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Abstract 

Cognitive radio enabled vehicular networks (CR-VNETs) is a new communication 

paradigm that enables moving vehicles to identify spectrum opportunities along busy streets 

and freeways. This detected spectrum may possibly lie in licensed frequency bands, and can 

be used for emergency communications, such as by primary responders during crises events.  

Spectrum sensing ensures that this spectrum is not currently occupied by licensed users, who 

have priority access rights. However, as the vehicles are in motion, the spectrum sensing at a 

given location must be completed with minimum delay, a challenge for classical energy and 

feature based detection schemes. This paper presents a new distributed compressive sampling 

technique that allows individual vehicles to report partial information to a centralized base 

station (BS), with an overhead of only few bytes. Thus, we tradeoff reporting time with 

processing complexity at the BS, which is tasked with re-constructing the overall spectrum 

utilization from these portions. Simulation results reveal significant improvements in 

detection time and accuracy, making our approach suitable for CR-VNETs. 
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1. Introduction 

During times of national emergencies, the existing communication infrastructure 

used by public safety and emergency responders may get heavily loaded, or suffer from 

physical damage. This may possibly lead to loss of connectivity at a critical time, owing 

to lack of spectrum access. Cognitive radio (CR) ad hoc networks enable spectrum 

access in the vacant licensed bands, thereby allowing continued connectivity among in 

a decentralized architecture [1]. As emergency responders move to address the crises, 

they share the roads with other vehicles, each of which is equipped with a cognitive 

radio connected to a CR base station (BS). The resulting network composed of the CR 

equipped vehicles, the CR BS and the emergency responders is called as a cognitive 

radio enabled vehicular network (CR-VNET). Other examples applications of such 

networks include emergency notification and personal security, vehicle collision 

avoidance, pre-crash restraint deployment, and automated vehicle operation [2].  
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FCC regulations in the US allow opportunistic transmission in the digital television 

(DTV) channels 21-51, except 37, as long as licensed transmissions are not adversely 

affected. However, the function of spectrum sensing, which is used to identify the 

vacant spectrum, is a challenge in CR-VNETs. Unlike classical CR ad hoc networks, a 

node cannot scan multiple channels successively as different regions are covered at 

subsequent time instants while moving [3]. Thus, nodes in a CR-VNET must rely on 

wideband sensing to gather the knowledge of the entire spectrum band of interest.  This 

approach in turn raises several concerns in the hardware requirements, especially the 

sampling rate. Currently available off-the-shelf USRP2 devices can accommodate a 

maximum of 25 MHz of bandwidth at a time as the signal must be acquired at the 

Nyquist sampling rate. Analog-to-digital converters (ADCs) that are able to work with 

large bandwidths (i.e. up to several GHz range), are often prohibitively expensive for 

wide-scale deployments. 

Hence, in order to acquire wideband signal with normal hardware, compressive 

sampling (CS) [4] becomes a promising solution in realization of cognitive radio. This 

technique enables us to do the sampling at a much smaller rate than Nyquist rate and 

accurately reconstruct a sparse signal. The sparseness constraint is easily satisfied in 

practical CR-VNETs. Recent measurements have shown that the spectrum utilization in  

a large portion of the licensed GHz range of frequencies is within 0-5% outside city 

limits [5]. Roads and highways often pass through regions of moderate to low 

population density, such as rural areas, which typically observe low spectrum usage. 

Finally, several prior works have stressed that only few channels of interested spectrum 

are occupied by the licensed or primary users (PUs) making CS an attractive option [6-

8]. 

The first effort of implementing CS for spectrum sensing was introduced in [6]. The 

spectrum estimation is obtained using a wavelet edge detector after signal recovery. 

However, this scheme only works for special signal whose Fourier transform is real. 

The effect of applying analog-information converter to wavelet detector is explored in 

[7], wherein the high computational complexity is still a problem. Noting that the PU 

signal in a distributed CR network is sparse, [8] exploits the sparsity difference between 

PU signal and the signals emitted by the other CR nodes. Nevertheless, all the 

aforementioned works require every single CR user to undertake CS in each sensing 

period. This imposes considerable amount of time for sensing for a vehicle, with costly 

hardware, thus limiting its practicality for CR-VNETs. 

The novel contribution of our proposed scheme is as follows: Each CR user only 

sends in a single scalar value (i.e., a single inner product between network-wide pre-

decided constant matrix Φ and the digital PU signal). K different measurements are 

obtained simultaneously by K distinct users. The BS collects the measurements results 

to reconstruct the frequency domain information of the sparse PU signal through CS, 

which is finally used to obtain the wideband spectrum occupancy status. Thus, the 

complete inference burden is shifted to the BS, and only part of the local computation is 

provided by the CR users. 

