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Abstract 
Simple theoretical closed algebraic expressions are derived with Hermite-Gauss trial 

function. These obtained expressions for the normalized propagation constant, the cut-off 
frequency and the field width of the slab and rectangular optical waveguides. They are shown 
to have reasonably good precision over a wide range of normalized frequency and modes. 
These closed expressions are obtained for the conventional variational method and the 
modified variational technique including either Maractili's method or effective index method.  
The derived expressions are available for the semi-infinite waveguide. Moreover, results with 
Hermite Gauss optical field is more confinement than cosusoidal optical field.  Also in this 
work, we present a proposed technique to give a simple and accurate analysis of the 
rectangular waveguide. The proposed technique based on mixed both the first and the third 
methods above. The driven equations and the proposed technique show very good accuracy 
with respect to the finite element method, finite difference method and vectorial boundary 
element method. 
 

Keywords: Closed algebraic expression, Normalized propagation constant, Buried 
waveguide, Hermite Gauss and Variational method 
 
1. Introduction 

One of the major components in all integrated optical systems is the rectangular waveguides 
(RW) [1, 2]. It is used in many applications such as optical power divider/combiner, couplers, 
filters, wavelength division multiplexer/demultiplexer and optical modulators [3, 4]. In order 
to be able to design efficient integrated optical devices it is important to understand the modal 
properties of such rectangular-core waveguides [5, 6]. 

The research on the waveguides has focused much attention [1-8]. Studying RW by 
approximate methods which are used for obtaining scalar guided modes of optical waveguides 
are equivalent to analyzing accurately some guide models which are more or less different [9, 
10]. The modal analysis existing for the slab waveguide (SW) is extended to the RW case. The 
operation of the optical waveguide occurs at normalized frequency greater than the cutoff 
value, so the analytical methods become very good accuracy. 

In this work we derived closed forms for the normalized propagation constant (b), the cut- 
off frequency (vc) and the field width (D) for multimode SWs and RWs. Thus, we can 
understand more intuitively and clearly the parameters such may affect the normalized 
propagation constant and how they may enhance the optical field confinement. 

Rectangular waveguides (Figure 1) was analyzed by four analytical methods which are 
based on the scalar variational principle using the Hermite-Gauss and cosusoidal optical fields.  
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i- As a whole RW by using the Variational Method (VM) [11,12].  
ii- As a two SWs by using variational technique including Maractili's Method (MM) [13,14].  
iii- As a two SWs by using variational technique including Effective Index Method(EIM)[13-

16]  
iv- As a two SWs by using Effective Width Method (EWM) [3,17].  
                                                      n2                
                                                                                                               
                                                                                               n2                 n2              n2                n2                                                                                 
     
                                                       n2 
 a) Rectangular    b) slab in y-direction     c) slab in x-direction     d) slab in x-direction 
   waveguide             for MM ,EIM and           for MM and EWM              for EIM 
                                 EWM to give (by)            to give  (bx)                       to give (be)  

Figure 1. The Structure of the Burid Rectangular Waveguide and its Two 
Equivalent Slabs. Ny is the Effective Index of the Slab in y-

Direction,  

The normalized propagation constant with cosusoidal optical field is greater than that with 
Hermite-Gauss optical field.  For single mode waveguide, Hermite Gauss optical field is sharp 
at the waveguide center than cosusoidal optical field.  

The accuracies of these methods are very good if their numerical results are compared with 
those obtained by finite element method (FEM) [3], finite difference method (FDM) [18] and 
vectorial boundary element method (VBEM) [18]. 

The numerical results are done at the useful operating wavelengths ( λ=1.31µm and 
1.55µm). 

Finally, we purpose here a simple and accurate analysis of the rectangular waveguide by 
mixed both VM and MM.   In order to validate the proposed, the computed results are 
compared with those obtained from the theoretical analysis of VM.  
 
