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Abstract

Simple theoretical closed algebraic expressions are derived with Hermite-Gauss trial
function. These obtained expressions for the normalized propagation constant, the cut-off
frequency and the field width of the slab and rectangular optical waveguides. They are shown
to have reasonably good precision over a wide range of normalized frequency and modes.
These closed expressions are obtained for the conventional variational method and the
modified variational technique including either Maractili's method or effective index method.
The derived expressions are available for the semi-infinite waveguide. Moreover, results with
Hermite Gauss optical field is more confinement than cosusoidal optical field. Also in this
work, we present a proposed technique to give a simple and accurate analysis of the
rectangular waveguide. The proposed technique based on mixed both the first and the third
methods above. The driven equations and the proposed technique show very good accuracy
with respect to the finite element method, finite difference method and vectorial boundary
element method.

Keywords: Closed algebraic expression, Normalized propagation constant, Buried
waveguide, Hermite Gauss and Variational method

1. Introduction

One of the major components in all integrated optical systems is the rectangular waveguides
(RW) [1, 2]. It is used in many applications such as optical power divider/combiner, couplers,
filters, wavelength division multiplexer/demultiplexer and optical modulators [3, 4]. In order
to be able to design efficient integrated optical devices it is important to understand the modal
properties of such rectangular-core waveguides [5, 6].

The research on the waveguides has focused much attention [1-8]. Studying RW by
approximate methods which are used for obtaining scalar guided modes of optical waveguides
are equivalent to analyzing accurately some guide models which are more or less different [9,
10]. The modal analysis existing for the slab waveguide (SW) is extended to the RW case. The
operation of the optical waveguide occurs at normalized frequency greater than the cutoff
value, so the analytical methods become very good accuracy.

In this work we derived closed forms for the normalized propagation constant (b), the cut-
off frequency (v;) and the field width (D) for multimode SWs and RWs. Thus, we can
understand more intuitively and clearly the parameters such may affect the normalized
propagation constant and how they may enhance the optical field confinement.

Rectangular waveguides (Figure 1) was analyzed by four analytical methods which are
based on the scalar variational principle using the Hermite-Gauss and cosusoidal optical fields.
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i- As a whole RW by using the Variational Method (VM) [11,12].

ii- As a two SWs by using variational technique including Maractili's Method (MM) [13,14].

iii- As a two SWs by using variational technique including Effective Index Method(EIM)[13-
16]

iv- As a two SWs by using Effective Width Method (EWM) [3,17].

N,

W w w
Ny
T n, T ny n, Ny Ny N, Ny
N, Ny
a) Rectangular b) slab in y-direction  c) slab in x-direction  d) slab in x-direction
waveguide for MM ,EIM and for MM and EWM for EIM
EWM to give (by) to give (b,) to give (be)

Figure 1. The Structure of the Burid Rectangular Waveguide and its Two
Equivalent Slabs. N, is the Effective Index of the Slab in y-
Direction, N2 = n2 + by(ni —n3)

The normalized propagation constant with cosusoidal optical field is greater than that with
Hermite-Gauss optical field. For single mode waveguide, Hermite Gauss optical field is sharp
at the waveguide center than cosusoidal optical field.

The accuracies of these methods are very good if their numerical results are compared with
those obtained by finite element method (FEM) [3], finite difference method (FDM) [18] and
vectorial boundary element method (VBEM) [18].

The numerical results are done at the useful operating wavelengths ( A=1.31um and
1.55um).

Finally, we purpose here a simple and accurate analysis of the rectangular waveguide by
mixed both VM and MM. In order to validate the proposed, the computed results are
compared with those obtained from the theoretical analysis of VM.

2. Mathematical Analysis and Numerical Results with Discussions

2.1. Optical Field Analysis

The refractive indices of the waveguide (core and cladding) are very close to each other, so
that the weakly guidance approximation, leading to the simplied eigenvalue problem is valid.
Although the scalar wave equation can be solved by the method of separation of variables and
both E*,q and E”,, modes approximately are coincides as shown in [19].

