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Abstract 
 

Reinforcement Learning is an area of machine learning that studies the problem of solving 

sequential decision making problems. The agent must learn behavior through trial-and-error 

interaction with a dynamic environment. Learning efficiently in large scale problems and 

complex tasks demands a decomposition of the original complex task into simple and smaller 

subtasks. In this paper, we present a subgoal-based method for automatically creating useful 

skills in reinforcement Learning. Our method identifies subgoals using a local graph 

clustering algorithm. The main advantage of the proposed algorithm is that only the local 

information of the graph is considered to cluster the agent state space. Clustering of the 

transition graphs corresponding to MDPs can be performed in linear time using the proposed 

method. Subgoals discovered by the algorithm are then used to generate skills using the 

option framework. Experimental results show that the proposed subgoal discovery algorithm 

has a dramatic effect on the learning performance. 
 

Keywords: Hierarchical Reinforcement Learning, Option, Skill Acquisition, Subgoal 

Discovery, Graph Clustering 
 

1. Introduction 
 

Reinforcement Learning (RL) [1] studies the problem of solving sequential decision 

making problems in which an intelligent agent must learn behaviour through interactions with 

an unknown environment. In each step of interaction, the agent selects an action that causes a 

change in the state of the environment and then receives a scalar reinforcement signal called 

reward. The agent’s objective is to learn a policy that maximizes the long-term reward. 

Large state space and lack of immediate reward are crucial problems in the area of 

reinforcement learning. Two approaches which have been proposed to tackle these problems 

are function approximation [2] and task decomposition [3-6]. The main idea of Hierarchical 

Reinforcement Learning (HRL) methods is decomposition of the learning task into simple 

and smaller subtasks that increases the agent’s learning performance. One common way to 

decompose the complex task to the set of simple subtasks is identifying important states 

known as subgoals and then learning sub-policies to reach these subgoals [7-14]. These sub-

policies are also called temporally extended actions or skills or macro actions. A macro-action 

or a temporally extended action is a sequence of actions chosen from the primitive actions. A 

suitable set of skills can accelerate learning. It is desirable to devise methods by which an 

agent is automatically able to discover skills and construct high-level hierarchies of reusable 

skills [8-19].  
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There are a variety of approaches to discover subgoals automatically. Some approaches 

introduce highly visited states as subgoals [7-9]. Another group of approaches are graph 

based methods that introduce the border states between densely connected regions as subgoals 

[10-13]. In these approaches, the agent’ transition history is mapped to a graph and each 

observed state is considered as a node in the graph and each transition between states is 

mapped to an edge in the graph. Graph nodes indicate the state space and the edges represent 

the state transitions. Menache et al. [10] discovered bottleneck states by performing Max-

Flow/Min-Cut algorithm on the transition graph. In [12], the N-Cut algorithm is utilized to 

find landmark states of the local transition graph. In addition, recently researchers have 

shown interest in graph centrality measures to identify important states. To this aim Şimşek 

and Barto in [9] utilized betweenness centrality. 

In this paper we present a local graph clustering algorithm to provide an appropriate 

partitioning of the input graph. The main characteristic of our clustering algorithm is that it 

only uses local information of the graph. Subgoals are discovered in linear time using the 

proposed method and therefore our approach is suitable for finding subgoals of large scale 

reinforcement learning problems. Other methods proposed earlier, use global information of 

graph and they are inapplicable for large graphs. Şimşek et al. in [12] addressed this problem 

by considering a local scope of the transition graph. They perform the Normolized-cut 

algorithm on the local transition graph which requires setting many parameters for different 

domains, while in our local graph clustering algorithm one parameter should be adjusted. 

The rest of the paper is organized as follows. The reinforcement learning and its extension 

to use macro-actions is described in section 2. In section 3, the proposed method is described. 

In Section 4 the time complexity of the proposed algorithm is analysed. The benchmark tasks, 

simulation and results are described in section 5, and section 6 contains the final discussion 

and the concluding remarks. 
 

