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Abstract 
For distributed optical fiber pipeline pre-warning system, the sampling rate used is very 

high and thus huge data will be generated, which makes it difficult to transfer and store. 
Compressive sensing is a new compressed sampling method in the field of signal processing 
which compresses and samples the signal simultaneously. In this paper, an adaptive 
compressive sensing method is presented for compression and reconstruction of distributed 
optical fiber pipeline data. First, partial reconstruction based detection method is used to 
detect whether a hazardous event happened, then different compression ratios are taken for 
different classes of signal thereby increasing the compression ratio. In signal reconstruction 
phase, a sparsity determination algorithm is used to determine the sparsity of different 
segment of the signal, and then wavelet tree combined with CoSamp algorithm is adopted to 
reconstruct the signal. The adaptive compression algorithm improves the compression ratio 
and the sparsity determination in reconstruction phase can determine the sparsity of each 
segment when the signal varies without prior knowledge of the sparsity of the signal. 
Experimental results show that, the proposed algorithm can obtain higher reconstruction 
accuracy at a relatively high compression ratio. Furthermore, location simulation shows that 
the reconstructed signal by the proposed method is effective for danger signal positioning. 
 

Keywords: Data compression, adaptive Compressive sensing, optical fiber pipeline, 
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1. Introduction 

For the transportation of oil and natural gas, pipeline transport is a safe and convenient 
method of transportation. On the route of the pipeline transportation, due to natural disasters, 
human illegal mining as well as the aging of the pipe itself and other reasons, the pipeline 
transportation security is threatened. The distributed optical fiber pipeline pre-warning system 
detects the vibration signal around the pipeline using distributed optical fiber and gives 
advance warning of threat signal to guarantee the safety of the pipeline. However, the data 
sampling rate used in the method is much high which results in a flood of monitoring data [1]. 
This brings a lot of inconvenience for data transfer and storage. In order to reduce the amount 
of data in the pipeline monitoring process, there have been many articles and some progresses 
reported. For example, Jintao etc. detected the importance of the data blocks based on the 
difference and the dynamic range threshold, and then used a combination of wavelet 
transform and Huffman coding method for lossless compression of important data [2]. Xu 
Quansheng etc. proposed a method of pipeline leak detection data compression algorithm 
based on predictor and Rice coding method [3]. Tongyun proposed a segment adaptive data 
compression algorithm [4]. However, these methods are based on the Nyquist Sampling 
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Theorem. Under these methods, the signal is first sampled and then compressed. Unlikely, the 
compressed sensing based method compresses and samples the signal simultaneously using 
the sparsity of the signal under a transformation. 

In compressed sensing, the data sampling rate can be substantially less than the 
Nyquist sampling rate for simultaneously sampling and compression. The Signal is 
measured by a matrix, and the measurement matrix is usually a random matrix. The 
most often used random matrices are random Gaussian matrix, sub-Gaussian matrix and 
Bernoulli matrix [5]. Also, there are some other matrix construction methods that is 
applicable to the compressed sensing [6]. The signal reconstruction methods are mainly 
divided into greedy iterative method and method based on dynamic programming. The 
reconstruction accuracy depends on the number of measurements and this will affect the 
signal compression ratio. For distributed optical fiber pipeline data, in the long running 
process, sometimes there exists threatening signal, sometimes not. The normal 
operation signal is mainly the noise data, and the data of this type does not require very 
high precision. Therefore, this article first detects the observed data to determine 
whether a threatening signal exists, if there exists, more measurements will be taken, 
otherwise fewer measurements. This method compresses the signal adaptively. In the 
signal reconstruction stage, the tree-based recovery algorithm [7] is used for its higher 
accuracy to piece wise and smooth signal. In the recovery algorithm, tree based 
algorithm and CoSamp [8] algorithm are combined to reconstruct the signal. But this 
method requires pre-given signal sparsity which is more difficult for the actual signal. 
And different signals in different time periods will have different sparse degrees, so an 
adaptive method is adopted to determine the sparsity of the signal before signal 
recovery. The above method presents adaptive processing in the compression and 
reconstruction aspects thus ensuring high reconstruction accuracy under higher 
compression ratio. 