So that, the optical field distribution (Hermite Gaussian trial function [13, 17, 20]) becomes;

Wyq (xy) = Wy (.Y}"-L'p (=) (1.a)

Where
Vg (7) = Ayg Sqlyy) e 0% (1.b)
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'-I-'p (X} =Axp Sp(}‘:i} E_EIEXE (1':}
% =% = V2 xfag and y1 = V2 y/ay, , (1.d)

oy and oyq are the variational parameters in x and y directions, respectively, p and q are the
mode numbers in x and y directions, respectively, Sy(x;) and Sy(y,) are the Hermite
polynomials [17] and with the normalized power rule the values of A,, and A are;

AL, =2%P/(ympl ay,) and AZ,=2%79/(ym q! ay,) (L.e)

The optical intensity (1), { | = y*(y) }, has (q+1) peaks (Figure 2), and the corresponding
positions of theses peaks are the roots of ;

d{S2(y)e¥2} /dy;, =0 (2.a)

The maximum value of the optical intensity (Imax) Occurs at the greatest root (Y1=Yimax) Of
Eg.2.a. The value of yimax increases with the mode number (q) and so the position of I
moves toward the edges of the optical waveguide (Figure 2).

The field width (D) is defined as the twice of the distance between the waveguide center
(y;:=0) and the largest point of y; (y;=y;.) at which the intensity becomes e lpax [4] 0r €2 lnax
[20].

The value of y;_ is the solution of;

= . S = J—
Sa (FimaxJe™¥ie™ = §Z(yyp)e v {(where,u = 1[4] oru =2 [20]) (2.b)
1 oo, 6] %gg,f ) 5 %eg,
280 <N of peaks = NN Bér of peaks
23 | st 25 DD ). 220 | paveoderita,
0 a1 — b= Z*ZQBG(EZFUIQ), ac D=2 * 3863 (6 Fule)
as,, | s, | 30 D=2+ 3652 ¢ rule)
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The values of D for the first six modes are calculated (Figure 3) and by using the fitting curve
technique the relationship between D and g (with maximum percentage error < 1.08 %) are;

D = /2 o, (1.00560952 + 0.87664603q — 0.13841905q + 0.0115444g%) withe™ rule
D = /2 oy (141048175 + 0.86129907q — 0.14527063 g% + 0.01254537g3) with e rule

(2.0)

Thus from Eq.2.c, the value of D increases with the mode number but it decreases with the
normalized frequency (where oy, decreases with the normalized frequency as indicated in
Eq.3.f). Consequently as expected the optical becomes more confinement with the normalized
frequency (Figure 4).

2.2. Analysis of the Slab Waveguide

2.2.1. Normalized Propagation Constant (by,) of the Slab Waveguide: The propagation
constant (B,) of the slab in y-direction (Figure 1.b) with Hermite-Gaussian modal (Eq.1.b) is
determined from the variational expression [11,12] as;

™ dy, ) =
o= || i +invio|es/ [ vime (3.2

From Eq.1.b and the normalized power rule, the integrals in Eq.3.a become;

o . a dy_ ()

Lovimydy=1 . JLlv, O = dy=—(q+1D/ay, and

[ Brmvoa=kg+ -5 [ o (35)

—0 corse

So the normalized propagation constant (by,) is;

b (4q+ 2) 270 J‘%rqs“(y} Vi d (3.c)
= — + — +— = MR .C

78 1 Vig vmq' b vt i
= —(49+2) B /vE +Ry (3.d)

Where k;=27/ X, Vyq is the normalized frequency of y-slab {v,,;, = k T/ (ny — n3)}, (s

the normalized variational parameter of y-slab {qu=T/\/2 Oyq}s
h’yq = ( E'}z’q ."'rkg - HE]'}'(H{ - HE}
The relationship between vy, and {4 is defined by putting, db/d{,,=0 as;

vZ = (4q+ 2) Vi Ty eF9/{1 + Qg Fyg( L) — 0.5 dFyg (Zyg)/d 2y ) (3.e)

= (4 + 20,y e%a /SE(Z,) (3.6)

Where
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and Fyq is defined in Table 1.

As expected by, increases with vy, while it decreases with the mode number (g). The
corresponding, {yq also increases with v,q as shown in Figure 5.

