
International Journal of Future Generation Communication and Networking

Vol. 6, No. 2, April, 2013

139

Analysis and Implementation of an Ajax-enabled Web Crawler

Li-Jie Cui
1
, Hui He

2
 and Hong-Wei Xuan

1

1
School of Software and Engineering,

Harbin University of Science and Technology, Harbin, China
2
Harbin Institute of Technology, Harbin, China

andyclj1977@163.com, hehui@hit.edu.cn, henryxuan@hotmail.com

Abstract

This paper analyzes a web crawler for the Web 2.0 network, which presents new

challenges. A comprehensive overview on various programs and strategies is presented,

which includes the design and realization of Ajax reptiles. Experimental verification indicates

that an Ajax Crawler can effectively obtain Ajax dynamic pages. The proposed Ajax Crawler

is then compared with common Ajax reptiles in terms of their download speeds.

Keywords: Dynamic web pages, Ajax, Web 2.0, web crawler

1. Introduction

Web 2.0 is a general designation for a new class of Internet applications relative to Web

1.0. User access to information through the browser is a main feature of Web 1.0. Web 2.0 is

more focused on user interaction, and both website content viewers and the manufacturers of

the site content are considered users. Internet users are no longer solely readers; they are

authors who “surf” the Web, but can become “wave makers.” Thus, the user participation

develops from the simple ability to “read” to “write” until it evolves into the ability to

“build.” Thus, users shift from being a passive receiver of information on the Internet to a

proactive contributor of information, thereby making the system more user-oriented.

With the rising popularity of Web 2.0 in web development, more websites use Ajax

technologies. The application of this technology has improved the user experience, generated

several new concepts, and enhanced the design of the Web user interface. Simultaneously,

technology can dynamically change the content and the traditional structure of the web page.

The web crawler uses static web pages to produce less content during page rendering.

However, this dynamic content tremendously challenges the web crawler design. Thus, these

web crawlers cannot access the full text of the presented web page.

This paper supports the development of an Ajax web crawler that supports Ajax and can

execute custom tasks. Thus, the acquisition of web information becomes highly efficient.

Section 2 describes the state-of-the-art for Ajax pages and previous crawl studies that were

performed both locally and abroad. Section 3 introduces the design and concrete realization of

reptiles that support Ajax. Section 4 verifies the feasibility of applying Ajax reptiles through

several experiments.

This paper designed a web crawler, which can successfully crawl Ajax dynamic web pages,
and compared with ordinary Ajax reptiles in the download speed and the number of

downloaded pages.

International Journal of Future Generation Communication and Networking

Vol. 6, No. 2, April, 2013

140

2. Related Work

To date, mainstream search engines like Google and Yahoo do not index dynamic pages.

Thus, users cannot use search engines to find dynamic page content.

Search engines that support Ajax are still in the research stages. Luo [1] designed a search

engine that crawls the Ajax page; this program contains JavaScript code files to obtain pages

based on protocol, to directly design and implement script interpreters, to simulate the

behavior of the browser while executing the script codes, and to implement control over the

conversion of a page state. Xiao [2] used the same approach in a later study. Zeng and Li [3]

built a program with a hierarchical model based on the slicing algorithm to solve the orderly

execution problem of JavaScript. Frey [4] and Matter [5]

improved the existing version of

Rhino [6], an open source JavaScript interpreter to implement script execution and state

transition. However, completely reproducing the script interpreter is time consuming.

Although the Rhino project has been maintained for several years, numerous script codes are

not working properly. Therefore, other studies have attempted to take advantage of the

embedded browser component to implement the rendering and script execution of Ajax pages,

thereby achieving the intended automatically converted state. Wang [7] and Jin [8] reportes

studies similar to those of Frey [4] and Matter [4], where web crawler technology was

evaluated based on script language analysis using the open-source JavaScript engine

SpiderMonkey and Rhino to parse JavaScript dynamic pages, to extract then execute

JavaScript codes, and to obtain URL address that contain these pages, thereby completing the

crawling task.

Frey and Matter extended the Cobra tool set [9], as well as implemented dynamic loading

and parsing of HTML codes, until they accessed the DOM structure tree formed by the

internal state to obtain the data content of the state. Similar with the state transitions, their

study makes the full use of existing technology and the mainstream acquisition mode of state

content by using the embedded browser as the Ajax running container, interacting with the

external interface provided by the browser and the page DOM tree, and obtaining the full data

content [10–13].