The structure of the paper is organized as follows. The second section describes the 
principle of compressed sampling and reconstruction. The third part describes the tree 
based recovery algorithm and the proposed adaptive compressed sensing algorithm. In 
the fourth part, positioning method of the danger signal is given. And in the fifth part, 
the proposed algorithm is carried out on the data collected at the scene of the optical 
fiber pre-warning system and the experimental results are given. The final part 
concludes this paper. 
 
2. Theory of Compressed Sensing 

Compressed sensing is a new signal sampling and compression method which is based on 
signal sparse feature under a certain transformation. Suppose x is a segment of signal with 
length N, and { }1 2, , , Nψ ψ ψ=Ψ   is an orthogonal basis, then the expansion of x under 
the orthogonal basis is 

1

N

n n
n

x θ ψ θ
=

= Ψ =∑                                                             (1) 

Where { }1 2, , , Nθ θ θ θ=  are the expansion coefficients under the orthogonal matrixΨ . 
If only K ( K N ) values in θ  are more important than others and the unimportant 
values are near zero, then x is said to be K sparse and Ψ  can be called as the sparse 
matrix of x. Generally, the sparse nature of the signal under the transform matrix should 
be known in advance. 



International Journal of Future Generation Communication and Networking 

Vol. 6, No. 4, August, 2013 

 

 

169 

On the basis of sparse feature of the signal, the procedure of the compressed sensing 
method can be displayed as in Figure 1. As can be seen from the Figure, the signal 
processing procedure of compressed sensing can be divided into two stages including 
compressed observation and signal reconstruction. 

 
 
 

 

Figure 1. The Compression and Reconstruction Procedure of Compressed 
Sensing 

In compressed observation stage, an observation matrix with the size M×N (M<<N) is 
taken to observe the signal. This observation process can be described as 

                                               y x θ θ= = =Φ ΦΨ A                                                   (2) 

Where A can be called as the CS matrix. 
It is clear that the observed signal y is an M dimensional vector and thus the signal is 

compressed during observation process. When the observation matrix Φ and 
transformation matrix Ψ are strongly incoherent, the original signal x can be recovered 
with a high probability from y if logM K N> [9]. When the entries of the observation 
matrix are i.i.d. Gaussian distribution, Bernoulli distribution or sub-Gaussian 
distribution variables, the above conditions can be easily achieved. 

In Signal reconstruction phase, the reconstruction problem is to solve x from (2). 
Based on the sparse features of x under the transformation matrix Ψ , the solving 
method using linear programming (LP) can be formulated as 

1
ˆ arg min , subject to y

θ
θ θ θ= = A                                               (3) 

Where 
1
  is the 1  norm. When noise is added during observing process or the 

sparsity level used is not equal to the actual sparsity level, (3) can be rewritten as 

1 2
ˆ arg min , subject to y

θ
θ θ θ ε= − ≤A                                          (4) 

For (3) and (4), the recovered signal can be ˆx̂ θ=Ψ . A variety of algorithms, such as 
BP, BPDN, LASSO, etc. based on linear programming method are used to solve the 
problem shown in (4). Furthermore, the greedy iterative based approach such as 
matching pursuit [10], orthogonal matching pursuit [11], iterative hard threshold [12] 
and compressive sampling matching pursuit (CoSamp) [8] may also be used for 
recovering the signal. The greedy iterative algorithm is fast than the LP based algorithm 
and the CoSamp method can achieve similar performance as LP based algorithm [13]. 
 