2. Reinforcement Learning With Option 
 

In RL, the environment is usually formulated as a finite-state Markov Decision 

Process (MDP). Due to the Markov property of the environment, the probability 

distribution of new state and reward after executing an action depends only on the 

previous state and action, not on the entire history of states. An MDP consists of a set 

of states S , a set of actions A , a reward function ( , )R s a , and a transition 

function ( | , )P s s a . In each step of interaction, in each state s S , the agent chooses an 

action a A . The value of this state transition is communicated to the agent through a 

scalar reinforcement signal called reward, ( , )R s a and with the probability of ( | , )P s s a , 

the agent observes a new state s S . The agent’s task is to optimize the action choices 

in such a way that it maximizes the expected discounted return: 

1

0

,k
t t k

k

R r


 



   

where   is the discount rate, 0 1  . Q-Learning is the most commonly used algorithm 

in RL. Macro Q-Learning is the hierarchical form of Q-Learning including options. To 

represent skills, we use option framework [4]. Options are a generalization of primitive 

actions including temporally extended courses of actions. Even if adding options to primitive 

actions offers more choices to the agent and makes decision making more complicated, the 

decomposition of the original task provided by options can simplify the task and facilitate 

learning. An option is a tuple , ,I    , where I S  is an initiation set consisting of all the 

(1) 
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states in which the option can be initiated. : [0,1]S O   , is an option policy where O  is 

the set of all possible options and : [0,1]S   is a termination condition that is the 

probability of terminating an option in each state. Macro Q-Learning updates the value of 

one-step options (primitive actions) and multi-step options. The update rule is: 

( , ) ( , ) max ( , ) ( , ) ,
s

k

o O
Q s o Q s o r Q s o Q s o 



     
  

  

where k  is the number of time steps that the option o  is executing, and r  is the cumulative 

discounted reward over this time, 1

0

k
i

t i

i

r r  



 . 

 

3. Proposed Method 
 

In this paper we utilize a local graph clustering algorithm to indicate dense regions of the 

agent’s transition graph and consider the border states of highly intra-connected regions as 

subgoals. A local graph clustering algorithm only uses local information to generate a 

clustering of the input graph. Local clustering algorithms address the complexity drawbacks 

of global clustering algorithms and are suitable for clustering large graphs. Given a graph 

( , )G V E  where V  is the set of vertices and E  is the set of edges, the main goal of the 

clustering algorithm is finding a set of clusters  iX   i 1,...,k  which maximizes the intra-

cluster connectivity and minimizes the inter-cluster connectivity. To this aim the ratio ( )R X  

is defined according to definition 1. The outline of the proposed algorithm is shown in Figure 

1. 

Definition 1 : If X V , the  ratio ( )R X  
is defined as follows: 

 

, ( )

( ), ( )

( )

ij

i X j b X

ij

i n X j b X

a

R X
a

 

 






 

 

where ( )b X  is the border nodes of X , ( )n X  indicates the neighbors of border nodes that 

are not a member of X  and ija  denotes the proper element of the adjacency matrix of G , that 

is: 

 

1,                    ,  

0,      .                                                       
ij

if i and j areconnected throughanedge
a

if not


 


 
 

 

Neighbors that maximize the ratio ( )R X  will be added to X  in k  iterations or while there 

are no more such neighbors. k  is an input parameter of the clustering algorithm and it is 

usually a small integer. 

Definition 2:  The set of candidate nodes ( )C X
 
is defined as follows: 

(3) 

(2) 

(4) 
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Definition 3: the set of final candidate nodes that can be added to X  is defined as follows: 

 
( )

( )

: arg maxf uv
u C X

v n X

C X a




    

Nodes to be added to X  are selected in two steps: 

Define candidate nodes ( )C X  that can be added to X  according to definition 2. 

To ensure that the intra-cluster connectivity is maximized in the future, according to 

definition 3, nodes of ( )C X  that have maximum connectivity with neighbor nodes form final 

candidates. 

All members of  fC X  are then added to X  if the following condition is satisfied: 

   ( )fR X C X R X    

 

The Local graph clustering algorithm 

foreach v V  do 

      : { }X v ; 

       while | ( ) | 0n X   and repeat k  do 

                
( )

: arg max ( )
u n X

C X R X u


  ; 

              
( ) ( )

( ) : argmaxf uy
u C X y n X

C X a
 

  ; 

               if ( ( )) ( )fR X C X R X  then : ( )fX X C X ; 

               else break; 

              1repeat repeat  ; 

       end 

end 

merge overlapping clusters; 

FIGURE 1. The outline of the proposed local graph clustering algorithm. 