Vol. 6, No. 4, August, 2013

(4)

Table 1. The Expressions of F,q for Modesq=0—5

q |0 1 2 3 4 5
Foo |0 | +28q | *Ga_ | *2 Gy +(5/4) 4y + (17/6) Tq | +20yq - (7/6) Ty +
20 | -(23) Ty | - (513) Pyq+ (213) Ty | (53/15) Tq—~(22/15) T'yq

+(4/3) Oy +(4/15) O,

2.2.2. Cutoff (vyq and yoc): The normalized frequency cut off (vy4) and the corresponding
Cyqc are defined from Eq.3.d by putting by,=0 ;

Viae = (4a+2) Gao/ {erf(yae) = Fra(Zae) e™%) (5-2)
And by mixed Eq.5.a with Eq.3.f, we obtained an equation for {yas;
Vn Erf{quc}‘ e Gae {P{quc} + Cyae Sg{quc} /(28 q!}} =0 (5.b)

Consequently the corresponding vy is estimated from Eq.5.a.
For the first six modes vyqc and ¢y are calculated (Figure 5.c) and from the fitting curve
technique (with percentage error < 1.15 % ), they are;

Vyge =0 Cyqe =0 (Forq=0)
Vyge = +0.7930548 + 29947568 q (For g=1)
Cyge = 0.01756 + 1.09425238 q — 0.15391429 g® + 0.0108333 ¢

and

(5.c)
(5.d)
(Forg=1) (5.e)

The more the mode number increases, the more the values of both vy, and {yq increase as
expected (Figure 5.c).
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Figure 5. Normalized Propagation Constant (b,q), Normalized Variational
Parameter ({,q) and the Cut Off Values (vyq. and §,qc) for Symmetric Optical Slab
Waveguide at Different Mode Number (q)

2.2.3. Semi Infinite Waveguide (y = 0 — - o): Which usually used with electrooptic
applications. The above equations are used with the semi infinite waveguide with some

modifications. yq, (y) multiplied by factor \2, vyq divided by factor 2, vy, divided by factor 2,
Gyq multiplied by factor 2,and {y,c multiplied by factor 1.
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2.3. Analysis of Rectangular Waveguide

2.3.1. Variational Method (VM): With the Hermite-Gauss trial functions, The propagation
constant of the rectangular optical waveguide (Fig.1) is determined by using the variational
expression [11,12]

(. y) Fy_ xy)
i ﬂ_x[wpq{mv]—wp—q—v+wpq{x,v]—%:—y+ kZ ﬂ:{x,y]w;q{x,y]]dxdy
E'I..-:.;r = J-]-_ "-.|-|'E|l_|. {x v:]dxdv I:ﬁ' 3.:]
® d 2y ®
=fw(x} dxffw(x}dz’-+fw(¥} d}fffwb}dy+k‘n«

+ kg (ni - ngj [J-EDFELIJE (X}dx + J"ED!'ELIJE (X}dx] jfj:gretlqu (K-' Y}dxd}r (6b)
With the normalized power rule and from Eq.3.b, equation Eq.6.b becomes;

2 2g+1 2p+1 2179 [Gyag, i, 2VP (Gmp )
B‘J’?—i = — — + — J‘ SI:_I (yj-}'e Y_d}rl = J‘ SE(X:L}E‘ x% dXi
g Wyp Vg Jo VI Jo (6 C)

So the normalized propagation constant byqym is;
byy = — (4":1 + 2} i;qv}i !JIV: - (4'13' + 2} if{pv}, ,n"l(sz ‘I.F:]I

2P Ll o _
ﬁ_wf.}xpSE(Xije x dxy (6.d)

Finally the closed form of bygywm is;
byy=— (4":1 + 2} i}%qV}i -"JIV: - (4'13 + 2} Ef{p VM -"JI(SE sz + Rxp qu (5- E’j

Where, Goum (Gavm = T/ V2 ayg) and Goum  (Goum = W / V2 0y,) are the normalized
variational parameters in x and y directions, respectively, s is the aspect ratio (s=W/T), v is the

normalized frequency {v* = k2 TE{ni —ni)}and, Ry, and R, are defined from Eq.4.a by

using the subscript (xp) instead of the subscript yq,
In this case, Gpvm and (yqum are defined by the maximized value of bygwm, SO we are
obtained the following two equations.

{ (4p+2)27 p! fsw(vxpvxi}} { T Cpvm e M/s? R}’qV‘-i} (7.2)
= { (49 +2)27 q!/s; (‘T’yq‘iﬁ‘-i)}'{ Vm - e"}'q'u-‘h{fopWi} (7.b)
The values of both {vm and Cyqvm are determined by solving Egs.7a and 7.b together.