2. Mathematical Analysis and Numerical Results with Discussions 
 
2.1. Optical Field Analysis 

The refractive indices of the waveguide (core and cladding) are very close to each other, so 
that the weakly guidance approximation, leading to the simplied eigenvalue problem is valid. 
Although the scalar wave equation can be solved by the method of separation of variables and 
both Ex

pq and Ey
pq modes approximately are coincides as shown in [19].   

So that, the optical field distribution (Hermite Gaussian trial function [13, 17, 20]) becomes;  

  

Where 
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αxp  and αyq  are the variational parameters in x and y directions, respectively, p and q are the 
mode numbers in x and y directions, respectively,  Sp(x1) and Sq(y1) are the Hermite 
polynomials [17] and with the normalized power rule the values of Axp and Ayq are; 

 
The optical intensity (I), { I = ψ2(y) }, has (q+1) peaks (Figure 2), and the corresponding 

positions of theses peaks are the roots of ;     

 
The maximum value of the optical intensity (Imax) occurs at the greatest root (y1=y1max) of 

Eq.2.a. The value of y1max increases with the mode number (q) and so the position of Imax 
moves toward the edges of the optical waveguide (Figure 2). 

The field width (D) is defined as the twice of the distance between the waveguide center 
(y1=0) and the largest point of y1 (y1=y1L) at which the intensity becomes e-1 Imax [4] or e-2 Imax 
[20]. 

The value of y1L  is the solution of; 

 
 
 
 

 
 
 
 
 

          a) mode 0                                         b) mode 3                                    c) mode 5 

Figure 2. Number of Optical Intensity Peaks versus Mode Number 

 
 
 
 
 

 
 
 
 
           Figure 3. Field Width (D) and             Figure 4. Dependency of the Optical  
             Percentage Error versus q                                Confinement on v 
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The values of D for the first six modes are calculated (Figure 3) and by using the fitting curve 
technique the relationship between D and q (with maximum percentage error ≤ 1.08  %) are; 

  with e-1 rule 
 with e-2 rule 

                                                                                                                                                   
(2.c) 

Thus from Eq.2.c, the value of D increases with the mode number but it decreases with the 
normalized frequency (where αyq decreases with the normalized frequency as indicated in 
Eq.3.f). Consequently as expected the optical becomes more confinement with the normalized 
frequency (Figure 4). 
 
2.2. Analysis of the Slab Waveguide 
 
2.2.1. Normalized Propagation Constant (byq) of the Slab Waveguide: The propagation 
constant (βyq) of the slab in y-direction (Figure 1.b) with Hermite-Gaussian modal (Eq.1.b) is 
determined from the variational expression [11,12] as; 

 
From Eq.1.b and the normalized power rule, the integrals in Eq.3.a become;  

       ,                   and 

 
So the normalized propagation constant (byq) is; 

 
                

 

Where ko=2π/ λ, vyq is the normalized frequency of y-slab { )},  ζyq is 
the normalized variational parameter of y-slab {ζyq=T/√2 αyq}, 

. 
The relationship between vyq and ζyq  is defined by putting,  db/dζyq = 0  as; 

 
     

 
Where  
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and Fyq is defined in Table 1. 

As expected byq increases with vyq while it decreases with the mode number (q). The 
corresponding, ζyq also increases with vyq as shown in Figure 5.  

 
Table 1. The Expressions of Fyq  for Modes q = 0 → 5 

q 0 1 2 3 4 5 
Fyq 0 +2 ζyq +ζyq  

+2 ζ3
yq 

+2 ζyq  
- (2/3) ζ3

yq 

+(4/3) ζ5
yq 

+(5/4) ζyq + (17/6) ζ3
yq  

 - (5/3) ζ5
yq + (2/3) ζ7

yq 
  +2 ζyq  - (7/6 ) ζ3

yq + 
(53/15) ζ5

yq –(22/15) ζ7
yq   

 + (4/15) ζ9
y 

 
2.2.2. Cutoff (vyqc and ζyqc): The normalized frequency cut off (vyqc) and the corresponding 
ζyqc are defined from Eq.3.d by putting byq=0 ;   

 
And by mixed Eq.5.a with Eq.3.f, we obtained an equation for ζyqc as; 

 
Consequently the corresponding vyqc is estimated from Eq.5.a. 
For the first six modes vyqc and ζyqc are calculated (Figure 5.c) and from the fitting curve 

technique (with percentage error ≤ 1.15 % ), they are; 

 
 

 
The more the mode number increases, the more the values of both vyqc  and ζyqc increase as 

expected (Figure 5.c).  
 