The remainder of the paper is organized as follows. In Section II, the preliminaries of CS 

and the CR-VNET network model are presented. Section III describes the proposed 

centralized CS-based spectrum sensing scheme. We undertake a thorough performance 

evaluation in Section IV, and finally, Section V concludes our work. 
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2. Preliminaries 
 

2.1. Compressive Sampling Basics 

Compressive sampling is a method to recover signals from far fewer  measurements 

than needed for traditional sampling. We represent the analog signal x(t), 0≤ t≤ T as a 

finite weighted sum of a orthonormal basis ( )i t  as follows 

 
1

( ) ( )
N

i i

i

x t s t


    (1) 

where only a few basis coefficients si are much larger than zero due to the sparsity of 

x(t). In particular, with a discrete-time CS framework, consider the acquisition of an N 

× 1 vector x. Also, suppose that there is an orthonormal basis Ψ in which x is T sparse, 

i.e. where only T basis coefficients are much larger than zero due to the sparsity of x. 

Mathematically, x can be written as [4]: 

 x s   (2) 

Compressive sampling theory states that x can be accurately recovered from K ≪ N 

measurements of the signal. Assume that we use a set of K linear combinations of the 

signal as the measurement vector y 

 y x   (3) 

where Φ is the constant and known sensing matrix of dimension K × N, where K is the 

number of independent measurements (or reporting CR users), and N is the length of received 

signal x. Then by properly choosing Φ, and based on sparsity of the representation of x in the 

Ψ basis, x can be recovered from y. As the basis matrix is determined by the nature of the 

problem, choosing a sensing matrix having a low coherence (incoherent) with Ψ will lead to a 

smaller K. This suggests choosing Φ to be a totally random matrix [4]. More specifically, T 

sparse and compressible signals of length N can be recovered from only K≥  cT log (N /T) ≪
N random Gaussian measurements, where c is a small constant. Then reconstruction can be 

achieved by solving the ℓ1 norm minimization [4]: 

 
1

ˆ argmin
s

s s  s.t. y s   (4) 

2.2. Network Model 

We consider a four-lane highway in a rural setting, as shown in Figure 1. The 

multiple BSs can be installed on existing light poles, traffic signals and road signs 

along the road with constant separation, here assumed as 150 meters. We assume the 

traffic density of the road is 30 vehicles per mile per lane according to [9], which 

equals to approximate 40 cars in the coverage of a BS. The CR users (cars) sample the 

received PU signal simultaneously and report the measurements to BS. The BS obtains 

the final spectrum sensing results, and broadcast them to all the nodes in its range.  

Recent measurements have shown the DTV PU on/off time having mean of 63.6 

seconds [10], which renders the network to be virtually static for a round of given 

measurement and decision dissemination. 
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Figure 1. Vehicular cognitive radio network model 

The total DTV frequency range is composed of 30 non-overlapping contiguous 

channels, whose bandwidth and center frequency are invariant and known to all users. 

We assume each user is using a wide-band antenna listening to the whole spectrum and 

providing the node with the wideband time domain signal x(t). Unlike the conventional 

system, the users in our proposed model do not need to have the energy detector. Each 

user is only equipped with a multiplier to conduct the inner product operation rather 

than undertake signal energy integration and comparison, which can significantly 

reduce the hardware complexity.  

The network provides a dedicated error free common control channel (CCC), which is used 

to report sampling information and broadcast sensing results. We assume that CR users report 

their information using the classical CSMA-based RTS/CTS scheme. 

 

3. Proposed Compressive Spectrum Sensing Technique 

Before we discuss the details of our centralized scheme, we would like to comment 

on the feasibility of the recent FCC ruling on spectrum databases [11]. Here, the CR 

devices must have positioning capabilities, and are required to download the region-

specific occupancy from a database. Thus, they are not required to perform additional 

sensing before transmitting.  

We compared the results from main dynamic DTV band databases [12-14] for four 

locations in Massachusetts, which are presented in Table I. We can find there are 

considerable differences between the number of channels stated to be free out of a 

maximum of 50 in the DTV band. The FCC map [12] consistently provides details of 

some of the channels, but does not mention the status of many of the others. The o ther 

two databases [13-14] list all the channels, but lack consistency among them. Thus, 

there is a necessity to perform efficient spectrum sensing before transmitting, given the 

state of existing spectrum databases. 

