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Abstract 

In this work, we use the formulas of statistic techniques for developing an algorithm based 

on third order moments and autocorrelation function. This algorithm permits to identify non 

linear system coefficients for recovering the real information from input-output systems. 

Simulation examples and comparison with other method in the literature are provided to 

verify the performance of the developed algorithm. The obtained results demonstrate the 

efficiency and the accuracy of the developed algorithm for non linear system identification 

under various values of signal to noise ratio (SNR) and different sample sizes N. To 

corroborate the theoretical results for a real process, we applied the developed algorithm to 

search a model able to represent the internet traffic data. 
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1. Introduction 

In most case of system identification and modelling, the problems of the 

uncertainties persist always between the real systems and the evolution of obtained 

models. These uncertainties are due to the lacks of exhaustive knowledge on the 

performance of systems and the obtained models take in account that a part of the 

parameters influences the output evolution of models. Several models are identified in 

literature such as the finite impulse response systems (linear models) which are 

identified using different algorithms based on higher order cumulants of system output. 

These algorithms can be in general classified into three classes of solutions: closed 

form solutions, optimization-based solutions and linear algebra solutions [1-4]. The 

linear algebra solutions have received much attention because they have ‘simpler’ 

computation and are free of the problems of local extremes that often occur in the 

optimization solutions. Although the closed-form solutions have similar features, they 
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usually do not smooth out the noise caused from observation and computation [5]. But 

the linear models are not efficient for representing and modelling all systems, because 

the majority of systems are represented by non linear models.  

Nonlinear models appear to be powerful tools for modelling and representing 

physical systems with high precisions. Among these models, the polynomial models are 

more exploited to describe the input-output of systems and that can be represented by 

Volterra series [6], which has been used to describe a large class of nonlinear systems, 

and have been applied extensively in various engineering practice [7]. Furthermore, 

many important non-linear effects in engineering and science can be approximated by a 

Volterra series of second or third order, i.e., quadratic nonlinear systems or cubic 

nonlinear systems [8]. These classes are widely used in non linear filtering, 

communication, active noise control, biomedical engineering, signal processing and are 

identified using moment versions [9, 10, 11, 12]. These last techniques are more useful 

in many real applications where we are faced to truly non Gaussian signals. Indeed, the 

moments are applicable to non Gaussian signals and constitute a strong identification 

tool for most applications characterized by non Gaussian or non linear process [5, 13].  

The identification algorithms in the literature permit to identify the system from their 

output (blind identification). But, it exists also the systems which can be identified from 

the input and output (supervised identification) for finding their parameters. From this 

reason we use, in this work, the formulas of statistic techniques for developing a 

supervised algorithm based on third order moments and autocorrelation function. This 

algorithm permits to identify non linear systems (quadratic non linear systems) 

coefficients and exploits q +1 equations for identifying q coefficients. In the last part of 

this work, we apply the developed algorithm to search for a model able to represent real 

data [14].  
 

2. Higher Order Statistics and Non Linear Model  
 

2.1 Higher Order Statistics  

For zero-mean stationary process y(n), the moments up to order four are given by 

[15]: 

C1y = E{y(n)}, 

C2y(m) ≡ R(m) = E{y(n),y(n+m)}: Autocorrelation function    

and C3y(m,k) = E{y(n),y(n+m),y(n+k)} 

Where E{.} : mathematical expectation. 

   

2.2 Non Linear Model 

The non linear model considered in this section is diagonal quadratic systems, which 

represent the particular case of the Volterra series, the choice of this type due  to the 

simplicity for determine the parameters of the process. So, the diagonal quadratic 

system is defined as: 

                    



q

0i

2

d )in(x)i(h)n(y           and   z(n) = y(n) + η(n)                                            (1) 
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with:  

-  x(n) is the input sequence 

-  hd and q are respectively the parameters and the order of the diagonal quadratic 

systems 

- y(n) represents the system output in noiseless case and z(n) is the observed system 

output corrupted by additive Gaussian noise η(n). 

The following conditions are assumed to be satisfied: 

A1: The model order q is supposed to be known, 

A2: The input sequence x(n) is independent and identically distributed (i.i.d) zero 

mean, the variance is 12

x  , and non Gaussian,  

A3: The system is causal and hd(0)=1, 

A4: The measurement noise sequence η(n) is assumed to be zero mean, i.i.d, 

Gaussian, independent of x(n) with unknown variance and the mth order cumulants are 

zero when m > 2. 

 

3. Developed Algorithm and Simulation 
 

3.1. Developed Algorithm and Proof 

The starting point in this subsection is to describe all equations which linked the 

second order moments, the third order moments and the diagonal parameters of 

quadratic system using Leonov-Shiryayev formula [16]: 

The second order moments of the y(n) is described by the following expression:  

                              C2y(τ)= Cum{y(n), y(n+ τ)}                                  (2) 

                             



q

0i

dd

2

x2x4y2 )i(h)i(h)()(C                      (3) 

we suppose that: 
2

x2x4x   

where: γix ith order moments at origin, Cum(y) represents the moments of processes 

y(n) and τ represents the time lag of random sequence.  