 
 
 
 
 
 
 
                  a) byq versus vyq                           b)  ζyq versus vyq                    c) vyqc and ζyqc versus q 

Figure 5. Normalized Propagation Constant (byq), Normalized Variational 
Parameter (ζyq) and the Cut Off Values (vyqc and ζyqc) for Symmetric Optical Slab 

Waveguide at Different Mode Number (q) 

2.2.3. Semi Infinite Waveguide (y = 0 → - ∞): Which usually used with electrooptic 
applications. The above equations are used with the semi infinite waveguide with some 
modifications. ψq (y) multiplied by  factor √2, vyq divided by factor 2, vyqc divided by factor 2, 
ζyq multiplied by factor 2,and ζyqc multiplied by factor 1.  

1
1

2
2

3
3

4
4

5
5

Mode
 
numper

 
(q)

 

0
0

4
4

8
8

1
1
2
2

1
1
6
6

vv cc   ,,   ζζ cc   (( ss yy mm mm ee tt rr ii cc  ss ll aa bb )) v
v

c
c (

(
s
s
o
o
l
l
i
i
d
d
)
)
 ,
,
  ζ

ζ
c
c (

(
d
d
a
a
s
s
h
h

e
e
d
d

)
)
 

e
e
r
r
r
r
o
o
r
r
 %
%

 v
v

c
c (

(
s
s
o
o
l
l
i
i
d
d
 %
%

)
)
 

e
e
r
r
r
r
o
o
r
r
 %
%

 ζ
ζ

c
c (

(
d
d

a
a
s
s
h
h

e
e
d
d
 %
%

)
)
 

-
-
0
0

.

.
8
8

-
-
0
0

.

.
4
4

0
0

0
0

.

.
4
4

0
0

.

.
8
8

1
1

.

.
2
2

Pe
rce

nta
ge

 err
or

 0
0

4
4

8
8

1
1

2
2

1
1
6
6

2
2
0
0

N
Norma

l
l
i
ize

d
d

 f
frequency

 
(vyq)

0
0

0
0
.
.
2
2

0
0
.
.
4
4

0
0
.
.
6
6

0
0
.
.
8
8

1
1

NN
oo rr mm

..  pp rr oo pp aa gg ..  cc oo nn ss tt aa nn tt  (( bb yy qq ))

q
q

=
=

 0
0

q
q

=
=

 3
3

q
q

=
=

 2
2

q
q

=
=

 1
1

q
q

=
=

 4
4

q
q

=
=

 5
5

 0
0

4
4

8
8

1
1

2
2

1
1
6
6

2
2
0
0

N
Norma

l
l
i
ize

d
d

 f
frequency

 
(vyq)

0
0

1
1

2
2

3
3

4
4

PP aa rr aa mm
ee tt rr   ζζ yy qq

q
q
=
=

 0
0

q
q
=
=

 3
3

q
q

=
=

 2
2

q
q
=
=

 1
1

q
q
=
=

 4
4

q
q
=
=

 5
5

 



International Journal of Future Generation Communication and Networking 
Vol. 6, No. 4, August, 2013 

 
 

30 

 
2.3. Analysis of Rectangular Waveguide 
 
2.3.1. Variational Method (VM): With the Hermite-Gauss trial functions, The propagation 
constant of the rectangular optical waveguide (Fig.1) is determined by using the variational 
expression [11,12] 

 

 

                 (6.b) 

With the normalized power rule and from Eq.3.b, equation Eq.6.b becomes; 

           (6.c) 
So the normalized propagation constant bpqVM  is;  

 

      
Finally the closed form of bpqVM is; 

 
Where, ζyqVM  (ζyqVM =  T / √2 αyq)  and ζxpVM   (ζxpVM = W / √2 αxp)  are the normalized 

variational parameters in x and y directions, respectively, s is the aspect ratio (s=W/T), v is the 
normalized frequency {v2 =  and,  Rxp  and  Ryq  are defined from Eq.4.a  by 
using the subscript (xp) instead of the subscript yq,  

In this case, ζxpVM and ζyqVM are defined by the maximized value of bpqVM, so we are 
obtained the following two equations. 