3. Adaptive Compressed Sensing for Pipeline Data 
 
3.1. The proposed Adaptive Compression and Reconstruction Process 

In optical fiber pipeline pre-warning system, long-running signal is divided into 
signal having threatening information, and signal of normal operation. For these two 
types of signals, the required reconstruction accuracy is also different. Since the signal 
duration time is very long, so the signal compressed sampling is conducted by segment. 

Compressed 
sensingΦ         Reconstruction      Ψ

    
x       x̂     

y     θ̂      Store/             
Transfer        N        M      N         N         
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Different segments have different sparse degrees and it is very important to determine 
the sparsity signal of each segment because it can affect the reconstruction accuracy. 
Based on the above two points, this paper presents an adaptive compression and 
reconstruction algorithm, the process is shown in Figure 2. 

In the compression stage, this paper uses the OMP partial reconstruction method to detect 
whether there is threatening signal, then takes a different number of measurements for the 
different categories of data (For example, M1 and M2 measurements are taken for the normal 
operation and the threatening segments respectively), thus higher compression ratio is 
obtained with guaranteed accuracy. In the reconstruction phase, based on the piecewise 
smooth characteristics of the signal, the CoSamp algorithm and CSSA [14] algorithm is 
combined for recovery using wavelet tree decomposition. Because the sparsity of each 
segment of signal is different, the sparsity K is determined firstly using the sparsity 
determination algorithm, then the CoSamp algorithm and CSSA algorithm is combined for 
recovery to achieve higher recovery accuracy. 

 
 
 
 
 
 
 

Figure 2. The Process of the proposed Adaptive Compression and 
Reconstruction Algorithm 

3.2. Signal Analysis by Wavelet Tree 

The object of signal analysis is to obtain the characteristics in time domain or frequency 
domain. Fourier analysis is widely used in various fields, but it can not be used to analyze the 
signal in the frequency domain and time domain at the same time. The wavelet transform 
overcome the shortcomings of the Fourier analysis, it has the ability to characterize the local 
signal characteristics in both time and frequency domain. The basis functions of Fourier 
transform are sine and cosine functions of various frequency components. Similarly, the 
wavelet transform take the dilation and translation of the mother wavelet as the basis for 
signal decomposition. Continuous wavelet transform is defined as follows 

                                      1( , ) ( ) ( )tW a x t dt
aa
ττ ψ ∗ −

= ∫                                              (5) 

The greater the similarity between the wavelet function and signal the greater the 
wavelet coefficients, so wavelet function with great signal similarity to the signal 
should be chosen for decomposition. In addition, the high similarity also makes 
relatively sparse decomposition coefficients, which makes it more suitable for 
compressed sensing. 

For discrete signals, the wavelet transform has a tree structure [15]. Assuming that 
the signal x is a vector with length 2LN = , L is a positive integer, the scaling function 
φ and the wavelet function ψ are as follows  

                        /2 /2
, ,( ) 2 (2 ), ( ) 2 (2 )l l l l

l j l jt t j t t jφ φ ψ= − = −                                           (6) 

Then the wavelet transform can be written as 
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1 2 1

, ,
0 0

lL

l j l j
l j

x cαφ ψ
− −

= =

= +∑∑                                                      (7) 

Where 0,0,xα φ=  and , ,,l j l jc x ψ= .In above transform, 0,0c is the wavelet 

coefficients at the coarsest scale and α  is the corresponding single scaling coefficient. 
The above transform can be written as matrix form x θ=Ψ , where Ψ is the matrix 

composed by the scaling function and wavelet function, 0,0 1,0 1,1 1,2 1
, , , , , l

T

L
c c c cθ α

− −
 =    

is a vector composed by the scaling and wavelet coefficients. The wavelet functions 
have nesting structure which means the support of ,l jψ includes the support of 1,2l jψ +  
and 1,2 1l jψ + + . Therefore, the corresponding wavelet coefficients have a parent-child 
relationship and they can form a binary tree relationship which can be shown in Figure 
3. 