In the same way we defined respectively the third order moments as follows:  

The third order moment of the signal y(n) is given by the following equation:  

           C3y(τ1, τ2)= Cum{y(n), y(n+ τ1), y(n + τ2)}                                              (4) 

   



q

0i

2d1dd

3

x2x2x4x621y3 )i(h)i(h)i(h)23(),(C                    (5) 

 

we suppose that: 
3

x2x2x4x6x 23   
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The Fourier transform of the Eqs. 3 and 4 are given by the following equations:  

      S2y(w) = TF{C2y(τ)}= x Hd(w)Hd(-w)                                          (6)  

     S3y(w1,w2)=TF{C3y(τ1, τ2)}=Kx. Hd(w1)Hd(w2)Hd(-w1-w2)                                 (7) 

  

with 





0i

d )ijwexp()i(h)w(H  

We use the Fourier transform of the Eqs. (6) and (7), we demonstrate the 

relationships that linked the spectra, bispectra and diagonal parameters hd(i).  

We suppose: w = w1 + w2, the Eq. (6) becomes: 

               S2y(w1 + w2) = Γx. Hd(w1 + w2)Hd(-w1 - w2)                                      (8) 

From the Eqs. (7) and (8) we obtain the following equation: 

                S3y(w1,w2) Hd(w1 + w2) = μ Hd(w1)Hd(w2) S2y(w1 + w2)                      (9) 

 

with   

 

The inverse Fourier transform of the Eq. (9) demonstrates that the 3rd order 

moments, the second order moments and the diagonal hd(i) parameters of quadratic 

systems are combined by the following equation: 

 

     

   

We use the AutoCorrelation Function (ACF) property of a stationary process, such as 

C2y(τ) ≠ 0 only for  -q ≤ τ ≤ q  and vanishes elsewhere. In addition, we take τ1 = -q, the 

Eq. (10) takes the form: 

 

 

         

 

 

The considered system is causal. So, the interval of the 2 is 2 = -q , …, 0 

)q(C)q(h)0(h.)i(h)i,iq(C y22dd

q

0i

d2y3 


)q(C)q(h.)q,q(C)i(h)q,iq(C y22d2y3

q

1i

d2y3 


(11) 

(12) 





q

0i

12dd1y2

q

0i

d21y3 )i(h)i(h)i(C.)i(h)i,i(C (10) 
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From equation (12) we obtain the following matrix: 

                                                                                                                             (13) 

with: Fx =  . C2y(q)     

  From the matrix (13) we obtain the following equation: 

                                               M.Θ = K                                                                (14) 

where M, Θ and K are the sizes respectively: (q+ 1).(q), (q).(1) and (q+1).(1). The 

least square (LS) solution of the system of equation (14) is:  

                   ̂ (i) = (M
T
.M)

-1
.M

T
.K     i = 1……q                                               (15) 

where: M
T
 represents the transpose of the matrix M. 

The equation (15) permits to identify the diagonal parameters of quadratic systems 

(non blind identification) and allow also the modelling of the data process. 

 

3.2 Simulation Results 

We test the performance of the developed algorithm before to be applied to real data. 

For this motivation we use for example the simulation of the quadratic system given by 

the following equation:   

           z(n) = x
2
(n) – 2.15 x

2
(n-1) + 1.20 x

2
(n-2) + (n) 

The simulation results are illustrated in table 1 and 2 using signal to noise ratio 

(SNR= 0dB and 15 dB) with different sample sizes (N= 300, 600, 900) and for 50 

Monte-Carlo runs. The choice of these sizes is imposed in practice, in most cases, 

which we have a small data (to be modelled). 

The SNR is defined by:  SNR= 10.Log10( 22

y /  ),  22

y and  represent 

respectively the variance of the output system and noise signal. 
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Table 1. Estimated Parameters for SNR=0dB 

True values: hd(1)= -2.15 and hd(2)= 1.20. 

N Algorithms ĥ d(1)  std ĥ d(2)  std NMSE 

300 
Developed algorithm -2.1496 ± 0.0441 1.2019 ± 0.0375 1.9252 10

-4
 

RLS method -2.1396 ± 0.0489 1.1952 ± 0.0298 2.3030 10
-4

 

600 
Developed algorithm -2.1581 ± 0.0354 1.2013 ± 0.0205 2.8051 10

-5
 

RLS method -2.1488 ± 0.0311 1.1985 ± 0.0215 3.4846 10
-5

 

900 
Developed algorithm -2.1507 ± 0.0263 1.2025 ± 0.0184 1.0866 10

-5
 

RLS method -2.1438 ± 0.0240  1.2011 ± 0.0182 1.8290 10
-5

 
 
 

Table 2. Estimated Parameters for SNR=15dB 

True values: hd(1)= -2.15 and hd(2)= 1.20. 