2.3.2. Normalized Propagation Constant (b) by MM, EIM and EWM: Similarly we
derived a closed form of the normalized propagation constant for both Maractilli's Method
(bpgmm) [13, 14], the Effective Index Method (bpeeim) [13-16] and the Effective Width Method
(bpgewm) [3, 17] for the rectangular waveguide as;

h\l‘-i - {(4{1 + 2} ‘:yq\ri'“.'"llvz + R}‘q}i}‘l} + {(413 + 23' ;ip}i}i.'"llisz v:j + Rxp?-i}i} -1 (8a)
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beny ={(4g+2) E;q}i}i-'"fvz +Ryquna} «{(4p + 2) Efcpzn.iz'r{sz v? Bygum }"‘ Ropema)  (8:D)
bewm = {lg+1D*n?/ (v +2)2} + {(p+1)* n?/(sv+2)?}+1 (8.c)

Where, {,qum and Gmm are the normalized variational parameters for the two slabs (Figures
1.b and 1.c). {eem is the normalized variational parameter of the slab (Figure 1.d) and both
Riomm, Ripmm and Rypeimm are defined from Eq.4.a with replacing the subscripts (xpMM
yqMM and xpEIM) instead of subscript yq, respectively.

Figure 6 shows that the results of MM are approached with that by VM except near cutoff.
But there are evidence differences between the numerical results by VM and EIM at the cutoff
values. We can be noticed that b increases with s (as mentioned in [15]) and the difference
between the calculated results by both MM, EIM and VM become very little (Figure 6).

2.3.3. Cutoff (v, &pc and §yqc): They are defined From Eq.6.e by putting bpqum=0;

% 3 =+ ¥
=~ —_— i i F -
Vevm = 5 (4'IJ'+ 2} Expn: + (4":1 + 2} E;ch )’Rxpc qu: (9 El}
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S5 | Wit wivbgashes _ 2| 5ol pivmcene _ 2| Salid aivhcmnes (ane
‘:g’g 9 g-gn_ sefid with 0 (EIM) g-\Dﬂh seid with 0 (EIM)
S8 Egs | 2 =8 5
2g 25 25
S O = D6 06—
S 584 8 8% ] mote0o
gm 8%47 g“i mode 00, %8
gt g gt o
4 o o
= | i, | 11
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0 NorfhalyZ%d fre’(ﬁuend? W) 2 Normalyzed frequency (v) ° Normalyzéd frequency (v) °

Figure 6. Comparison between VM, MM and EIM with Different Values of g and s

And the cut off values of %, and (% are determined by solving;

I ] e b e -
{(4p+ 2)2° pIvm e €™ Ry /82 (Tupe)} — (40 +2) e+ 52 (49 + 2D By =0

{(4,:1 +2)24 g! 1;,‘55 d € }'q Ryqe /55 (,:ch)} {4+ 2} Syge +(4p + 2} Sepe = =0

The cut-off value increases with both p and q while it decreases with s as shown in Figure 7
(as stated in [15]). Effect of s becomes little at higher modes. We use v, at s=1 as a reference
of the cutoff. By using the fitting curve technique, the relationship between v, and both p and

g for s=1 (with maximum percentage error =3.32 % at p=0 with g=0 or 1, but it becomes <
0.6% for the other modes) is derived as;

Veym = €g + €1 g + ¢ g° (withs=1) (9.1)
Where ¢, = 1.716881974 + 2.8552088770 p

c; = 2.800579958 — 0.8933905207 p + 0.1610643837 p* — 0.0119965675 g3

c; = 0.011497038 + 0.1013519959 p — 0.0262742418 p* + 0.0022088955 g°

We recommend that the cutoff by EWM can be used to find a guess value of v The
cutoff value by EWM (veewn) is derived from Eq.8.c as;
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+(16+ 165 — 4p] — 4507 Wegwu (16— 4p —4g; ) =0
Where, p; =(p+1)r, q:=(q+1)n and v, g is the positive real root of Eqg.9.c.