Table 1. TV White Spaces Results from Databases 

Location Number of idle 

channels[12] 

Number of idle 

channels[13] 

Number of idle 

channels[14] 

Boston 25 3 13 

Newbury 33 9 15 

Westford 23 6 5 

Carver 28 7 16 
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Apart from highlighting the database inconsistency, Table 1, also points out the 

sparseness in spectrum occupancy in comparatively rural areas, such as Newbury and 

Carver, MA, U.S.. In such areas, we apply CS theory to realize the proposed wideband 

spectrum sensing paradigm.  

The proposed distributed CS processing scheme is depicted in Figure 2. Recall that 

the matrix Φ is of dimension K × N, determined by the number of CR users (K) and the 

length of received signal (N). Let each element of the matrix Φ be represented by ij  

(i=1,…,K, j=1,…,N), which are generated through a random Gaussian process. In the 

measuring period, each CR i undertakes the inner product operation once (rather than K 

times) between the stored sensing matrix vectors ij  and the PU signal x to get required 

K measurements yi. Finaly, the BS reconstructs the frequency domain information fm 

(m=1, … , M) by solving the linear convex optimization problem. Thus, it obtains the 

entire spectrum occupancy status based on fm and broadcasts the results within the 

network. 

x

j1
 xj ,1

1y

j2
 xj ,2

2y

jK
 xj ,K


K

y

BS
Signal Recovery

CR1

CR2

CRK
 

Figure 2. Centralized Cooperative Compressive Sampling Scheme 

CR users report their measurements synchronously in every sensing period, and then 

await for the broadcasting of the sensing results from the BS. 

For the sampling procedure, we denote (3) as following 

 

11 12 1 1 1

21 22 2 2 2

1 2

N

N

K K KN N K

x y

x y
y x

x y

  

  

  

     
     
        
     
     

    

  (5) 

where ij  are the elements of the measurement matrix; x and y are the N × 1 and K × 

1 vectors of the PU signal and sampling measurements respectively. From (4), we 

define our signal recovery problem as follows: 

 
1

ˆ argminm m
f

f f s.t.  1

m fy GF f n    (6) 

where 1

my GF f  is the specific expression of y s . Here G   is the random 

Gaussian measuring matrix, F is the discrete Fourier basis and nf is the noise sample 

vector that remains to be white Gaussian. 1

mF f s x   is the frequency domain 

expression of received signal. 
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In general, we use f = CS(y;Φ) to represent a signal recovery algorithm for solving 

the sparse vector f in a linear regression model y = Φf + n, where n is additive white 

Gaussian noise (AWGN). In this notation, the local spectral estimation solution to (6) 

can be expressed as: 

 1ˆ ( ; )f CS y GF    (7) 

Note that the application scenario assumed in a CR-VNET network is not interested 

in the PU signal strength, but simply wishes to know which of the channels are 

unoccupied. In this case, the spectrum sensing task is reduced to spectrum detection. 

Based on the recovered frequency domain information of the PU signals, the BS will 

make the available idle channel decision by detecting a binary state vector d ∈ {0, 1}
M

×1
, whose m-th element is defined by 

 
1,

( )
0,

if channel m is occupied
d m

if channel m is ilde


 


  (8) 

The decision on (8) can be made by comparing the local spectral estimate ˆ
mf  

obtained in (6) with a decision threshold 
m : 

 ˆ( ) ( )m md m f     (9) 

The threshold 
m  can be chosen based on a desired level of probability of false alarms Pf, 

using the well-known Neyman-Pearson binary hypothesis test rule [15]. 

 

4. Performance Analysis and Simulation Results 

In this section, we study the behavior of CS based spectrum sensing under the 

scenarios of (i) 30 CRs in the BS coverage area and (ii) 40 CRs in the BS coverage 

region, typical for vehicular networks. There are 30 non-overlapping DTV channels for 

the CR operation, each of 6MHz bandwidth. We randomly choose 3 channels to be 

occupied by single tone PU signal of length 1.6667×10
-5

s, which makes the time-

bandwidth product to be 100 per channel. The decision threshold m  in (9) is chosen as 

NP rule such that the false alarm Pf = 0.05. The SNR of the received signal is varying 

from 0dB to 15dB. 

In our study conducted in MATLAB, we use two classical approaches for 

comparison: a one-bit hard and soft combination cooperative sensing schemes. In one-

bit hard cooperation scheme, CR users only send their 1 bit detection results to BS. 

While, the integrated energy information is reported to BS in soft combination scheme, 

which is proved having the optimal sensing accuracy [3, 16]. Here, we focus on two 

important metrics: the time consumed for detection, and the detection accuracy by 

measuring the – (i) total detection time, which includes the sampling time and reporting 

time, (ii) the processing time at the BS, (iii) the memory requirement for storing the 

sampling results, and (iv) the detection probability.  