 

 
( )

: arg max ( )
v n X

C X R X v


    
(5) 

(6) 

(7) 
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Figure 2 shows different steps of the algorithm on a sample graph. The original graph is 

represented in figure 2(a). Initially, each graph node ( 1,...,12)v V v   is considered as a 

cluster and in this sample graph there are 12 clusters in the beginning. Parameter k  is set to 

4. For each node v , all neighbors of v  are examined and candidates nodes are then selected 

according to (6) and are then inserted to X . Repeatedly neighbors of new set X  are searched 

for candidates until the maximal set X  is achieved or until k  iterations. Let 1v  , initially we 

have {1}X  . In this step, neighbors of X are nodes 2 and 3. According to equation (3), 

( 2) 1R X    and ( 3) 2 / 3R X   , so node 2 is the only candidate node and will be inserted in 

{1}X  . It can be seen that {1,2}X   
is a maximal set for 1v   and adding nodes 3 or 4 to 

X  will decrease the ratio
 ( )R X . Figure 2(b) shows tha maximal set X  for node 1. These 

steps are repeated for all other nodes of V . As can be seen in figure 2(c), The result of this 

step is a soft clustering of the given graph. Overlapping clusters in figure 2(c) are then 

merged into one cluster. The final non-overlapping clusters as shown in figure 2(d), are our 

desirable clusters.  Finally Border nodes of clusters are identified as subgoals. In our example, 

nodes 4 and 9 are the border nodes of clusters. Figure 3 also shows the result of clustering on 

the transition graph of a four-room gridworld. 

 

FIGURE 2. Different steps of the proposed graph clustering algorithm on a 
sample graph. 

 

 

FIGURE 3. Result of clustering the transition graph of a six-room gridworld. 
Black nodes are border nodes of clusters. 
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Subgoals discovered by the proposed method are used to form skills. Skills are generated 

using option framework and each subgoal is considered as the terminal state of an option. 

Initial states of options are states in the same cluster with the subgoal. The generated options 

terminate with probability one at the goal state and outside the initiation set; at all other states 

they terminated with probability zero. Figure4 shows the outline of skill acquisition. 

 

Skill acquisition algorithm 

 

Interact with environment and learn using Macro Q-Learning. 

Construct transition graph. 

Run local graph clustering algorithm. 

Introduce border nodes of clusters as subgoals. 

Learn the options for reaching subgoals. 

Add the new options to the agent’s action set. 

 

FIGURE 4. The outline of the skill acquisition algorithm. 

 

4. Complexity Analysis 
 

To compute the complexity of our algorithm, we consider the worst case running time of 

the local graph clustering algorithm. As described earlier, in each step of the algorithm, 

neighbors of the current cluster are examined to choose the candidate nodes. Let maxd  be the 

maximum degree of vertices of the graph. Consider the case in which the cluster X  contains 

only the vertex v V . In this case cluster X  has at most maxd  neighbors and in the worst 

case all of them will be added to X . Therefore in the k-th iteration of the while loop at most 

max
kd  neighbors should be examined. So the while loop will iterate 1

max( )kO nd   times in the 

worst case. This process is repeated for all n vertices of the graph. In addition, merging the 

overlapping clusters can be performed in ( )O n  
time. Therefore the local graph clustering 

algorithm needs 1
max( )kO nd   in the worst case. 

Due to the fact that the number of actions in MDPs are restricted and mostly the transition 

graphs are sparse, the maximum degree of vertices maxd is a small value. As stated earlier, 

parameter k  is mostly set to a small positive integer. Therefore the time complexity of the 

proposed algorithm for sparse transition graphs will be reduced to ( )O n . 

 

5. Experimental Results 
 

We experimented with the proposed algorithm in two domains: a six-room gridworld 

and a soccer simulation test bed. In our experimental analysis, the agent used an ò -

greedy policy, where the ò  was set to 0.1. The learning rate α  and discount rate   

were set to 0.1 and 0.9 respectively. The generated options terminated with probability 

one at corresponding subgoal states indicated by the algorithm. The options also 



International Journal of Future Generation Communication and Networking 

Vol. 4, No. 3, September, 2011 

 

 

19 

 

terminated with the same probability at the goal state and outside the initiation set; at 

all other states they terminated with probability zero. 