 
Figure 3. Tree Structure of One Dimensional Wavelet Coefficients 

For smooth or piece wise smooth signal, Wavelet coefficients with large magnitude 
represent the signal discontinuous region, and small wavelet coefficients represent the 
smooth region. Because the nested relationship of the support, a sub tree with relatively 
large coefficients will be generated in the wavelet tree. Further, the wavelet coefficients 
gradually reduce while the scale increases. Based on these characteristics, in the time of 
signal approximation, large coefficients on the sub-tree are used to approximate the 
signal transform coefficients and other coefficients are set to zero. While for 
reconstruction in compressed sensing, the signal can be recovered accurately by finding 
the sub-tree contains large coefficients. 
 
3.3. Signal Detection using OMP 

For measured signal by compressed sensing, the reconstruction quality is related to the 
number of measured values. The more measured values, the higher the reconstruction 
accuracy will be. During optical fiber pre-warning pipeline monitoring process, most of the 
signal is the normal operation signal which will be noise signal. The reconstruction accuracy 
need not be very high for this type of the signal, so fewer measurements will do and for signal 
containing threatening event more measurements are required. Therefore, this paper firstly 
classifies the signal using compressed sensing detection methods and then takes a different 
number of measurement signals for different categories. 

The compressed signal detection or classification is based on the following 
hypothesis: 

H0： x s n= +  ；H1： x n=  
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Where s indicates the pure vibration signal when threatening event happens and n is 
assumed to be Gaussian noise. For the optical fiber pre-warning data, the segments containing 
threatening event will have sparse coefficients under the transformation matrix Ψ . In contrast, 
the normal operation segments will be noise and the transformed coefficients will be much 
little. As a result of this, the key coefficient will be different between the two classes of signal. 
In fact, the different can be formulated as s nθ θ

∞ ∞
> , where sθ ∞

 and nθ ∞
 denote the key 

coefficient of the threatening segment and noise segment respectively. Based on these 
considerations, the hypothesis testing problem can be reformulated to check if the maximum 
reconstruction coefficient exceeds a certain thresholdλ , that is θ λ

∞
> . Using this method, 

the threatening event can be detected. 
Due to the above inference, the matching pursuit algorithm was taken for signal 

detection in [16], where partial reconstruction replaced the completely reconstruction 
thereby reducing computation complexity. OMP algorithm is an improved signal 
recovery algorithm based on matching pursuit. In OMP, the best projection on the 
selected support domain is solved each iteration. So it has excellent features including 
fast convergence, easy to implement, and better performance compared with MP [11]. 
So, this paper takes the OMP algorithm for signal detection. 

Let t be the iteration control variable and tr  be the residual at t-th iteration, then 
given the CS matrix A and the measurement vector y, the OMP based detection method 
is as follows 

1) Initialize: 0̂ 0θ =  , 0r y= , =∅0Ω , 1t = ; 

2) Form signal estimate from residual, 1
T

t tc r −← A ; 

3) Update support using the largest entry of the signal estimate,  
( )1 1supp ( )t t tc−← ΤΩ Ω   ; 

4) Update signal estimate, ˆ
t

t
t yθ +← ΩΩ

A , ˆ 0
c
t

tθ ←
Ω

; 

5) Update measurement residual, ˆ
t tr y θ← − A ; 

6) 1t t= + ; 

7) Repeat 2) to 6) until halting criterion is met. 

