               (14)  

where i = 1, 2, . . .,Nt , j = 1, 2, . . .,Nr , t = 1, 2, . . .,N, and N is the frame length; hi,j 
denotes the complex Gaussian channel coefficient between the ith transmit and jth receive 
antennas. ρ denotes the signal-to-noise ratio at each receive antenna. 

The input-output relationship can be written in the matrix form as 

Y = �ρXH + N                                                                                                       (15) 

In decoding of space Time Trellis Codes, assuming that the receiver has access to the 
channel coefficients, the optimal decision rule minimizing the probability of error is given by 

X� = argX min P( X ∣ Y, H ).                                                                                                  (16) 

This is the maximum a posteriori (MAP) decoding rule. If all the symbols are equally 
likely, then it is equivalent to the ML decoding rule, and it is given by 

X� = argX min P( Y ∣ X, H ).                                                                                                 (17) 

which is easier to manipulate. Given the transmitted signal matrix and the set of channel 
coefficients, the elements of the received matrix are jointly Gaussian since the additive noise 
is Gaussian, and temporally and spatially white. Therefore, this likelihood function is 
proportional to the negative of the squared Euclidean distance between the received matrix 
and the transmitted matrix (multiplied by the channel coefficient matrix), resulting in the 
optimal decoding rule 
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𝑋� = arg𝑋 min ∥ Y −�ρXH ∥2                                                                                           (18) 

Where ∥ . ∥  2denotes the sum of the norm squares of the elements of its matrix argument 
(i.e., the square of the Frobenius norm of a matrix). Clearly, the resulting decision rule can 
also be written as 

X� = argX min���yj(k) −�ρ� hi,jxi(k)
Nt

i=1

�

2Nr

j=1

N

k=1

                                                            (19) 

By way of construction, the space-time trellis codewords are paths through the code trellis. 
Therefore, the minimization above is nothing but the process of finding a path through the 
space-time code trellis with the minimum (Euclidean) distance from the received signal. Also, 
observing that the metric is additive at each time step, it is clear that one can use the well-
known Viterbi algorithm to perform the decoding very efficiently.  

Let us describe the Viterbi decoding algorithm in this context in a bit more detail. At time 
k = 0, we assume that the encoder is in state S0. We extend the paths emanating from this 
state, and record the value of the path metric computed using 

��yj(k) − �ρ� hi,jxi(k)
Nt

i=1

�

2Nr

j=1

                                                                                              (20) 

At time k, we have one path through the trellis for each state of the encoder together with 
the corresponding value of the accumulated path metric. To extend each of these paths by one 
more step, for each state, at time k + 1, all the paths that merge with that particular state are 
considered as candidates. The possible path metrics are computed by adding 

��yj(k + 1) − �ρ� hi,jxi(k + 1)
Nt

i=1

�

2

                                                                             (21)
Nr

j=1

 

to the current path metrics. All of these extensions except the one with the minimum 
accumulated path metric are discarded, and the time index is incremented. Therefore, for 
these steps, only the extensions of the paths that lead to trellis termination are considered, and 
at the end of the frame, the path through the trellis that is closest to the received vector is 
declared as the maximum likelihood codeword. 
 
5. Pair-wise Error Probability 

Pair-wise error probability is defined as probability of transmitting 𝑐1  and detecting it 
as 𝑐2, when there are no other code-words. It is represented as P (c1 →c2). 

Conditional probability is written as, refer to [6]. 

P�c1 →
c2

H
� = Q��

γ
2

Tr[HH(C2−C1)H. ((C2−C1)H]�                                                  (22) 

According to the Orthogonality conditional PEP is written as 

P(C1  → C2 H⁄ )=Q��Y
2

 K∑ |SK2 − SK1 |2K
K=1  Tr [HH, H]� 
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                          = Q��Y
2

 K∑ |SK2 − SK1 |2K
K=1  ∑ ∑ �αn,m�

2M
m=1

N
n=1  �                                        (23)   

 
Euclidian distance between Tx and detected symbol is given by 

dE = �� �sk2 − sk1�
2k

k=1
 

                                           P(C1  → C2 H⁄ )=Q��Y
2

 KdE2 ∑ ∑ �αn,m�
2M

m=1
N
n=1 �                      (24) 

To calculate PEP, one needs to integrate above equation weighted by density of path gains 

p �c1 → c2
H� � =  

1
π
� exp�

−kγdE2 ∑ ∑ |an,m|2M
m=1

M
n=1
4 sinΦ2 �

π
2

0
  dΦ 

                                                    = 1
π ∫ ∏ ∏ . exp �−kγd

2E�αn,m�
4 sin∅2

�N
N=1 d∅M

m=1

π
2
0                          (25) 

Let the path gains are independent from each other. The integral over the distribution of 

the path gains is same as product of MN equal integrals i.e., ∫ ∏ ∏ .N
N=1

M
m=1

π
2
0  =∫ .∞0  

p �c1 → c2
H� � =  

1
π
� �� exp�

−kγdE2x
4 sinΦ2�

∞

0
 δᵪ(x) dx�

MN

dΦ
π
2

0
 

Where fx(x) =e−x, x>0 is the pdf of |αn,m|2Moment Generating Function of exponential 
distribution for μ<1 is given by 

Mx(µ) = E[eµx] = �  eµxfx(x)dx
∞

0

 

= � eµx
∞

0
e−xdx        

                                                          =  
1

1 − µ
                                                                          (26) 

Since   µ = −kγd2Ex
4 sin ∅2

 

P(c1 → c2) =
1
π
�

1

1 + −kγdE2
4 sinΦ2

π
2

0
 

                                                                     =
1
π
� �

sinΦ2

sinΦ2 + kγdE2
4

�

MN
π
2

0
 dΦ                  (27) 

The generalized expression of PEP for STBC is given by 

P(c1 → c2) = 1
2
�1 − � a

1+a
 ∑ �2i

i � �
1

4(1+a)
�
iMN−1

i=0 �                                                                (28) 
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where  a = k
γ
4

d2E 

  N= Number of Transmitters 
  M= Number of receivers 
 
6. Comparison between TCM and OSTBC 

It is of interest to compare and contrast the two approaches for space-time coding in this, 
space-time block coding versus space-time trellis coding. 