A relatively simple method of conversion control is to use the event filter mechanism

because each event is triggered one by one after filtering. To improve the efficiency, Duda

[14] and Xia [12] proposed rules to support user-defined rules and to introduce the receiver

and the refusing rules. Thus, the state transitions can only occur using a finite set that meets

the conditions. Mesbah [15] used three different ways to control the state transitions, namely,

fully automatic scanning, HTML element annotation, and field-oriented manual configuration.

Matter [16] reported a heuristic crawling strategy to avoid the same pages from different

paths.

3. Ajax Crawler reptile design solution and achievements

More websites use Ajax technology because of the popularity of Web 2.0. The Rhino

engine is used in this study to support Ajax.

3.1. JavaScript engine Rhino

Rhino is a JS scripting engine using pure Java language. Rhino is used in a Java program to

provide end users with scripted capabilities [17]. Rhino contains a JavaScript code parser,

compiler, and code debugging modules.

Script compiler module. The input of the compiler is the JavaScript code, whereas its

output is a JavaScript data object. The JavaScript structure contains the byte code, comments,

International Journal of Future Generation Communication and Networking

Vol. 6, No. 2, April, 2013

141

a string pool, and the data, as well as an identifier. JavaScript likewise contains objects and

functions, among others. Functions are a period of nested JavaScript codes [18]. Compilers

consists of three components, namely, the lexical scanner of random logic used to create the

AST recursive descent parser of tree-walking, the code generator which is a compilation

process completed by function Main, and the processSource () that compiles the input

character strings or JavaScript codes into the stream file. During the compilation process, all

of the variables, symbols, and commands are parsed by the lexical parser, identified using

specific internal symbols, and placed into the corresponding data stack. Finally, the data will

be returned with a tree structure, which is easier for the Rhino engine to compile. In the case

of less semicolon or assignment expression, semantic and lexical feedback mechanisms

eliminate ambiguity. The compiler does not have error correction. Therefore, when an error is

encountered, the compiler halts immediately [19]. The compiler adds the source notes

information into the compiled script structure so they can be used when users call the function

toSource () to decompile.

The script interpreter module. Similar to other JavaScript engines, Rhino's interpreter is a

single-threaded huge cycle function, which can explain an instruction in bytecode [20]. This

huge function uses a switch statement to execute different bytecodes, before it jumps into a

different execution segment of the codes. If a piece of JavaScript code calls another section of

the same code, the engine will usually only use the JavaScript stack space and the interpreter

is executed sequentially [21]. However, if the JavaScript code calls the java code, the java

code then calls the JavaScript code, thereby causing reentrant problems with the interpreter.

Fortunately, this function is reentrant. Various states needed for the interpreter will pass the

parameters when the interpreter function enters. A vast majority of the states are stored in the

data structure of context [22]. Therefore, the first parameter of all public API interfaces for

Rhino, as well as most of the function interfaces, is a context pointer.

3.2. Ajax reptile architecture design

The reptile system is divided into two parts. The first part is the pre-processing stage,

which is responsible for cleaning the URL information to remove unnecessary crawled URLs

similar to the function of the filter. The second part is the actual crawling function of the web

page. To take full advantage of the available resources because downloading is time

consuming, we used a multi-threaded crawl.

The crawling stage obtains web pages, resolves the internal links of these web pages, and

executes pretreatment. Not all the internal links of a web page need to crawl. The internal

links of web pages may contain previously grabbed and duplicated URLs, which prohibits

crawling in the robot protocol. The clean URLs are URL warehouses, where the URLs that

need to crawl are stored.

Web deduplication Management connects with Link filter, which includes Web

deduplication, HTTP Protocol control, URL Document format control and Robots control.

Among them, Robots control is managed by Robots Document management. They are

sequentially executed. And then, it enters the next process through Clean URLs. The next

process contains DNS Parsing, Get Request, Original page, Page processing and Link crawl.

The five steps constitute the Multi-threaded crawl. DNS Parsing is managed by DNS Cache.

Ajax Page obtained by Original Page enters Ajax Engine, which exports Static Page to the

Page processing.

The reptile architecture diagram is shown in Figure 1.

International Journal of Future Generation Communication and Networking

Vol. 6, No. 2, April, 2013

142

Figure 1. Ajax Crawler Architecture Diagram

3.3. Ajax Engine design

The Ajax Engine provides support for Ajax in the web pages. The engine can parse the js

code in a web page, and obtain the dynamic content. The diagram showing the Ajax Engine

architecture is shown in Figure 2.

Figure 2. Ajax Crawler Engine Architecture Diagram

International Journal of Future Generation Communication and Networking

Vol. 6, No. 2, April, 2013

143

From the figure, the Ajax engine has three components. An Ajax page is analyzed in the

following order.

(1) The crawler obtains the page needed to be crawled by HTTP request. This page contains

the Ajax code, in which no real content exist.

