
International Journal of Future Generation Communication and Networking

Vol. 6, No. 3, June, 2013

13

RMCC: An Efficient Cooperative Caching Scheme for Mobile

Ad-hoc Networks

Po-Jen Chuang, Yu-Yiu Chen, and Hang-Li Chen

Department of Electrical Engineering, Tamkang University
Tamsui, New Taipei City, Taiwan 25137, R.O.C.

Email: pjchuang@ee.tku.edu.tw

Abstract

For mobile ad-hoc networks (MANETs), caching data is important and useful. By

exercising cache cooperation between mobile nodes, cooperative caching schemes can

improve data accessibility and system performance. Seeing that the cache hit ratios tend to

degrade due to high node mobility, restricted battery energy and limited wireless bandwidth

in a MANET, we introduce a new cooperative caching scheme, the Regionally Maintained

Cooperative Caching (RMCC) scheme, to solve the problem. RMCC allows one node in a

region to cache a data item while the other nodes in the same region to cache the path to the

node when to acquire the same item. Such a design helps generate more cache space and

wider cached data variety for nodes in one region, and as a result attains higher cache hit

ratios as well as lower data access latency. Experimental evaluation shows that the proposed

RMCC outperforms other schemes in terms of cache hit ratios, in-cache ratios and amounts

of required file packets.

Keywords: Mobile ad-hoc networks (MANETs), cooperative caching schemes, cache hit

ratios, access latency, experimental evaluation

1. Introduction

A cache is a component that transparently stores data items to facilitate future data

requests. When a node needs a data item which is in the cache, it can directly read the cache,

instead of going to the server, to attain the item in a faster and more efficient way. If a cache

can serve more data requests, the overall system performance can be largely intensified.

Wireless caching is similar, in principle, to content caching which has been long used by

Internet Service Providers (ISPs) to accelerate web content acquirement. A wireless cache

will temporarily store popular content that is flowing into an ISP’s network. If the temporary

storage can satisfy a subscriber’s data request, we can avoid data transfer by expensive transit

links and meanwhile reduce network congestion. For mobile ad-hoc networks (MANETs),

caching data is equally important and useful. To give an example, in a battlefield, a MANET

may contain several commanding officers each of whom has a powerful data center, and a

group of soldiers who need to access from the centers for such data as geographic

information, enemy information or new commands. As neighboring soldiers tend to have

similar missions and share common interests, it is very likely that when soldier A has

accessed a data item from the data center, nearby soldiers will access the same item some

time later. In such a case, if later accesses to the same data item can be served by soldier A

(who has the item) rather than by the distant center, we can save significant energy,

bandwidth and time.

By exercising cache cooperation between mobile nodes, cooperative caching schemes can

improve the system performance of MANETs, mesh networks or sensor networks.

International Journal of Future Generation Communication and Networking

Vol. 6, No. 3, June, 2013

14

Cooperative caching can improve data accessibility in MANETs in which a node may

communicate with others anytime anywhere. For instance, CacheData [1] lets each node

cache a relayed data item (di) locally when it finds di is popular (frequently accessed) or when

cache space is available. CachePath [1, 2] lets each node cache the shortest path to the

available cache that has the requested item. Zhao’s [3] introduces a symmetric cooperative

caching approach to improve the performance of CacheData. GroupCache [4] allows a node

and its 1-hop neighbors to form a group, then periodically exchanging and maintaining the

caching status in the group.

In MANETs, cooperative caching faces a major problem: cache hit ratios may go down

while access latency may go up due to high node mobility, restricted battery energy and

limited wireless bandwidth. Another major problem is: Cooperative caching schemes cannot

effectively distribute varied data to the caches in a region. This will keep nodes in a region

from caching more hot data, degrading cache hit ratios while increasing access latency. To

improve the situation, this paper presents an advanced new cooperative caching scheme, the

Regionally Maintained Cooperative Caching (RMCC) scheme. Preserving the advantages of

existing caching schemes (such as Zhao’s and GroupCache), RMCC lets only one node (say

A) in a region cache a data item while the other nodes in the same region cache the path to A

when pursuing the same item. Such a design can produce more cache space for nodes in a

region to store more data and practically raise the cache hit ratios. To maintain cache validity

of adjacent nodes, RMCC takes advantage of the hello message broadcasting in on-demand

routing for MANETs. It exchanges and maintains the cache status when any node receives a

data reply message. For a data miss in the CacheData space, each node will search the item in

its CachePath table before forwarding the request to the next node in the routing path towards

the server.