The value of Vewm > Veum (Figure 7) and veum > Veym (Figure 6) as stated in [9].
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Figure 7. Cutoff Values of the Buried Rectangular Waveguide for Different
Values of both p, q and s by VM (Solid) and EWM (Dashed)

2.3.4. Field Distribution: The optical field distribution is calculated from Eq.1 by using {mm
and C_,quM (Wlth MM), quMM and CxpEIM (Wlth ElM) and quVM and CxpVIM (Wlth VM) The Optical
field becomes more confinement with the aspect ratio (Figures 8) while field becomes weakly
with the mode numbers (Figures 9). Because of the optical field confinement depends upon v.

singmode 00 v=35275

single mode (W=12) v = 35275

single mode (W=30) , v = 35275
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Figure 8. Field Contours for Single Mode (A=1.31um, T=6 um, n;=1.505, n,=1.5)
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Figure 9. Field Contours for Multimode (A=1.31um, W=T=20um, n;=1.505, n,=1.5)

2.3.5. Analysis with Cosusoidal Optical Field: The rectangular waveguide is analyzed with
cosusoidal optical field by MM and EIM. The normalized propagation constants of MM (bym
cos) and EIM (beywv 0s) @nd the field distribution through the core () are derived as;

bum cos= by+by-1 (10.a)
DEim cos = De - by (10.b)
w_ . = coskyx = coskyy fﬂll{{].SW +1/7,) (05T +1/7,) (10.¢)
Where, ky= (vy /T) N(1-by), vy = (vy IT) Vb, ke= (Vi /W) N(1-by) | 7x = (Vi /W) Vb,
vi=kIT?(n} - ni) ,v,= vy W/T and Ve= V. by, (10.d)
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and both by , b, and b, are the solutions of the following characteristic equations of the two
slabs in y and x directions (Figures 1.b, 1.c and 1.d, respectively);

—_—
vy J1=by= (q+ Um — 2tan™? *Jl—i +1/b,  (with MM and EIM) {10.e)
Vey/1-by=(p+1)n — 2tan"1y/-1+ 1/b, (with MM) (10.1)
Vayyl—b.=(p+Un — 2tan™t -1+ 1/b, (with EIM) (10.g)

The numerical results by MM, EIM and EWM are very good accuracy if they compared
with that by FEM [3] (Table 2). Where the percentage error still considered available value if
it less than 5% [3].

The normalized propagation constant with cosusoidal optical field distribution is greater
than that with Hermite-Gauss optical field distribution (Table 3). The field distribution of
Hermite Gauss is more concentrated at the center of waveguide (Figure 8).

Table 2. Accuracy of MM, EIM, EWM and EWMap (With Cosusoidal Optical Field)
by Comparison the Difference (Boo-Bpg) With that by FEM. with the Main Data
Dif =10° (Boo-Bpg) and error % = 100 (Difeegy — Dif ) / Dif

mode 10 01 20 11 21 30 12 22 40

Ve EwM 3.69 |47 557 | 578 | 724 | 754 8.43 9.55 9.55

Dif em [3] | 2078 | 4111 | 5494 | 6175 | 9561 | 10145 | 12654 | 16003 | 15659
Dif pm 2082 | 4116 | 5507 | 6199 | 9627 | 10177 | 12736 | 16167 | 15816
Dif g 2063 | 4094 | 5450 | 6087 | 9338 | 10052 | 12367 | 15196 | 15526
Dif gwm 2097 | 4207 | 5594 | 6306 | 9805 | 10493 | 13326 | 16830 | 16798
Dif ewmap * | 2096 | 4204 | 5590 | 6300 | 9794 | 10480 | 13307 | 16801 | 16769
R mm 0.194 | 0.122 | 0.235 | 0.394 | 0.682 | 0.313 0.643 1.013 0.996
Rem 0.743 | 0.416 | 0.800 | 1.444 | 2.392 | 0.928 2.320 5.309 0.858
R ewm 0.914 | 2.283 | 1.788 | 2.072 | 2.488 | 3.317 5.045 4.912 6.778
R ewmap 0.863 | 2.215 | 1.709 | 1.988 | 2.376 | 3.200 3.722 4.747 6.617

* B ewmap) = Ko Ng - 0.5 (p+1)” T° /{ko ng W2 (1+2/v,)?} - 0.5(q+1)” T°/{k, ng TZ (1+2/v,)°} [ 3]