 

 
The values of both ζxpVM and ζyqVM are determined by solving Eqs.7a and 7.b together. 

 
2.3.2. Normalized Propagation Constant (b) by MM, EIM and EWM: Similarly we 
derived a closed form of the normalized propagation constant for both Maractilli's Method 
(bpqMM) [13, 14], the Effective Index Method (bpqEIM) [13-16] and the Effective Width Method 
(bpqEWM) [3, 17] for the rectangular waveguide as; 

      (8.a) 
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{      (8.b) 

                                    (8.c) 

Where, ζyqMM and ζxpMM are the normalized variational parameters for the two slabs (Figures 
1.b and 1.c). ζxpEIM is the normalized variational parameter of the slab (Figure 1.d) and both 
RxpMM, RxpMM  and RxpEIMM are defined from Eq.4.a with replacing the subscripts (xpMM , 
yqMM and xpEIM) instead of subscript yq, respectively.  

Figure 6 shows that the results of MM are approached with that by VM except near cutoff. 
But there are evidence differences between the numerical results by VM and EIM at the cutoff 
values. We can be noticed that b increases with s (as mentioned in [15]) and the difference 
between the calculated results by both MM, EIM and VM become very little (Figure 6). 
 
2.3.3. Cutoff (vc,  ζxpc  and  ζyqc): They  are defined From Eq.6.e by putting  bpqVM=0; 

 

 
 
 
 
 
 
 
 
Figure 6. Comparison between VM, MM and EIM with Different Values of q and s  

And the cut off values of  ζ2
xpc and ζ2

yqc are determined by solving;  

 

 
The cut-off value increases with both p and q while it decreases with s as shown in Figure 7 

(as stated in [15]). Effect of s becomes little at higher modes. We use vc at s=1 as a reference 
of the cutoff.  By using the fitting curve technique, the relationship between vc and both p and 
q for s=1 (with maximum percentage error =3.32 % at p=0 with q=0 or 1, but it becomes ≤ 
0.6% for the other modes) is derived as;  
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We recommend that the cutoff by EWM can be used to find a guess value of vcVM. The 
cutoff value by EWM (vcEWM) is derived from Eq.8.c as; 
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Where, p1 =(p+1)π , q1=(q+1)π  and vc EIM is the positive real root of Eq.9.c.  
The value of vcEWM > vcVM (Figure 7) and vcMM > vcVM (Figure 6) as stated in [9]. 
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Figure 7. Cutoff Values of the Buried Rectangular Waveguide for Different 
Values of both p, q and s by VM (Solid) and EWM (Dashed) 

2.3.4. Field Distribution: The optical field distribution is calculated from Eq.1 by using ζxpMM 
and ζyqMM (with MM), ζyqMM and ζxpEIM (with EIM) and ζyqVM and ζxpVIM (with VM).  The optical 
field becomes more confinement with the aspect ratio (Figures 8) while field becomes weakly 
with the mode numbers (Figures 9). Because of the optical field confinement depends upon v.  
 