Experimental evaluation using NS2 [5] is carried out to check and compare the

performance of the proposed RMCC and other caching mechanisms, including SimpleCache,

GroupCache and Zhao’s. The results indicate more favorable performance in cache hit ratios,

in-cache ratios, and the amount of file packets for our RMCC than for other schemes.

2. Related Works

Most of previous researches in MANETs focus on the development of dynamic routing

protocols [6-8], to improve the one-hop/multi-hop connectivity among mobile hosts (MHs) –

such as notebooks, PDA or cell phones in which every node can move arbitrarily and

communicate with one another by multi-hop wireless links.

2.1. Ad-hoc On-demand Distance Vector Routing (AODV) [9-12]

AODV is composed of route request, route reply and route maintenance. In AODV, nodes

will build and repair a path only when necessary – to reduce the extra cost of building routes

in a dynamic network topology.

2.1.1. Route request: Route discovery starts upon request. When a node needs to send a packet

to a destination, it first searches its routing table for usable routing information. If there is valid

information, the node will send out the packet along with the next hop indicated in the table;

otherwise, it will start the route request by flooding a RREQ (route request) packet. A RREQ

carries such information as source IP, destination IP and broadcast ID. Each node maintains a

broadcast ID which will increase whenever a RREQ is sent (to mark the event). After sending

out a RREQ, the source will set a timer and wait for the RREP (request reply). Sending a RREQ

International Journal of Future Generation Communication and Networking

Vol. 6, No. 3, June, 2013

15

will create a route reaching out to the destination and also a reverse route for the destination to

return the RREP to the source.

2.1.2. Route reply: In the process of sending a RREQ, if there is a valid route to the

destination in the routing table of a middle node, the middle node will return the RREP to the

source; otherwise, the destination node needs to return the RREP by the end. Different from a

RREQ, RREP will be transmitted in unicast, i.e., the middle nodes will build a forward route

to the destination. After the source receives the RREP, it then transmits the data packets by the

built forward route to the destination.

2.2. CacheData and CachePath [1, 2]

CacheData and CachePath are two cooperative caching schemes. In CacheData, a node

will cache a passing-by data item di locally when it finds that di is popular (with many

requests) or when it has free cache space. For example, in Figure 1, both nodes 6 and 7

request di through node 5, node 5 knows that di is popular and caches it locally. Future

requests by node 3, 4, or 5 can be served by node 5 directly. Figure 1 can also illustrate the

idea of CachePath. Suppose node 1 has requested a data item di from node 11. When node 3

forwards di back to node 1, it knows that node 1 has a copy of di. Later, if node 2 requests di,

node 3 finds out node 11 is three hops away while node 1 is only one hop away. Node 3

hence forwards the request to node 1 instead of node 4. Note that many routing algorithms

(such as AODV and DSR [11-13]) provide hop count information between the source and

destination. Besides CacheData and CachePath, there are hybrid cooperative caching

schemes of the two, e.g., [1, 14].

Figure 1. An Example of Performing CacheData and CachePath

2.3. Zhao's Method [3]

Zhao et al., propose a symmetric cooperative cache approach, where data requests are sent

to the cache layer at every node but data replies are sent only to the cache layer at the

intermediate nodes which need to cache the data.

2.3.1. The placement and replacement policy: Designed based on CacheData, Zhao’s also

lets a node cache a passing-by data item locally when it finds the item is popular or has enough

cache space.

2.3.2. The data discovery process: After a request is generated by the application, it is passed

down to the cache layer. To send the request to the next hop, the cache layer wraps the original

message with a new destination address – the next hop to reach the data server (the real

destination). We assume that the cache layer can access the routing table and locate the next hop

International Journal of Future Generation Communication and Networking

Vol. 6, No. 3, June, 2013

16

to reach the data center. It can be easily accomplished if the routing protocol is based on DSR or

AODV. That is, the packet can be received and processed hop by hop by all nodes along the

path from the requester to the data server.

When an intermediate node receives the request and delivers it to the cache layer, the cache

manager will check if it has the requested data in its local cache. If yes, add its local information,

including ID and TS, to the request packet. (Also add its node id to the Path List, which is a

linked list encapsulated in the cache layer header.) If not, forward the request to the next node

until the request arrives at the data center.