If t̂θ λ
∞
> , then there is threatening event in the signal, otherwise there is not. The 

parameter λ  is the threshold for deciding whether there is threatening event in the 
measurement. In the above algorithm, { }1,2, ,t N⊂Ω   is the indices set of the t-th 
iteration; C

tΛ  is the complementary set of  tΛ  in the set { }1,2, , N ;   θ
Ω

denotes the 

values of θ  restricted by the indices setΩ ; ( ) 1

t t t t

T T−+ =Ω Ω Ω ΩA A A A  is the pseudo-inverse 

of 
tΩA .In addition, 1( )tcΤ  is a function which set all entries of tc  to be zero except the 

entry with largest magnitude. 
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3.4. Tree based Recovery 

There are many algorithms for compressed sensing signal recovery. As the wavelet 
transform has a tree structure, and piecewise smooth and smooth signal has sub tree 
characteristics on the wavelet tree, therefore, the compressed signal recovery algorithm just 
needs to find the sub-tree which can best approximate the original signal transform then the 
signal can be reconstructed. In fact, the problem can be formulated as the following 
optimization problem 

                                          
0

2arg max i
k i

c
Γ = ∈Γ

Γ = ∑                                                           (8) 

Where Γ denotes the wavelet tree set of size k, i represents the order number of 
wavelet coefficients which is got by sorting the combinations of scale and position (l, j). 
The number of wavelet tree with size k is much less than the number of k dimensional 
combinations in the N-dimensional space, so this recovery algorithm can greatly reduce 
the search space. 

The condensing sort and select algorithm (CSSA) is taken to select the K largest 
coefficients as the sparse estimate. The CSSA algorithm can find the K largest 
coefficients, but K must be given in advance. While signal sparsity K also need to be 
given in advance for CoSamp and SP, this paper adopts the combination of CoSamp and 
CSSA for signal recovery [15]. The algorithm is as follows 

Input: CS matrix A, measurement vector y, sparsity K 

1) Initialize: 0̂ 0θ = , 0r y= , 1t = ; 

2) Compute the estimation of the signal from the residual of last iteration,  
1

T
t tc r −← A ; 

3) Prune signal support by CSSA algorithm, 1 supp(S( , ))tc K←Ω , where S denotes  
the CSSA algorithm; 

4) Merge support, 2 1 1
ˆsupp( )tθ −←Ω Ω  ; 

5) Form new signal estimate using the updated support in step 4,  

22 2
, 0cb y b+← ←ΩΩ Ω

Α ; 

6) Prune signal estimate by CSSA algorithm, ˆ S( , )t b Kθ ← ; 

7) Update residual, ˆ
t tr y θ← − A ; 

8) 1t t= +  

9) Repeat 2) to 8) until halting criterion is met 

Output: ˆ
t̂θ θ←  

The signal can be estimated by ˆx̂ θ=Ψ when θ̂ is got. In the above algorithm, each 
iteration of CoSamp require operation of order O(MN) complexity, where M is the 
measurement number and N is the length of original signal. The first step of CSSA is to 
sort all the wavelet coefficients, so its complexity is O(NlogN). So the combination of 
CSSA with CoSamp will increase the computation complexity while increasing the 
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recovery accuracy. In addition, there is a shortcoming that the sparsity of the signal 
should be known in advance which is hard to implement. 
 
3.5. Segment Sparsity Determination 

Using the algorithm described in Section 3.3, the relatively more precise estimate of the 
original signal can be obtained. While the OMP algorithm needs not a prior knowledge of the 
sparsity of the original signal, the CoSamp needs a prior knowledge [8]. Therefore, the 
algorithm that combines CoSamp and CSSA will need in advance the sparsity of the signal. 
For the long time running signal, the signal is recovered each segment and the sparsity will 
vary for different segment. If the different sparsity value other than the real sparsity value is 
taken for the recovery algorithm, there will cause some error. So the sparsity of each piece of 
signal needs to be pre-determined. In this paper, an iterative method is used to estimate the 
sparsity K of the signal [13].This algorithm starts from a small initial sparsity value and the 
sparsity is gradually increased until certain condition is met. In essence, it searches the 
supports according to the importance degree gradually and merges the support with the 
support of the last iteration, and finally updates the support in the current iteration. The 
algorithm is as follows 

Input: CS matrix A, measurement vector y, sparsity step κ 

1) Initialize: 0̂ 0θ =  , 0r y= , F =∅0 , K κ=  , 1t =  , 1j =  ; 