N Algorithms ĥ d(1)  std ĥ d(2)  std NMSE 

300 
Developed algorithm -2.1483 ± 0.0081  1.2011 ± 0.0052 1.5800 10

-6
 

RLS method -2.1521 ± 0.0083 1.1998 ± 0.0061 1.8664 10
-6

 

600 
Developed algorithm -2.1489 ± 0.0050 1.1991 ± 0.0032 1.0228 10

-6
 

RLS method -2.1497 ± 0.0062 1.2007 ± 0.0040 1.3978 10
-6

 

900 
Developed algorithm -2.1503 ± 0.0015 1.2000 ± 0.0009 1.2299 10

-7
 

RLS method -2.1502 ± 0.0041 1.2003 ± 0.0030 1.4235 10
-7

 
 

From Tables 1 and 2 we can note that: 

The NMSE values using the developed algorithm are lower than those obtained by 

the RLS method. Indeed, the estimates of diagonal parameters ( )1(ĥd  and 
)2(ĥd ) are 

approximately closer to real values for developed algorithm and the figures 1 and 2 

confirm the superiority of this algorithm. The obtained values of  the standard deviation 

(std) demonstrate the small fluctuation around the mean parameters. So, the developed 

algorithm has a property which is very interest in signal processing, mainly in signal 

detection in noisy environment. 

In the following section we have used the developed algorithm to modelling the data 

of video packets transmission [14]. 
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Figure 1. Values of NMSE for SNR= 0dB 
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Figure 2. Values of NMSE for SNR= 15dB 

 

4. Data Analysis 

In this part, we analyse the data video packets transmission for the network 

management. For this reason we select about the average 600 packets in two sides 

namely A and B [14]. We note that there are two parameters T1 and T2, which 

represent respectively the input and output of the data in each side.  

The Figure 3 demonstrates that the data are non Gaussian process. The last is 

essential in the modelling when we use the statistics methods. But, it’s necessary to 

verify the stationary of the process in the following part.   

The Figure 4 plots the evolutions of the data in sides A and B which are 

characterized by a non stationary behaviour. In order to make this phenomenon in 

evidence, we plot the AutoCorrelation function (ACF) of the process (Figure 5). The 

low decrease of the ACF and the periodic phenomenon confirm that the process is non 

stationary. And as, our contributions are interest to develop the models based on the 

HOS techniques. So, it is necessary to transform these process to the stationary process 

using a low pass filter for eliminate the low frequency, which are responsible to the non 

stationary phenomenon [17]. 

The Partial AutoCorrelation function PACF (Figure 7) of the transformed data 

(Figure 6) demonstrates the stationary phenomenon of the process. Indeed, the PACF 

decreases rapidly and is inside the confidence interval of 95%. So, these results may 

prove the applicability of the HOS techniques for the non-blind identification of 

diagonal quadratic systems which permit to modelling the video-packets data for the 

network management. 
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Figure 3. Frequency Distribution of the Video-packets (a for side A, b for side B) 
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Figure 4. Evolution of the Data in Sides A and B 
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Figure 5. ACF of the Data A and B 
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Figure 6. Transformed Data in Sides A and B  
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Figure 7. PACF of the Transformed Data in Sides A and B 
 

5. Identification Model 

In this paragraph, using previous algorithm, we develop the model describe the data 

of video-packets transmission for the network management. 

 The Figure 8 shows the real and the estimated data of the video-packets transmission 

using developed algorithm with the input data is T1 in sides A and B. The analysis of 

this figure demonstrates that, the obtained model using developed algorithm is very 

similar to the real data and with root mean square error of 0.0034.  
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Figure 8. Comparison of Different Models  
 

6. Diagnostic Checking 

Typically the goodness of fit of statistical models to a set of data is judged by the ACF 

residual data. So, we plot in figure 9 the ACF residual data [19] for demonstrate the previous 

results. From these results, we observe the ACF residual data (Figure 9) are inside in the 

confidence interval (±0.0816), this implies that the residual values are uncorrelated and 

describe by a white noise. So, the developed algorithm can be used to model the data video-

packets transmission for the network management.  

 

 

5 10 15 20 25 30 35 40 45 50
-0.2

0

0.2

0.4

0.6

0.8

                                                    Lag k                                                  

A
C

F

Confidence interval at 95 at %

 

            Figure 9. ACF of the Residual Time Series (for side B)  
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7. Conclusion 

In this work, we have developed a supervised algorithm based on the third order moments 

for identifying parameters of quadratic systems excited by non Gaussian and independent 

identically distributed signals. The simulation results and the comparison with RLS method 

using different SNR and sample sizes show that the developed algorithm is adequate for 

identifying quadratic systems.  

We have presented also the simulation of the data video-packets transmission in networks 

from video server. The obtained results show that, the sequences of generated values have the 

same statistical characteristics as the real data and the developed model provide satisfactory 

performances. So, we conclude that the quadratic systems can be used as alternative methods 

to generate the video-packets transmission at different times. 

In the perspective we will be to use the developed model for forecasting internet 

traffic. 
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