2.4 GroupCache [4]

GroupCache lets each mobile host and its 1-hop neighbors form a group, to exchange and

maintain the caching status periodically. By using the proposed group caching, the caching

space in mobile hosts can be efficiently utilized, to reduce the redundancy of cached data and

the average access latency.

2.4.1. The placement and replacement policy: When a node receives a data item, it will

cache the item if there is free cache space. If there is no free space, it will look for available

cache space in group members. If none of the group members has enough cache space to cache

the received item, the receiving node will look up the group_table to select an “appropriate”

group member (which has the oldest timestamp of the cached item) and send the item to the

selected member.

2.4.2. The data discovery process: A requester will build a routing path to the destination and

send the request to the next hop to reach the source (destination). When an intermediate node in

the routing path receives the request, it will check its self_table (cachedata space) or

group_table (cachepath space) for the requested data. If unable to find the data, it will forward

the request to the next node in the routing path. The same process will go on until the server

attains the data.

3. The Proposed Regionally Maintained Cooperative Cache (RMCC)

Scheme

To enhance the cooperation of node caches based on the Zhao’s mechanism, we let nodes

broadcast hello messages with node cache information. Nodes will cooperate to catch current

cache distribution. When a node receives a requested file forwarding packet with the file’s

popularity degree over a predefined threshold (i.e., a popular file), it will add the file name,

file version and popularity degree of the cache information into the next hello message and

broadcast it to neighbor nodes. Receiving the hello message, a neighbor node will check its

own cache space to see if it has the same file: if yes, delete it and cache the path only. By

allowing only one node to cache the file while the other nodes in the same region to cache the

path, we can attain more cache space for storing other files and increase the cache hit ratios

substantially.

3.1. The Flow of Our Cache Scheme

3.1.1. The task of each node: Our scheme adopts similar routing as the AODV scheme

[9-12]. While AODV uses neighbor tables to store the information of neighbor nodes, our

RMCC combines the cache space and neighbor tables. Besides caching data, each of our

nodes also stores in its neighbor table the cache paths to neighbor nodes, to facilitate future

International Journal of Future Generation Communication and Networking

Vol. 6, No. 3, June, 2013

17

requests for popular data. When a node receives a hello message with the cache information

of a data item, it will first search its own cache for such an item. If the item is in the cache:

check its validity; if not, check the neighbor table for the corresponding cache path.

3.1.2. The cooperation of nodes: When updating cached data, two nodes in a region, say A

and B, may cache the same data item. At this point, compare the popularity degree of this

item in the two nodes: If the cached item is more popular in A than in B, A will keep the item

in its cache whereas B will move to add the cache path in its neighbor table and delete the

cached item. A then includes the updated information in the next hello message and broadcast

it to the neighbors. Receiving the message, each neighbor will delete this specific cached item

from its cache and store the cache path in the neighbor table. It is through such cooperation

between nodes that we are able to increase cache efficiency.

3.1.3. An example: Figure 2 helps illustrate the basic design of our scheme.

In Figure 2, we assume node 0 is a wireless node adjacent to a wired network and via node

0 we can fetch a requested data item stored in the wired network. Sometime later, when a few

neighbor nodes of node 0 repeatedly cache the same data item, we find it is quite a waste of

the limited resources in the wireless environment. Previous cache schemes cannot avoid this

kind of resource waste, but our scheme can -- because we employ the regionally maintained

cooperative caching by way of hello messages. Now suppose nodes 4 and 5 in the figure will

cache the same data item and node 4 is about to broadcast a hello message. Node 4 has the

information of this item, including the time stamp and popularity degree, adds the information

to the hello message and broadcast it out. (Note that by combining cache information with

hello messages, we can maintain caches and meanwhile confirm the presence of neighbor

nodes, avoiding the drawback of CachePath due to absence of neighbor nodes.) Receiving

the hello message, node 5 will search its own cache for this specific data item: if having the

item, delete it and cache the path only (saving the cache space for other data).

Later, when node 9 queries the same data (by the red line) by way of node 5, node 5 will

attach the queried information (including the time stamp) for the server to check its validity in

node 4. The server then sends a control message to node 4 (by the blue line) asking it to return

the requested item (by the green line) to node 9. Thus completes the query.