(2) The DOM Builder analyzes the page, builds the DOM tree, and extracts the JS code,

which consequently triggers corresponding events.

(3) Ajax codes are placed into the JavaScript engine according to the JS objects to be

executed. During execution, HTML objects are mapped to modify the HTML object.

(4) The regrouping of the implementation results generates new page content that returns to

the crawler.

4. Results of Experimental Data

4.1. Throughput experiments

Throughput experiments test the number of Ajax Crawlers and the relationship between the

number of start threads and download speed of each Ajax Crawler. If the start of the Ajax

Crawler or the number of threads of each Ajax Crawler is too few, the system cannot take full

advantage of the resources of the computer. Otherwise, the efficiency is reduced because of

the bandwidth and data competition. The test machine is a common PC, whose hardware

configuration and software configuration are shown in Table 1.

Table 1. Server Configuration for Ajax Crawler

CPU 2 * AMD Athlon™II X2 215 Processor 2.70 GHz

Network card 100 Mbps

Memory 2.00 GB

Operating system Windows 7

Java environment JRE 1.6.0_24

The Ajax Crawler test task was the TianYa blog. Each Ajax Crawler and the number of

threads in the said crawler were changed. The measured data is shown in Table 2.(unit:

number of pages/10 min).

Table 2. Test Results of Ajax Crawler

 Number of threads

Ajax Crawler 1 2 3 4

1

2

3

4

467

953

1369

1321

879

1029

1473

1493

1346

1634

1679

1709

1301

1529

1723

1634

International Journal of Future Generation Communication and Networking

Vol. 6, No. 2, April, 2013

144

The data is plotted as a line chart, as shown in Figure 3.

Figure 3. Blog Crawler Test Results

From Table 2 and Figure 3, when we select three tasks and three threads within each task

in the current computing environment and network environment. The operation efficiency of

the proposed system is superior, which can download 1679 pages on the average every 10

minutes.

4.2. Ajax Crawler comparison experiments with ordinary reptiles

In this experiment, the NetEase reviews become the test object to analyze the efficiency of

the Ajax Crawler. Given that unit quantitative indicators are no longer reported as the number

of pages/10 minutes, Kb/second is selected because ordinary crawler cannot crawl dynamic

content. The test results are listed in Table 3, which have been plotted as line charts (Figure 4).

Table 3. Comparison of Ajax Crawler and Web Crawler

Number of tasks Ajax Crawler Web Crawler

1 6.3 8.53

2 9.12 11.76

3 11.13 16.2

4 12.5 19.5

Regardless of the concurrent execution of several tasks, the Ajax Crawler is slower than

the corresponding ordinary Web Crawler in terms of their download speed (Table 3 and

Figure 4). Aside from the experimental and environmental causal factors, the Ajax Crawler

could parse to Ajax script and update the operation of the DOM tree. When closing off the

support of a dynamic page, the speed of Ajax Crawler has little difference with the ordinary

web crawler. The two lines are nearly parallel in Figure 4 to show that the speed ratio of two

kinds of reptiles are almost equal. The accelerated increasing trend of the Ajax Crawler starts

slowly, which implies that the Ajax Crawler needs more computing resources.

International Journal of Future Generation Communication and Networking

Vol. 6, No. 2, April, 2013

145

Figure 4. Comparison of download speed with Ajax Crawler and Web reptiles

By contrast with the download pages, the difference between the two crawlers is more than

ten times, whereas their download speed is relatively slow, which further illustrates that the

dynamic pages contain rich content.

5. Conclusion

This article designed a web crawler, which can successfully crawl Ajax dynamic web

pages. Compared with ordinary Ajax reptiles, the download speed of Ajax Crawler is slower

because the Ajax script parsing and the DOM tree updating are relatively time-consuming.

However, the number of downloaded pages by the Ajax crawler will be more than ten times

that of ordinary reptiles, and the content obtained by crawling is richer than that obtained by

ordinary Ajax reptiles.

Acknowledgements

This work was supported by the national high technology research and development

plan(2010AA012504、2011AA010705) and the national key basic research and development

plan(G2011CB302605、2007CB311101) and the National Natural Science Fund(61173145).

References

[1] Bing Luo, “Design and Implementation of Internet search engine crawlers supported AJAX’, HangZhou.

ZheJiang University, (2007).

[2] Zhuo-Lei Xiao, “Research on the search engine based on the AJAX technology”,.WuHan, Wu Han

University of Science and Technology.

[3] Wei-Hui Zeng, Miao Li, “The Ajax framework network reptiles technology based on JavaScript slices”,

Computer Systems & Applications, vol. 18, no. 7, (2009).