Table 3. Normalized Propagation Constant (b) by using MM and EIM with
Hermite-Gauss and Cosusoidal Field Distributions. With the Main Data
! (Hermite Gauss ), 2 (cosusoidal), Error % = 100 (b permite — b cosusoidal ) /' D Hermite

mode 00 10 01 20 11 21
Ve EwM 2.02 3.69 4.7 5.57 5.78 7.24
buw '’ 0.885683 | 0.774539 | 0.675891 | 0.369414 | 0.564747 | 0.402485
b vm 0.896836 | 0.793695 | 0.693262 | 0.370841 | 0.590420 | 0.421324
error % -1.2254 -2.4732 -2.5701 -0.3863 -4.5460 -4.6807
MM
bem 0.886308 | 0.776850 | 0.678577 | 0.376537 | 0.574744 | 0.422788
bem? 0.896836 | 0.794951 | 0.694649 | 0.375158 | 0.596263 | 0.435878
error % -1.1878 -2.3300 -2.3684 0.3661 -3.7442 -3.0962
EIM
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Figure 8. Comparison between Hermite Gauss and Cosusoidal Optical Field
Distributions through the Rectangular Waveguide with Mode00
(W=30um, T=20pum, n;=1.505, n,=1.500, with A=1.31um and A=1.55um)

3. Our Proposed Technique (Modified Variational Method, MVM)

In this proposed technique, VM is mixed with MM and so the normalized propagation
constant by MVM (bwvwm) is evaluated from Eq.6.2 by using the variational parameters Cmm
and {yqum instead of (uym and Gy, respectively. Therefore the calculations of byyw become
very simple and at the same time both MM and MVM are done together.

The accuracy of by becomes very good accuracy especially with higher values of the
aspect ratio (Figure 11 and Table 4). Because the corresponding value of v becomes more far
from cutoff.

The optical field by MVM (Fuvw) is calculated from Eq.1 by using {pmm and Gygmm. The
percentage error (Rg) between the field by VM (Fyw) and the field by MVM (Fyww) still in the
available ranges (Figure 12). With notice that at the points at which the field equals zero, the
deference between Fyy and Fuvw is very small while R increases where the original value
approaches to zero (Figure 12). Also the values of Re% with A=1.55um > Rg% with A=1.31um
(Figure 12) because of v decreases with . Where, Rg % =100 (Fym —Fymv) /Fum-
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Figure 11. Comparison between VM and both MVM and EWM

Note, bewwm iSn't accurate especially near the cut-off values and higher modes.
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Table 4. Percentage Error {Ry, % =100 (b ym —=b vmv) / bym}

mode v s=1 s=2 s=5
V¢ Ry % V¢ Ry % V¢ Ry %
00 2.5 1.7759 5.00 * 1.2535 0.70 0.7928 0.080
01 5 4.6166 5.76 41187 0.52 3.08467 0.082
10 5 4.6166 5.76 2.7832 0.06 1.5866 0.013
11 7 6.5961 5.70 4.,9836 0.14 4.1040 0.001

* Rpy% < 5 is considered available value [3]

To validate the methods presented above, we compare their numerical results with that
published with a buried rectangular waveguide (W=0.8um, T=0.4um, n;=3.52 and n,=3.2,
A=1.15um, p = g =0 and v=3.2048). The effective index, N =3.3137047 (FDM [18]),
3.3087656 (VBEM [18]), 3.27605(VM), 3.265596 (MM), 3.371238 (EIM), 3.362566 (EWM)
and 3.367554 (MVVM). And so, the percentage error (Ry%) is;Ry % =0.4195, 1.4518, 1.736,
1.4745 and 1.625 (with respect to FDM) while it becomes Ry% = 0.5694, 1.3047, 1.888,
1.6260 and 1.777 (with respect to VBEM), for VM, MM, EIM, EWM and MV M, respectively.
With noticed that, the difference (n;-n,=0.32) does not very small. Finally, MVM is very good
accurate and simple proposed.

4. Conclusion

Closed expressions have been driven for both normalized propagation constant, cutoff value
and field width for the slab and the buried rectangular optical waveguides. These closed
expressions are available for the semi-infinite waveguide. They are available with good
accuracy over a wide range of normalized frequency and modes. A brief description of some
of the common approximate methods (variational method, Maractili's method, effective index
method and the effective width method) for obtaining the guided modes of an optical
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waveguide. The analysis has been applied with Hermite-Gauss and cosusoidal optical fields.
The Hermite-Gauss optical field is sharp inside the core than that of cosusoidal.

The proposed technique is used to simplify the variational method. The driven equations
and the proposed technique show very good accuracy with respect to the finite element
method, finite difference method and vectorial boundary element method.
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