Figure 2. An Example to Illustrate our Scheme

International Journal of Future Generation Communication and Networking

Vol. 6, No. 3, June, 2013

18

3.2. Data Placement and Replacement

In our scheme, when a packet containing a requested file reaches a node, the node will

cache the file when there is cache space. If the cache space is full and the file is already there,

the node will add the file’s popularity degree by one. If the cache space is full without the file,

the node then follows the LRU cache replacement mechanism in [1] to cache the file. We can

also store cache paths via periodical hello message broadcasting in MANET routing, like the

AODV routing. That is, by allowing only one node to cache a file and the other nodes in the

same region to cache the path leading to the file, we are able to gain more cache space for

caching more files and eventually enhance the cache hit ratios.

3.3. Data Discovery

In our scheme, when a node (client) requests for a file, each node on the way of

exploration to the server needs to check if such a file is stored in its cache. If yes, append the

file name, version and node name to the exploration packet; otherwise, look for cache path

space and append related information to the exploration packet. If a node caches neither the

file nor the path, it will pass the exploration attempt to the next node which will repeat the

same process until reaching the server. In the data discovery process, if an intermediate node

caches the valid information of the requested file and directly returns it to the client, we can

save significant bandwidth resources due to reduced control packet transmissions. In case the

requested file cached in intermediate nodes is invalid, the server will send the file to the

client.

4. Experimental Evaluation

Experimental evaluation using NS2 [5] has been conducted to check and compare the

performance of the proposed RMCC and related schemes, including Zhao’s [3], GroupCache

[4] and SimpleCache [3]. (SimpleCache is the traditional caching scheme which caches the

received data at the query node only).

4.1. Simulation Parameters

In the simulation, we set client and server models based on [1], exponentially distribute the

query interval of each node and slowly increase the query frequency over time. A new query

will take place only after a current query is served. Considering the actual trace of webpage

packets, we let 10% of the network’s popular pages provide 80% of users’ requests for web

pages (the Zipf-like distribution [15]). To simulate data updates in the server, we assume the

server with an opportunity to update data every five seconds. As our scheme employs AODV

routing, we adopt its routing parameters as well. For instance, the hello message is broadcast

per second, the transmission distance is assumed to be 250 meters, and the simulation area is

set to be rectangular to reflect network cache performance under long-distance transmission.

The adopted simulation parameters are listed in Table I.

Table I. Simulation Parameters

Parameter value

Simulation area 1500m*500m

Number of nodes 50

Communication range 250

Client cache size 800kb

Server database size 1000 items

Data item size 20Kb

International Journal of Future Generation Communication and Networking

Vol. 6, No. 3, June, 2013

19

4.2. Simulation Results

Figure 3 depicts the cache hit ratios vs. the server update ratios for the schemes. The hit

ratio (calculated by the following formula) indicates the ratio of requested data items being in

the cache and valid to all requested items.

ncmisshit

hit

querytotal

hit

NNN

N

N

N
ratiohit

_

_

where

hitN = the number of requested items found in the cache of an intermediate node and valid.

missN = the number of requested items found in an intermediate node cache but invalid

ncN = the number of requested items not found in the cache of any intermediate node

ncmisshitquerytotal NNNN _
= the total number of requests

The result shows that SimpleCache which lets each node check its own cache space for the

requested item yields undesirable performance, and so does GroupCache which does not

check validity from the server. Our RMCC generates the best hit ratios among all mainly

because it uses hello messages to maintain caches regionally and to store cache paths.

Figure 3. Cache Hit Ratios vs. Server Update Ratios

Figure 4 depicts the cache miss ratios vs. the server update ratios for the schemes. The miss

ratio (attained by the following formula) indicates the ratio of requested data items being in

the cache but invalid to all requested items.

ncmisshit

miss

querytotal

miss

NNN

N

N

N
ratiomiss

_

_

Compared with Zhao’s, our RMCC yields slightly higher miss ratios at some server update

ratios because of its additional cached paths. RMCC nevertheless produces more desirable

overall performance than Zhao’s due to its constantly higher hit ratios as depicted above.

