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Abstract 

There are innumerable situations where the data observed from a non-stationary random 

field are collected with missing values. In this work a consistent estimate of the evolutionary 

spectral density is given where some observations are randomly missing 
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1. Introduction 

Spectral analysis for stationary processes has been extensively studied in recent years. 

However, in many applications the signals must be modeled as non-stationary processes. This 

has motivated several authors to study non-stationary processes assuming that they are locally 

stationary. Priestley [11, 19] established the theory of the evolutionary spectrum generalizing 

spectral analysis developed for stationary processes. The evolutionary spectrum is time-

dependent and describes the local power-frequency distribution at each time-instant. Other 

studies based on the Wold-Cramér decomposition have contributed to the development of the 

evolutionary spectrum [8, 13, 12, 14]. The applications of the evolutionary spectrum cover 

various scientific fields: signal and image processing [3, 1], seismic [16], oceanography, 

music [21]. The estimation of the evolutionary spectral density is studied in [19, 8, 6, 15, 7]. 

Moreover, Jones [4] was the first to consider the problems of missing data problems in 

spectral analysis. More precisely he studied the case where a block of observations was 

periodically unobtainable. In parallel, the theory of amplitude-modulated stationary processes 

was developed by Parzen [9], he applied this theory to solve the problem of periodic missing 

data problems. Bloomfield [2] has considered stationary processes with randomly missing 

data. He has given an asymptotically unbiased estimator of the spectral density and shown 

under suitable conditions that its variance converges to zero. We cite in this paper a few 

works that have contributed to finding solutions to the problems of missing observations: [17, 

10, 5]. 

The aim of the present paper is to consider the problem of the randomly missing data for 

the class of non-stationary oscillatory random fields. Using the same techniques introduced 

by Bloomfield [2] for stationary processes, we give a consistent estimate of the evolutionary 

spectral density. The paper is organized as follows. In Section 2, we give some notations, 

assumptions and the amplitude modulating function
2

,
1

ttY . In Section 3, we construct a 

periodogram and we show that it is an asymptotically unbiased estimator. Since, we smooth 

the periodogram in the neighborhood of the time-instant t  via a weight function and we show 

that it is a consistent estimate of the (weighted) average value of ),( 0201
2

,
1

tth  in the 
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neighborhood of the time-instant ),( 21 tt . Section 4 is devoted to proving theorems. In 

Section5, we study numerical results and simulation. The concluding comments are given in 

Section 6. 
 

2. The Amplitude Modulating Function, 
2

,
1

ttY  

As in Priestley [11, 19], we consider a non-stationary centred oscillatory random 

field  ZttX tt 21
2

,
1

,,  i.e.  

 ,,);,(),(= 2121121
2

,
1

)
22

,
11

(

2
,

1
ZttdZAeX tt

tti

tt 
















 (1) 

 

where the function ),( 21
2

,
1

ttA  is given by  

 ),,(=),( 21
2

,
1

)
2211

(

21
2

,
1

 


dFeA

tti
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





   

 ,,,, 2121   andZtt  

where 
2

,
1
F  is a measure satisfying: 1=),( 21

2
,

1
dF








 and 1Z  is a process with 

orthogonal increments defined on the interval  2,    and 

),(=),( 211

2

211  ddZE  where 1  is a positive measure. The evolutionary 

spectral measure is defined by Priestley [11, 19] at each ),( 21 tt  by 

 

  .,),(=),( 211

2

21
2

,
1

21
2

,
1

 dAdH tttt  (2) 

   Our choice of oscillatory random field is motivated by the fact that it has a physical 

interpretation and the variance of the process is interpreted as a measure  of the total 

power of the process at time t , because ),(=)),(( 21
2

,
1

21 ttdHttXVar 



.The 

evolutionary spectral density of the process  )},({ 21 ttX  is given by ),( 21
2

,
1

tth  and 

defined as follows:  

 .,,
),(

=),( 21

21

21
2

,
1

21
2

,
1

R
dd

dH
h

tt
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


  (3) 

 

   Assume that the process }{
2

,
1

ttX  is observed with randomly missing observations. As 

Bloomfield [2], we consider the process 
2

,
1

ttL  defined as the product of the process 

}{
2

,
1

ttX  and another process }{
2

,
1

ttY  defined as follows: 
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   The process 
2

,
1

ttL  is equal to a modified version of the original process  }{
2

,
1

ttX  by 

replacing the missing observations by )(
2

,
1

ttXE  with zero as mean value, since }{
2

,
1

ttX  

is centred. 