As conventional spectrum sensing schemes undertake sequential detection for 

wideband spectrum, we use AND fusion rule to determine the entire spectrum detection 
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probability, which means the detection is correct only when all the channels status are 

detected accurately. Let denote AND rule by: 

 
30

,

1

d d i

i

P P


   (10) 

We use 802.11 analytical model to simulate the measurements reporting time [17]. 

The MAC header, PHY header, ACK, RTS, CTS, Bit rate and propagation delay of 

CCC are set to be 272 bits, 128 bits, 240 bits, 288 bits, 240 bits, 1Mbit/s and 1 s  

respectively. The one-bit hard sensing scheme sends a single bit decision over the CCC, 

while other two schemes send 32 bits. The processing times are measured on 

milliseconds.  

Table 2 and Figure 3 show the detection performances of different sensing schemes in 

scenario (i). We observe that the proposed sensing approach has overwhelming advantage on 

detection time compared to classical sensing schemes as it is capable of detecting the entire 

spectrum in one sensing period rather than channel by channel searching. The processing time 

tradeoff in CR-VNET allows the BS to incur the computational overhead of spectrum 

decision, which can be further optimized using high speed processors. In addition, each CR 

user in our scheme requires only 1 unit measurement storage memory, which reduces the 

hardware complexity and energy consumed for vehicles. However, the detection probability 

of compressive spectrum sensing does not reach the requirement of 90% for 30 users. 

Table 2. Detection Performances of Three Sensing Schemes 

 Hard Soft CS 

Detection time 1296.7 1324.6 44.5 

Processing time(BS) 3.2 0.1 2075 

Memory requiring 100 100 1 
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Figure 3. Detection Probability of Different Schemes in Scenario (i) 

We observe that with the increasing of numbers of CR users to 40 (Table 3 and 

Figure 4), the detection probability of proposed scheme is improved significantly. Thus, 

we can meet the accuracy requirement when the SNR is higher than 13dB. The fast 

wideband sensing technique of our proposed approach ensures the efficient spectrum 

utilization in CR-VNET in most practical signal and noise settings.  
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To study the detection accuracy of CS based spectrum sensing, we continuously vary 

the fraction of occupied channels on the x-axis from 3/30 to 10/30 and the number of 

CR users on y-axis from 20 to 90, and measure the detection probability under different 

situations depicted in Figure 5. As more PUs become active, we observe that higher 

number of CR users need to be added to maintain the required spectrum sensing 

accuracy. Conversely, increasing CR users can improve the detection performance, 

when the number of PUs is constant. This can happen practically in CR-VNET, when 

vehicles get densely packed in a traffic jam in an emergency event. This higher density 

will also result in enhanced sensing accuracy, as more vehicles get involved in sensing.  

Table 3. Detection Performances of Three Sensing Schemes 

 Hard Soft CS 

Detection time 1751.1 1788.2 60.0 

Processing time(BS) 3.4 0.1 2227.0 

Memory requiring 100 100 1 
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Figure 4. Detection Probability of Different Schemes in Scenario (ii) 
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Figure 5. Sensing probability of Proposed Scheme under Different CR 
Numbers and Fraction of Occupied Channels 

When the fraction of occupied channels and the number of CR users are varied 

dynamically, we observe the variation in data gathering and processing time in Figures 
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6 and 7. The time consumed increases as the number CR users goes up, since more 

users request to send their measurements packet to the BS via CCC. The BS also needs 

more time to conduct the spectrum detection with the increasing of the measuring 

matrix dimensions (caused directly by increasing K, the number of CR users). However, 

the performance of CR-VNET is not adversely impacted, as the number of vehicles 

increasing since the processing at each CR user is still efficient.  
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Figure 6. Time Consuming of Proposed Scheme under Different CR Numbers 
and Fraction of Occupied Channels 
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Figure 7. Processing Time of Proposed Scheme under Different CR Numbers 
and Fraction of Occupied Channels 

5. Conclusion 

In this work, we have proposed a scheme that allows vehicle based CR users to 

cooperatively sense the wideband PU frequencies using compressive sampling. This 

reduces the need for successively tuning the radio to individual channels for sensing, 

and also reduces the sampling rate in CR-VNETs. Each CR user only undertakes a 

limited computation, equivalent to computing a single matrix element, and trading off 

detection speed required for moving vehicles with back-end processing at the BS. 

Compared with the previous techniques used in classical cooperative sensing schemes, 

our approach reveals about 95% improvements in detection time and similar detection 

accuracy to optimal sensing scheme, making it suitable for CR-VNETs. 
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