International Journal of Future Generation Communication and Networking

Vol. 6, No. 3, June, 2013

20

Figure 4. Cache Miss Ratios vs. Server Update Ratios

Figure 5 gives the in-cache ratios vs. the server update ratios for the schemes. The in-cache

ratio (obtained by the following formula) is the ratio of requested data items being in cache,

valid or invalid, to all requested items.

ncmisshit

misshit

querytotal

misshit

NNN

NN

N

NN
ratiocachein

_

__

RMCC is shown to yield the highest in-cache ratios because its regional inter-node

cooperation policy helps gain more cache space for storing more items and thus increases the

probability of locating a requested data item in the cache. Note that the in-cache ratios of both

RMCC and Zhao’s go up with the server update ratios. This is because it gets easier to locate

a requested item in the cache when cached data are distributed more evenly. Between the two

schemes, RMCC is able to attain higher in-cache ratios than Zhao’s because it caches not

only data but also the paths leading to cached data, as mentioned before.

Figure 5. In-cache Ratios vs. Server Update Ratios

Figure 6 gives the in-cache valid ratios vs. the server update ratios. The in-cache valid ratio

(attained by the following formula) is the ratio of requested data items being in cache and

valid to all requested items that are in cache.

misshit

hit

NN

N
ratiovalidcachein

RMCC has much higher in-cache valid ratios than Zhao's because it adopts the following

approaches: (1) using extra storage to cache the paths (to help locate a requested data – in

cache and valid), (2) additionally broadcasting the cached paths (to increase the hit ratios and

International Journal of Future Generation Communication and Networking

Vol. 6, No. 3, June, 2013

21

maintain caches regionally) and (3) broadcasting the most stable data when broadcasting the

cached paths (to minimize the probability of additional cache misses).

Figure 6. In-cache Valid Ratios vs. Server Update Ratios

Figure 7 illustrates the amount of file packets vs. the server update ratios for the schemes.

Here, the total of file packet transmissions (not including control packet transmissions)

indicates the percentage of file packet transmissions for these caching schemes over file

packet transmissions for original AODV (with no caching mechanisms). The result will help

reveal how much caching mechanisms can reduce file packet transmissions. Here,

SimpleCache and GroupCache both require considerable file packets, indicating they save

only small amounts of file packets. GroupCache, which acquires requested data from the

server upon cache miss, requires even more file packets than original AODV, especially when

the server update ratios are high. RMCC achieves better caching efficiency than Zhao’s (by

its regional inter-node cooperation) and hence reduces the most file packet transmissions.

Figure 7. The Amounts of File Packets vs. Server Update Ratios

Figure 8 gives the amounts of control packets in bytes. SimpleCache is shown to have the

least amount of control packets because it lets each node check the cache for a requested data.

Our RMCC needs slightly more control packets than SimpleCache and Zhao’s – which is

acceptable and worthwhile when compared with the significant performance gain illustrated

above. Of all schemes, GroupCache requires obviously the most control packets because its

nodes need to broadcast periodically.

International Journal of Future Generation Communication and Networking

Vol. 6, No. 3, June, 2013

22

Figure 8. The Amounts of Required Control Packets in Bytes

5. Conclusions

Cooperative caching can improve the data accessibility and system performance of a

MANET. But high node mobility, restricted battery energy, limited wireless bandwidth and

ineffective caches may degrade the cache hit ratios while increase the access latency. This

paper introduces a new cooperative caching scheme, the Regionally Maintained Cooperative

Caching (RMCC) scheme, to solve the problem. RMCC is built on a regional inter-node

cooperation concept: A data item will be cached in only one node of a region; when the other

nodes in the same region need that specific item, they simply cache the path to the node

whose cache has the item. The unique design is desirable as it (1) increases cache space for

nodes in a region, (2) widens the variety of cached data, (3) elevates cache hit ratios in data

discovery, (4) shortens data access latency and (5) upgrades the overall performance for a

MANET. To maintain cache validity of adjacent nodes, RMCC exchanges/maintains the

cache status using hello message broadcasting. Simulation results show that when compared

with existing caching schemes, RMCC performs better in several performance parameters,

including cache hit ratios, in-cache ratios and file packet transmissions. It eventually reduces

data access latency and bandwidth consumption.

References

[1] L. Yin and G. Cao, “Supporting Cooperative Caching in Ad Hoc Networks”, 23rd Annual Joint Conference of

the IEEE Computer and Communications Societies, vol. 4, (2004), pp. 2537-2547.

[2] H. Artail, H. Safa and S. Pierre, “Database Caching in MANETs Based on Separation of Queries and

Responses”, 2005 IEEE International Conference on Wireless and Mobile Computing, Networking and

Communications, vol. 3, (2005), pp. 237-244.