   To simplify matters, we suppose, as Bloomfield [2], that  }{
2

,
1

ttY  is stationary, 

independent of 
2

,
1

ttX  and satisfying:  

   ,
2

1
>=1=

2
,

1
pYP tt  

   ,1=0=
2

,
1

pYP tt   

   The assumption of stationarity means that the statistical properties of the process  Y 

are not time-depend. This case is often encountered in practice especially when 

collecting data provided by devices that are partially defective. Set  

  
22

,
112

,
12

,
1

 
1

= rtrtttrr YYE
p

  (4) 

   ZsrqYYYYE
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1
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,
1122
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   Since pYE tt =)(
2

,
1

, we obtain  

        
2

,
122
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,
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,
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2
,
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   This implies that 
2

,
1

rr  is symmetrical in ).,( 21 rr In the remainder of this paper, we 

assume the following hypotheses: 
    H1)  

           There exists a real number 0>V  such that 

   ,<1||),(||||),(|| 2121
2

,
12

,
1

,,

=







 ssrrVssrrsqqr
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  (6) 

    H2) 

 Zrrppand rrrr  21
2

,
1

, ,0>120>
21

  (7) 

  
Remark 2.1   

    • The first hypothesis )1H  means that the sum, 

  
222

,
11122

,
1122

,
112

,
1

=

, sqtsqtqtqtrtrttt

q

YYYYCov 





  

is bounded by a function proportional to  1)||),(||||),((|| 2121

2  ssrrp .  

    • The second hypothesis )2H  implies for each ),( 21 tt , the probability that 

2
,

1
ttX  is observed (i.e. not missing) is greater than

2

1
.  
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3. Estimation of the Evolutionary Spectral Density 

We begin by giving some definitions introduced by Priestley [11, 19]. Let F  the family of 

oscillatory functions  )2211
(

21
2

,
1

),(



tti

tt eA


. For each family F , we define the 

function |),(|||),(||=),( 21
2

,
1

2121  dFBF  . Let C  be in the class of families F  

such that ),( 21 FB  is bounded for all ),( 21  . For each family F  we define the following 

constant FB  termed the characteristic width of F :  

 

1

21
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2
,

1
(

).,(sup=














FF BB  

   The characteristic width of the process 
2

,
1

ttX  is defined by FCFX BB sup=


. For more 

details about the definitions see Priestley [11, 19]. 

   In this section, we propose a periodogram constructed as follows: 
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 where ,2=
2

1

2

2
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2
,
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









 uu
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gpS   and  
2

,
1

 uug , is a filter satisfying the following 

conditions: 

:1C  0
2

,
1

uug  ; 
2

,
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,
1

= uuuu gg   , 
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,
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,
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2
,

1
,

2
,

1

vvuuvuvu
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ggp , where   is defined in (4) 
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,
1

uug  has a finite ``width'' defined by:  
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 where the function   is defined by:  
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The function   is highly concentred with relation to the function
2

,
1

tth . 
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When this condition is satisfed, we say as in Priestley ([19] page 829) that the function   

is  -function with respect to 
2

,
1

tth  in order 








F

g

B

B
. 
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,
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uu eOg
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The following theorem shows that the periodogram ),( 0201, TtI  is an asymptotically 

unbiased estimator of the evolutionary spectral density ).,( 0201
2

,
1

tth  

Theorem 3.1 Let 21, tt  be an integer numbers; 0201,  are real numbers and suppose that 

<
X

g

B

B
, then  

   ).(),(=),( 0201
2

,
1

0201,  OhIE ttTt   

 
   To prove the theorem 1, we have need the two following lemmas 
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 Lemma 3.2 Let ,, 21   21, , 21, tt  and 
'' tt 21,  be real numbers, we have  

 where
B

B
AA

F

g

't'ttt't'ttt ,2),(),(),(),( 21
2

,
1

,
2

,
1

,
2

,
1

21

*

2
,

1
21

2
,

1
 


 

 

   ),,(=, *

2
,

12
,

122
,

11

2
,

1
,

2
,

1

21
2

,
1

,
2

,
1

,
2

,
1

 vuggp vvuuvuvu

vvuu

sstt   (10) 

 where  

 
   

   
.