 
 
 
 
 
 
 
          W=6 µm  (s=1)                   W=12 µm  (s=2)                                 W=30  (s=5)            

Figure 8. Field Contours for Single Mode (λ=1.31µm, T=6 µm, n1=1.505, n2=1.5) 

  
            
 
 
 
 
 
 
                mode 01                                  mode 10                                         mode 22 

Figure 9. Field Contours for Multimode (λ=1.31µm, W=T=20µm, n1=1.505, n2=1.5) 

2.3.5. Analysis with Cosusoidal Optical Field: The rectangular waveguide is analyzed with 
cosusoidal optical field by MM and EIM. The normalized propagation constants of MM (bMM 

cos) and EIM (bEIM cos) and the field distribution through the core (ψcos) are derived as; 

bMM cos= by+bx-1                                                                                                          (10.a) 

bEIM cos = be . by                                                                                                            (10.b) 

 
Where, ky= (vy /T) √(1-by),   γy = (vy /T) √by ,   kx= (vx /W) √(1-bx)  ,  γx = (vx /W) √bx                 

              , vx= vy W/T and  ve= vx. by ,                                               (10.d) 
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and both by , bx and be are the solutions of the following characteristic equations of the two 
slabs in y and x directions (Figures 1.b, 1.c and 1.d, respectively);  

 

 
The numerical results by MM, EIM and EWM are very good accuracy if they compared 

with that by FEM [3] (Table 2). Where the percentage error still considered available value if 
it less than 5% [3]. 

The normalized propagation constant with cosusoidal optical field distribution is greater 
than that with Hermite-Gauss optical field distribution (Table 3). The field distribution of 
Hermite Gauss is more concentrated at the center of waveguide (Figure 8). 

Table 2. Accuracy of MM, EIM, EWM and EWMap (With Cosusoidal Optical Field) 
by Comparison the Difference (β00-βpq) with that by FEM. with the Main Data 

Dif =106 (β00-βpq) and error % = 100 (DifFEM – Dif ) / Dif 
mode 10 01 20 11 21 30 12 22 40 

vc EWM 3.69 4.7 5.57 5.78 7.24 7.54 8.43 9.55 9.55 
Dif FEM  [3] 2078 4111 5494 6175 9561 10145 12654 16003 15659 
Dif  MM 2082 4116 5507 6199 9627 10177 12736 16167 15816 
Dif EIM 2063 4094 5450 6087 9338 10052 12367 15196 15526 
Dif EWM 2097 4207 5594 6306 9805 10493 13326 16830 16798 
Dif EWMap * 2096 4204 5590 6300 9794 10480 13307 16801 16769 
R MM 0.194 0.122 0.235 0.394 0.682 0.313 0.643 1.013 0.996 
R EIM   0.743 0.416 0.800 1.444 2.392 0.928 2.320 5.309 0.858 
R  EWM 0.914 2.283 1.788 2.072 2.488 3.317 5.045 4.912 6.778 
R EWMap 0.863 2.215 1.709 1.988 2.376 3.200 3.722 4.747 6.617 
* β (EWMap) ≈ ko ng - 0.5 (p+1)2 π2 /{ko ng W2 (1+2/vx)2} - 0.5(q+1)2 π2/{ko ng T2 (1+2/vy)2} [ 3] 

Table 3. Normalized Propagation Constant (b) by using MM and EIM with 
Hermite-Gauss and Cosusoidal Field Distributions. With the Main Data  

 1 (Hermite Gauss ), 2 ( cosusoidal), Error % = 100 (b Hermite – b cosusoidal ) / b Hermite 
mode 00 10 01 20 11 21 

vc EWM 2.02 3.69 4.7 5.57 5.78 7.24 
b MM 1 0.885683 0.774539 0.675891 0.369414 0.564747 0.402485 
b MM 2 0.896836 0.793695 0.693262 0.370841 0.590420 0.421324 
error % 
MM 

-1.2254 -2.4732 -2.5701 -0.3863 -4.5460 -4.6807 

b EIM 1 0.886308 0.776850 0.678577 0.376537 0.574744 0.422788 
b EIM 2 0.896836 0.794951 0.694649 0.375158 0.596263 0.435878 
error % 
EIM 

-1.1878 -2.3300 -2.3684 0.3661 -3.7442 -3.0962 
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Figure 8. Comparison between Hermite Gauss and Cosusoidal Optical Field 
Distributions through the Rectangular Waveguide with Mode00 

(W=30µm, T=20µm, n1=1.505, n2=1.500, with λ=1.31µm and λ=1.55µm) 

3. Our Proposed Technique (Modified Variational Method, MVM) 
In this proposed technique, VM is mixed with MM and so the normalized propagation 

constant by MVM (bMVM) is evaluated from Eq.6.2 by using the variational parameters ζxpMM 
and ζyqMM instead of ζxpVM and ζyVM, respectively. Therefore the calculations of bMVM become 
very simple and at the same time both MM and MVM are done together.   