[3] J. Zhao, P. Zhang, G. Cao and C. R. Das, “Cooperative Caching in Wireless P2P Networks: Design,

Implementation and Evaluation”, IEEE Transactions on Parallel and Distributed Systems, vol. 21, no. 2, (2010),

pp. 229-241.

[4] Y.-W. Ting and Y.-K. Chang, “A Novel Cooperative Caching Scheme for Wireless Ad Hoc Networks:

GroupCaching”, 2007 International Conference on Networking, Architecture, and Storage, (2007), pp. 62-68.

[5] NS2, http://www.isi.edu/nsnam/ns/.

[6] D. Wang, X. Wang, X. Yu, K. Qi and Z. Xia, “A Truthful and Low-Overhead Routing Protocol for Ad Hoc

Networks”, International Journal of Future Generation Communication and Networking, vol. 6, no. 2, (2013),

pp. 127-138.

[7] S. Gupta and C. Kumar, “An Intelligent Efficient Secure Routing Protocol for MANET”, International

Journal of Future Generation Communication and Networking, vol. 6, no. 1, (2013), pp. 111-132.

[8] N. Karthikeyan, V. Palanisamy and K. Duraiswamy, “Performance Comparison of Broadcasting methods in

Mobile Ad Hoc Network”, International Journal of Future Generation Communication and Networking, vol. 2,

no. 2, (2009), pp. 47-58.

[9] C. E. Perkins and E. M. Royer, “Ad hoc On-Demand Distance Vector Routing”, 2nd IEEE Workshop on Mobile

Computing Systems and Applications, (1999), pp. 90-100.

http://ieeexplore.ieee.org/search/srchabstract.jsp?tp=&arnumber=1354674&openedRefinements%3D*%26filter%3DAND%28NOT%284283010803%29%29%26searchField%3DSearch+All%26queryText%3DLiangzhong+Yin%3B+Guohong+Cao
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=9369
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=9369
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=9369
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=9369
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=9369
http://ieeexplore.ieee.org/search/srchabstract.jsp?tp=&arnumber=4286409&queryText%3Dcachedata%26openedRefinements%3D*%26searchField%3DSearch+All
http://ieeexplore.ieee.org/search/srchabstract.jsp?tp=&arnumber=4286409&queryText%3Dcachedata%26openedRefinements%3D*%26searchField%3DSearch+All
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4286392
http://www.isi.edu/nsnam/ns/

International Journal of Future Generation Communication and Networking

Vol. 6, No. 3, June, 2013

23

[10] C. Perkins, E. Royer and S. Das, “Ad Hoc On-Demand Distance Vector (AODV) Routing”, Internet Draft,

Internet Engineering Task Force, http://www.itef.org/internet-drafts/draft-ietf-manet-aodv-08.txt, (2001)

[11] M. Abolhasan, T. Wysocki, E. Dutkiewicz, “A Review of Routing Protocols for Mobile Ad Hoc Networks”, J.

Elsevier Ad Hoc Networks, vol. 2, no. 1, (2004), pp. 1-22.

[12] P. Nandl and S. C. Sharma, “Performance study of Broadcast based Mobile Ad Hoc Routing Protocols AODV,

DSR and DYMO”, International Journal of Security and Its Applications, vol. 5, no. 1, (2011), pp. 53-64.

[13] D. Johnson, D. Maltz, Y.-C. Hu and J. Jetcheva, “The Dynamic Source Routing Protocol for Mobile Ad Hoc

Networks. Internet Draft”, Internet Engineering Task Force,

http://www.ietf.org/internet-drafts/draft-ietf-manet-dsr-05.txt, (2001).

[14] H. Artail, H. Safa, K. Mershad, Z. Abou-Atme and N. Sulieman, “COACS: A Cooperative and Adaptive

Caching System for MANETs”, IEEE Transactions on Mobile Computing, vol. 7, no. 8, (2008), pp. 961-977.

[15] L. Breslau, P. Cao, L. Fan, G. Phillips and S. Shenker, “Web Caching and Zipf-like Distributions: Evidence and

implications”, 18th Annual Joint Conference of the IEEE Computer and Communications Societies, vol. 1,

(1999), pp. 126-134.

http://www.ietf.org/internet-drafts/draft-ietf-manet-dsr-05.txt

International Journal of Future Generation Communication and Networking

Vol. 6, No. 3, June, 2013

24