[4] G. Frey, “Indexing Ajax Web Applications”, Zurich: Swiss Federal Institute of Technology Zurich, (2007)．

[5] R. Matter, “Ajax Crawl: Making Ajax Applications Searchable”, Zurich: Swiss Federal Institute of

Technology Zurich, (2008).

[6] Mozilla. Rhino: JavaScript for Java, [2009-03-22]．

[7] http://www.mozilla.org/rhino/．

[8] Ying Wang, Mian-Quan Yu and Seng-Tao Li, “JavaScript engine applied in dynamic web collection

technology”, Computer Applications, vol. 24, no. 2, (2004).

[9] Xiao-Ou Jin, Bao-Yan Zhong and Xiang Li, “Analytical Study and Implementation of JavaScript dynamic

page based on the Rhino”, Computer Technology and Development, vol. 18, no. 2, (2008).

[10] Cobra. Java HTML Renderer & Parser, [2009-01-19].

[11] http://lobobrowser.org/cobra.jsp．

http://www.mozilla.org/rhino/．
http://lobobrowser.org/cobra.jsp．

International Journal of Future Generation Communication and Networking

Vol. 6, No. 2, April, 2013

146

[12] A. Mesbah, E. Bozdag and A. Van Deursen, “Crawling Ajax by Inferring User Interface State Changes”,

Proceedings of the 8th International Conference on Web Engineering, Yorktown Heights, NJ., Washington,

DC, USA, IEEE Computer Society, (2008), pp. 122-134．

[13] H. Guo, Y. -L. Lu and J. -H. Liu, “Ajax crawling algorithm based on state transition diagram, vol. 26, no. 11,

(2009).

[14] T. Xia, “Extracting Structured Data from Ajax Site”, Proceedings of 2009 International IEEE Workshop on

Database Technology and Applications, Wu han, China, (2009), pp. 259-262.

[15] X. -J. Yuan, “Research and implementation based on protocol-driven and event-driven comprehensive

focused crawler”, Chang Sha, National Defense Science and Technology University, (2009).

[16] C. Duda, G. Frey and D. Kossmann, “Ajax Search: Crawling, Indexing and Searching Web 2.0 Applications”,

Proceedings of the VLDB Endowment Archive, vol. 1, no. 2, (2008), pp. 1440-1443.

[17] J. K. Lee, S. M. Nam and T. H. Cho, “An Improved Method for Probabilistic Voting-based Filtering using

Blacklists in Sensor Networks”, IJFGCN, vol. 5, no. 3, (2012) September, pp. 1-10.

[18] Y. Han, S. -J. Seok, W. -C. Song, D. Choi and J. -W. Huh, “Detection of Greedy Nodes in Wireless LAN

through Comparing of Probability Distributions of Transmission Intervals”, IJMUE, vol. 8, no. 1, (2013)

January, pp. 175-184.

[19] A. A. A. Ssaed, W. M. N. W. Kadir and S. Z. M. Hashim, “Metaheuristic Search Approach Based on In-

house/Out-sourced Strategy to Solve Redundancy Allocation Problem in Component-Based Software

Systems”, IJSEIA, vol. 6, no. 4, (2012) October, pp. 143-154.

[20] J. Zhang, Y. Cui and Z. Chen, “SPA: Self-certified PKC-based Privacy-preserving Authentication Protocol

for Vehicular Ad Hoc Networks”, IJSIA, vol. 6, no.2, (2012) April, pp. 409-414.

[21] L. Yu, “Understanding component co-evolution with a study on Linux”, Empirical Software Engineering, vol.

12, no. 2, (2007).

[22] Q. Guan-qun, Z. Li, Z. Lin and P. Lew, “Modeling Method and Characteristics Analysis of Software

Dependency Networks”, Computer Science, vol. 11, no. 35, (2008), pp. 239-243.

Authors

Li-Jie Cui is a lecture in school of software, Harbin University of

Science and Technology, China. She was born on February 1977.

She achieved her Master degree in software engineering in 2005 at

Harbin Institute of Technology. Her research emphasizes on

information technology, software engineering and network security.

Hui He received the B.S., M.S. and Ph.D. degree in computer

science from Harbin Institute of Technology, Harbin, China. Since

September 1999, she has been with the School of Computer Science

and Technology, Harbin Institute of Technology, Harbin, China,

where she became an Associate Professor in October 2007. Her

research interests include network computing, network security.

Hong-Wei Xuan is a lecture in School of Software, Harbin

University of Science and Technology, China. He achieved his

Master degree in Department of Computing, University of Bradford

in 2005. His research emphasizes on software engineering and

natural language processing.