2) Form signal estimate from residual, 1
T

t tc r −← A  ; 

3) Make support candidate, ( )1 1 supp ( )t K tF T c−←Ω  ; 

4) Refine support, 
12 ( y)KT +← ΩΩ A  ; 

5) Update residual, 
2 2

r y y+← − Ω ΩA A ; 

6) If stopping criterion is met, stop the iteration, or go to 7); 

7) If 12 2tr r −≥  , then go to 8), or go to 9); 

8) Update support size, 1j j= +  , K j κ= ×  ; 

9) Update the parameters for next iteration, 2tF =Ω , tr r=  , 1t t= + ; 

10) Repeat 2) to 9). 

Output: sparsity K 

In the above algorithm, ( )KT x  sets all entries except the K largest entries of x to be 
zero. The variable t is the iteration number counter; j controls the sparsity increase and 
κ controls the increase step. The candidate support and the refined support are changing 
in the whole algorithm, while the update process is similar to that of SP algorithm and 
CoSamp algorithm in certain iteration.  

There are mainly the following ways to halt the iteration: 1) When the norm of the 
residual 

2
r  is small than a threshold value ε , but it is hard to determine the threshold 

because the norm of the measurement will affect it; 2) When the relative change of the 
recovered signal is small than a thresholdξ , though better than the first method, it is 
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also hard to determine the threshold for this method in some cases. For the easier to 
implement characteristics of 2), this paper adopts this as the halting condition setting. 

The sparsity step parameter κ will also affect the sparsity estimation. The larger step 
can make the algorithm converge fast but may bring large error. In contrast, little step 
can make the algorithm converge slowly but may bring little error. To get high 
accuracy, this paper use little step. 
 
4. Positioning of the Threatening Signal 

For distributed pipeline pre-warning system, when found threatening events, the threat 
incident location should be positioned. During positioning process, the key is to find the time 
difference t∆ of the threat signal passing by the first end and the terminal photo detectors. 

Then the location of the threatening event is
2

L v tx − ∆
= . L is the length of the fiber and v is 

the propagation velocity of the light in the fiber. The commonly used method to get the time 
difference is the correlation method, which is to get the maximum correlation position of the 
photoelectric signals at the two ends of the sensor [1]. Assuming that x(t) and y(t) is the 
photoelectric signal detected at the first end and the terminal respectively, then the correlation 
of x(t) and y(t) is 

                                            ( ) ( ) ( )R x t y t dtτ τ
+∞

−∞
= +∫                                                 (9) 

The corresponding 0τ when the correlation function reaches the maximum value is 
the expected time difference t∆ . After the analog signal converted to digital signals, the 
photoelectric signals of the first end and the terminal can be respectively expressed as   

( )x n and ( )y n (n is integer), then the correlation function of N points can be expressed 
as 

                                             
1

0

1( ) ( ) ( )
N

n
R J x n y n J

N

−

=

= +∑                                            (10) 

Assuming that 0J J= corresponds to the max value of the correlation function R, then 
the time difference is 0t J T∆ = , where T is the sampling interval for the digital signal. 

Compressed sensing algorithm can compress the original signal by sampling at a very 
low speed than the Nyquist frequency through random projection of the original signal. 
However, the quality of the reconstructed signal will vary with the recovery algorithm 
and the measurement number. According to the positioning principle described above, 
for compressed sensing, the quality of the recovered signal will depend on whether it 
will affect the positioning accuracy. Therefore, the efficiency of the compressed 
sensing algorithm can be evaluated by comparing the positioning result of the original 
signal and the recovered signal. 
 