The accuracy of bMVM becomes very good accuracy especially with higher values of the 
aspect ratio (Figure 11 and Table 4). Because the corresponding value of v becomes more far 
from cutoff.   

The optical field by MVM (FMVM) is calculated from Eq.1 by using ζxpMM and ζyqMM. The 
percentage error (RF) between the field by VM (FVM) and the field by MVM (FMVM) still in the 
available ranges (Figure 12). With notice that at the points at which the field equals zero, the 
deference between FVM and FMVM is very small while RF increases where the original value 
approaches to zero (Figure 12). Also the values of RF% with λ=1.55µm > RF% with λ=1.31µm 
(Figure 12) because of v decreases with λ. Where, RF % =100 (FVM –FVMV) /FVM. 

 
 
 
 

 
 
 
 

Figure 11. Comparison between VM and both MVM and EWM 

Note, bEWM isn't accurate especially near the cut-off values and higher modes. 
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Figure 12. Comparison of Field Distribution (2D) by MVM and VM at Different  
Values of x and y. Upper Figures (λ=1.31µm) and Middle Figures (λ=1.55µm),  

(W= T=20 µm, n1=1.505, n2=1.500) 

Table 4. Percentage Error {Rb % =100 (b VM –b VMV) / bVM} 
mode v s = 1 s = 2 s= 5 

vc Rb % vc Rb % vc Rb % 
00 2.5 1.7759 5.00 * 1.2535 0.70 0.7928 0.080 
01 5 4.6166 5.76 4.1187 0.52 3.08467 0.082 
10 5 4.6166 5.76 2.7832 0.06 1.5866 0.013 
11 7 6.5961 5.70 4.9836 0.14 4.1040 0.001 

* Rb% ≤ 5 is considered available value [3] 

To validate the methods presented above, we compare their numerical results with that 
published with a buried rectangular waveguide (W=0.8µm, T=0.4µm, n1=3.52 and n2=3.2, 
λ=1.15µm, p = q =0 and v=3.2048).  The effective index, N =3.3137047 (FDM [18]), 
3.3087656 (VBEM [18]), 3.27605(VM), 3.265596 (MM), 3.371238 (EIM), 3.362566 (EWM) 
and 3.367554 (MVM).  And so, the percentage error (RN%) is;RN % =0.4195, 1.4518, 1.736, 
1.4745 and 1.625 (with respect to FDM) while it becomes  RN% = 0.5694, 1.3047, 1.888, 
1.6260 and 1.777 (with respect to VBEM), for VM, MM, EIM, EWM and MVM, respectively. 
With noticed that, the difference (n1-n2=0.32) does not very small. Finally, MVM is very good 
accurate and simple proposed. 
 
4. Conclusion 

Closed expressions have been driven for both normalized propagation constant, cutoff value 
and field width for the slab and the buried rectangular optical waveguides. These closed 
expressions are available for the semi-infinite waveguide. They are available with good 
accuracy over a wide range of normalized frequency and modes. A brief description of some 
of the common approximate methods (variational method, Maractili's method, effective index 
method and the effective width method) for obtaining the guided modes of an optical 
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waveguide. The analysis has been applied with Hermite-Gauss and cosusoidal optical fields. 
The Hermite-Gauss optical field is sharp inside the core than that of cosusoidal. 

The proposed technique is used to simplify the variational method. The driven equations 
and the proposed technique show very good accuracy with respect to the finite element 
method, finite difference method and vectorial boundary element method.   
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