,,

,,
=),,(

]
2

)
22

(
1

)
11

([

21

*

2
,

1
21

2
,

1

21

*

22
,

11
21

22
,

11 






vuvui

sstt

vsvsutut
e

AA

AA
vu


 

 

   In order to obtain a consistent estimate of  ),( 0201
2

,
1

tth , we smooth the periodogram in 

the neighborhood of the time-instant ),( 21 tt  via a weight function:  

   ).,(=, 0201
22

,
112

,
1

,
2

,
1

2
,

1

02012
,

1
 vtvtvv'T'T

Mvv

tt Iwh 






 (11) 

 where 
2

,
1

,
2

,
1

vv'T'T
w  is a weight-function depending on the parameters 

'' TT 21 ,  and satisfying 

a) 0
2

,
1

,
2

,
1


vv'T'T

w , for all 21,vv , 
'' TT 21 ,  



International Journal of Future Generation Communication and Networking 

Vol. 5, No. 4, December, 2012 

  

 

60 

 

b) 0=
2
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w , 21,vv  ,M  where M  is a set of integers surrounding zero. 
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   The following theorem shows that the estimator  02012
,

1
,tth


 is an asymptotically 

unbiased of the (weighted) average value of ),( 0201
2

,
1

tth  in the neighbourhood of ).,( 21 tt  

Theorem 3.2 Let ),( 0201   be an element of 
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   To show that the variance converges to zero, as in Priestley ([11]) and Mélard [8], we 

assume that the process 
2

,
1

ttL  is Gaussian. 

Theorem 3.3 Let ),( 0201   be an element of 
2],[   and suppose that the process 

2
,

1
ttL  is 

Gaussian, then we have  
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4. Numerical Studies 

As in Bloomfield [2], we suppose that our process  
ZststX

,,
 
is observed at the successive 

instants ),(),...,,(),,( 2211 nn ststst  where |=| 1 iii tt   |=| 1 iii ss 
  are independent 

random variables, each with the probability distribution  ,)],(=),[(= 21
2

,
1

rrPf rr    and the 

finite mean
1p . As in Feller ([18], pp. 282-283), we define a process  '

stY ,  which coincides 

with  stY ,  except at origin 1=0,0Y  .The event 1"="Y   is termed persistent and recurrent 

event. Using (6) we obtain  
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 Feller ([18], pp. 282-283) has shown that  
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The process 
2

,
1

ttL  was obtained from the process X by omitting certain observations with 

the renewal-type mechanism defined above with ,
9

8
=1,1f  ,

9

1
=2,2f  0=

2
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1
rrf  otherwise. 

The simulation of the process X : 

Using the same method as in [20] for the simulation of Markov Gauss random field, we 

simulate the Gaussian random field  
ZnnnnYY


2

,
1

, 21
=  such that the covariance function is 

given by ,=),(
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21
(
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nn
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and its spectral density is .
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The random field ZstX st ,,,  is given by the following model  

 ZstYcX ststst ,,= ,,,  
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200*2

)500(
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st
c st  and stst cA ,21, =),(   is independent of ),( 21  . With 

respect to the family   ;   = 21
(

,

sti

st ecF
 

stX , has an evolutionary spectral density function 

),(=),( 21

2

2
,

1
21

2
,

1
 Ytttt fch . The curve of the estimator with 5000 observations (Figure 

2) and that of the spectral density (Figure 1) are very similar. So the estimator is quite 

satisfactory. If we take more observations (around 10000), the estimator becomes much 

smoother and the curve much approaches the density.  
 

 

             Figure 1. Density 100,12h                             Figure 2. Estimator 100,12


h   
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5. Conclusion 

We have proposed in this paper some results about the estimation of the evolutionary 

spectral density for non-stationary random fields where the data observed are collected 

with missing values. The approach is based on the technique used by Bloomfield [2] for 

stationary processes combining the estimates of evolutionary spectrum introduced by 

Priestley [11]. This work could be applied to several cases when the process is non -

stationary as for example in:   

• the segmentation of a sequence of images of a dynamic scene and the detection 

weeds in a farm field.  

• the study of geostatistical mapping of certain chemical factors in agricultural 

soil.  

This work could be supplemented by the study of optimal smoothing parameters 

using cross validation methods that have been proven in the field. It will also be 

extended to non-Gaussian process by assuming some hypotheses as for example when 

the cumulates are finite. 
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