5. Experimental Results 

In this paper, on-site shovel digging is carried out to simulate the real mining stolen 
behavior and the simulation analysis is carried out on the data collected. The buried optic 
fiber cable is used on-site which is buried 0.5 meter depth and 500 meters long. Digging with 
a spade in the buried fiber optic cable segment is executed. Such a mining behavior can 
simulate the real mining potential illegal behavior. The signal generated by the mining 
behavior is sampled at 4MHz sampling rate. Due to the high sampling rate, large amount of 
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data was generated. So the original signal is down-sampled to 44.1 KHz and only the segment 
containing the digging event and a segment of normal operation signal is used in this paper. 
The data used in this paper is shown in Figure 4. 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. The Mining Signal used in the Paper 

The wavelet analysis of the signal is based on the expansion under the waveform 
basis. Therefore, if the waveform of the signal and the waveform of the basis are more 
similar, the analysis effect will be better and the transform coefficients will be sparser. 
Figure 3 showed that the signal used in this paper is piecewise smooth signal, so it will 
be better to use Daubechies wavelet and this will also be in line with the conditions of 
the formation of the wavelet tree. 

In order to measure the compressed sampled signal's ability to preserve information 
of the original signal, root mean square error (PRD), signal-to-noise ratio and energy 
recovery coefficients can be taken as evaluation metrics. To measure the compression 
capability of the compressed sampled signal, compression rate(R) is taken as evaluation 
metric [17]. This paper uses the signal-to-noise ratio and compression ratios to evaluate 
the performance, the calculation method of these two metrics are as follows 

                            2 2

1 1
10log10 ( ) [ ( ) ( )]

N N

n n
SNR x n x n x n

= =

= −∑ ∑                                      (11) 

                               size of compressed signal
size of original signal

R =
 

                                                   (12) 

In (11), x  is the original signal and x  is the reconstructed signal from the compressed 
sampled signal. 

The first experiment is focused on signal detection. In order to classify the noise and 
the signal containing threats, OMP based partial reconstruction algorithm is used to 
estimate the maximum recovered value of the noise segments. The measurement 
number M varies from 10 to 90 with step 5 and the result is show in Figure 5. The 
segment length of the original signal is taken as 1024 and 512. The values obtained can 
be used to estimate the threshold to classify the signal. This article takes 0.1 as the 
threshold to detect the presence of the threatening signal. 
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Figure 5. Maximum Recovered Values under Different Measurement Numbers 
for Noise Signal when the Original Signal Length is 512 or 1024 

For the second experiment, as in the adaptive reconstruction process, it is very 
important to determine the sparsity and the sparsity step is more important for the 
accuracy of the sparsity determination algorithm and the accuracy of the sparsity will 
affect the reconstruction quality. Therefore, the second experiment is to evaluate the 
reconstruction performance under different sparsity steps of the sparsity determination 
algorithm. For comparison, the original signal length is taken as 512 and 1024, and the 
corresponding measurement number is 50 and 70 respectively. The result is shown in 
Figure 6 and the horizontal axis indicates the sparsity step, the vertical axis represents 
the SNR of the reconstructed signal. As can be seen from the figure, in the case of 
different sparsity steps, the SNR is different but there is slightly difference when the 
sparsity step is small. When the original signal length is 1024 and the sparsity step is 10, 
the SNR is low; when the original signal length is 512 and the sparsity step exceeds 6, 
the SNR begins to decrease. The low SNR under big sparsity is because the estimated 
sparsity will be more likely to deviate from the true sparsity when the true sparsity is 
between the last update and the next update of the sparsity determination algorithm.  
 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 6. SNR of Adaptive Reconstruction using Sparsity Determination 
Algorithm as a Function of Sparsity Step under Different Signal Length N 

Based on these results, a relatively small sparsity step is adopted for sparsity 
determination in this paper. Also, we take the original signal length as 1024. 
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In the third experiment, OMP, CoSamp and the proposed algorithm with wavelet tree 
and sparsity determination are compared on the reconstruction performance. The 
proposed algorithm can be divided into two versions. The version taking different 
number of measurements for normal operation signal and threatening signal in the 
compressed sampling phase can be called as adaptive compression (AC) version. Corre- 
 