Both space-time block codes and space-time trellis codes are designed to achieve full 
diversity advantage over the MIMO wireless channels. However, there are some basic 
differences. For instance, space-time block codes are very easy to encode and decode (which 
is achieved using the simple linear processing receivers), whereas space time trellis codes 
require more complicated trellis-based decoders. Also, it is relatively easy to find and employ 
space-time block codes for more than two transmit antennas (although there may be a rate 
loss penalty), this is not the case for space-time trellis codes – they are most widely used for 
the case of two transmit antennas. These are clear advantages for space-time block coding. 
On the other hand, the resulting error rates of the space-time trellis codes are generally better 
than those of the space-time block codes. . We observe that the space-time trellis codes 
outperform the Alamouti scheme, particularly when the number of states is increased. This is 
because space-time trellis codes provide a coding advantage in addition to providing full 
diversity when properly designed. 
 
7. Concatenation of OSTBC and TCM 

Concatenated codes were first introduced by Forney (1966), where he proposed a scheme 
that involves concatenating two single codes in a serial fashion. The inner code is a 
convolutional code and the outer code is a high-rate algebraic Reed–Solomon (RS) code 
which has a powerful error correction capability. The performance improvements achieved by 
this concatenated coding scheme were very promising and opened the door for further 
developments in this area. 

Wireless communication systems are being designed to integrate features that include high 
data rates as well as high quality of service in the existing communication framework. For 
this an orthogonal space-time block code (OSTBC) technique improves error performance of 
synchronous data links without sacrificing data rate or requiring more bandwidth. Trellis 
coded modulation enables efficient transmission scheme and to achieve high coding gain by 
integrating coding and modulation. In this work an OSTBC concatenated with TCM is 
implemented for information transmission over different antenna configurations, from Single-
Input Single-Output (SISO) to Multi-Input Multi-Output (MIMO) channels.  

The TCM scheme, as mentioned previously, encompasses a wide variety of concatenation 
schemes since there is no restriction on its mapper. Among these schemes is the 
concatenation of an outer channel code and an inner orthogonal STBC, where in this case the 
STBC simply replaces the mapper. This scheme was originally proposed by Bauch (1999). It 
is shown by Liew and Hanzo (2002) that the coded STBC scheme gives the best 
performance–complexity trade-off among other concatenation schemes when the outer code 
is a convolutional code or a turbo code. 
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7.1. Encoder Structure 

 

Figure 3. Encoder Structure for the Coded STBC Scheme 

The encoder of the coded STBC scheme is shown in Figure 3. In the figure, the primitive 
data stream is first encoded by an outer channel encoder. There is no restriction on the type of 
channel code employed, but the focus here is on convolutional codes, turbo codes and TCM 
codes because they are widely used. In addition, we only consider binary codes. The coded 
sequence is interleaved and demultiplexed. Each set of m bits at the output of the 
demultiplexer is mapped onto a symbol taken from a 2m-ary signal constellation.   

The output of the modulator is then fed into the STBC encoder, which groups every Nt 
consecutive symbols and transmits them from the available Nt antennas according to the 
STBC encoding principles, assuming that the underlying STBC is full rate. As such, the 
transmission rate achieved is R = mRc bits per channel use, where Rc is the rate of the outer 
channel code. 
 
7.2. Decoder Structure 

 
Figure 4. Decoder Structure for the Coded STBC Scheme 

The decoder structure for the coded STBC scheme is depicted in Figure 4. In the figure, 
when the switch is in position ‘a’, the resulting decoder corresponds to the convolutional (or 
turbo) coded system. In this case, the output of the STBC decoder is fed into the log 
likelihood computation module, which computes the log-likelihoods for the bits comprising 
the corresponding symbols. These log-likelihoods are then deinterleaved and passed to the 
channel decoder. When a convolutional code is used, the corresponding decoder would be the 
Viterbi decoder. 

The proposed model takes the advantages of the concatenation scheme: the spatial 
diversity gain offered by OSTBC and the coding gain offered by TCM.  
 
8. Simulation 
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Results In this work, MATLAB is used to test the BER performance of the Rayleigh 
fading channel model for STBC with transmitters (NT=3) and receivers (NR=4) for different 
code rates. Results are shown below. It illustrates the advantages of a STBC and TCM 
concatenation scheme, the spatial diversity gain offered by STBC, and the coding gain 
offered by TCM. By using the complex space time block code shown in the equation (6) with 
low code rate and equation (11) with high code rate, it is also observed that nearly same 
probability of error can be achieved. 

 
Figure 5. FER versus SNR of MIMO using QPSK 

9. Conclusion 
This paper provides need and advantages of MIMO systems. A basic introduction to 

Space-Time Coding was provided by presenting STBC system model. We then discussed 
block codes schemes for the cases of 3 transmit antennas and 4 receive antennas. High data 
rate code Scheme also discussed .Generalized pair-wise error probability (PEP) for the STBC 
was presented. From the simulation results we conclude that data rate can be increased by 
using high rate code in STBC. Based on the simulation results above, it is shown that, the 
optimal performance can be achieved by using OSTBC along with TCM. 
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