 
 
 
 
 
 
 
 
 
 

Figure 7. SNR Comparison of OMP, CoSamp, AC Version and NAC Version as 
the Measurement Number Varies from 50 to 90 

spondingly, the version taking the same number of measurements in the compressed 
sampling phase can be called as non adaptive compression (NAC) version. The original 
signal length is taken as 1024 in the performance comparison. The measurement 
number varies from 50 to 90 with a step 5. During the sparsity determination process, 
the sparsity step is taken as 2. The result is shown in Figure 7. As can be seen from the 
figure, in the case of non-adaptive compression, the proposed algorithm achieves the 
highest reconstruction SNR. Under the adaptive compression case, the measurement 
number of the noise segment is taken 20 less than the non-noise section. The figure 
showed that there is little difference between the reconstruction SNR of the adaptive 
and non-adaptive compression version. Also, the proposed algorithm achieves much 
better performance than the OMP and CoSamp algorithm. 

Table 1. Performance Comparison of AC and NAC 

Measurement number 
NAC AC 

CR  SNR(dB) t∆ /s CR  SNR(dB) t∆ /s 

50 
55 
60 
65 
70 
75 
80 
85 
90 

0.049 
0.054 
0.059 
0.063 
0.068 
0.073 
0.078 
0.083 
0.088 

15.48 
16.99 
19.73 
20.27 
20.80 
20.85 
21.05 
21.20 
21.44 

4.93e-6 
3.94e-6 
1.97e-6 
0.99e-6 
0.99e-6 

0 
0 
0 
0 

0.036 
0.041 
0.046 
0.051 
0.055 
0.060 
0.065 
0.070 
0.075 

14.08 
17.32 
18.69 
20.00 
20.50 
21.20 
20.93 
21.33 
21.37 

1.38e-5 
5.92e-6 
3.94e-6 
1.97e-6 
0.99e-6 
0.99e-6 

0 
0 
0 

The fourth experiment is to evaluate the positioning accuracy of the reconstructed 
signal using the proposed algorithm. The reconstructed signal of the compressed 
sampled signal using compressed sensing may be not completely consistent with the 
original. For optical fiber pre-warning system, waveform inconsistency may lead to 
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inconsistent positioning deviation. Therefore, the positioning difference between the 
reconstructed signal and the original signal is shown in Table 1. Because the signal 
used is down sampled signal, the positioning differences are expressed in time. The 
results show that the positioning errors caused by reconstruction signal are very small. 
When the measurement number exceeds a certain number there is no positioning error. 
This proves that the proposed algorithm can be applied to the optical fiber pre-warning 
system. Also, the CR and SNR results at different measurement numbers are listed in 
Table 1. From the table, it can be seen that when CR is higher than 0.05 the SNR can 
exceed 20dB for both AC and NAC version. 
 
6. Conclusions 

In this paper, an adaptive compression and reconstruction method based on compressed 
sensing for optical fiber pipeline data is proposed. The method uses OMP based detection 
method to detect whether a threatening event during the compression stage. In the 
reconstruction phase, the signal sparsity is firstly determined by the sparsity determination 
algorithm. Then, because the wavelet tree is suitable to model the smooth or piecewise 
smooth signal, it is combined with CoSamp algorithm for signal reconstruction. Therefore, 
the proposed method is adaptive in both the compression and the reconstruction phases. The 
adaptive compression method can decrease the compression rate and guarantee a high 
reconstruction SNR; the sparsity adaptive method in the reconstruction stage helps to 
reconstruct the signal without priory knowledge of the signal sparsity. Experimental results 
show that the proposed algorithm can obtain a lower compression rate and higher 
reconstruction SNR. And, from the positioning point of view, simulation results prove the 
effectiveness of the method for optical fiber pipeline data. 
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