 

5.1. Six-room Gridworld 

 

The six-room gridworld [4] is shown in figure 5(a). From any state the agent is able 

to perform four actions, up, down, left and right. There is a reward of -1 for each action 

and a reward of 1000 for actions directing the agent to the goal state. We performed 100 

randomly selected episodic tasks (random start and goal states) and each task consists 

of 80 episodes. 

 

5.2.  Soccer Simulation Test Bed 

 

Soccer domain shown in figure 5(b) is a 6 9  grid. At each episode the ball is 

randomly located at one of two positions 1B  and 2B . Two agents try to find and own 

the ball and score a goal. To score a goal, each player owning the ball must reach to the 

opponent goal (represented with red line in the figure 5(b)). Each agent has five 

primitive actions: North, East, South, West and Hold. The hold action does not change 

the position of agent. Agents receive a reward of -1 for each action and a reward of 

+100 for action causing the agent find and own the ball. Action that leads scoring a goal 

gives the reward of +1000 to the agent. If the agent owing the ball is going to enter the 

other agent’s location, the ball owner will change and agents stay in their locations. If 

the agent is going to enter the same location as other agent owing the ball, with 

probability 0.8, owner of the ball does not change and agents stay in their location. 

 
(a) 

 
(b) 

FIGURE 5. (a) Six-room gridworld (b) Soccer simulation test bed. 
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5.3   Results 
 

The transition graph of each domain was clustered by the proposed clustering 

algorithm and the border states of clusters were identified as subgoals. In the six -room 

gridworld, as illustrated in figure 5(a), cells labeled with 1,2,…,14 are identified as 

subgoals by our clustering algorithm. These 14 states correspond to border nodes (black 

nodes) of transition graph of six-room gridworld shown in figure 6(a). 

 
(a) 

 
(b) 

FIGURE 6. (a) Transition graph of a six-room gridworld. (b) Transition graph of 
soccer simulation test bed. Black nodes are border nodes of clusters 

introduced as subgoals. 
 

Figure 7 shows the average steps to reach the goal. Compared to the Q-Learning with 

only primitive actions, the skills improved performance remarkably. In addition, as can 

be seen in figure 8, average reward obtained by the learning agent is significantly 

increased. 

The same experiments were implemented in soccer simulation domain and similar 

results were achieved. Figure 9 compares the number of goals scored by the agent while 

learning with primitive actions with the case of learning with additional generated 

options. As expected, options speed up the learning process and as a result the agent is 

able to score a larger number of goals. 
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FIGURE 7. Comparison of Q-Learning and Q-Learning with options generated 
based on the subgoals extracted by the proposed algorithm in a six-room 

gridworld. Average number of steps to reach the goal is shown. 

 

FIGURE 8. Average reward obtained by the agent, comparing Q-Learning with 
primitive actions and with skills. 

 

FIGURE 9. The number of goals scored by the agent. Comparing Q-Learning 
with Q-Learning with options generated based on the subgoals extracted by 

the proposed algorithm  in soccer simulation test bed. 
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6.   Conclusion 
 

This paper presents a graph theoretic method for discovering subgoals by clustering 

the transition graph. The proposed algorithm is a local clustering algorithm that solely 

uses local information to generate an appropriate clustering of the input graph. Global 

clustering algorithms have time complexity 3( )O N , where N is the total number of 

visited states. The L-Cut algorithm [12] which is a local graph partitioning method is of 

complexity 3( )O h , with h as the number of states in local scope of the transition graph. 

One drawback of the L-cut algorithm is that the local cut may not be a global cut of the 

entire transition graph. Another disadvantage of the L-Cut algorithm is that it demands 

setting a lot of parameters. In L-Cut a global clustering algorithms is used to partition a 

local transition graph, whereas we use a local graph clustering approach on transition 

graphs. The proposed algorithm uses the local information to generate a global 

clustering of the transition graph and comparing to global graph clustering algorithms 

has less time complexity and is able to discover subgoals in linear time. In addition, just 

one parameter setting is needed in the algorithm that can be easily adjusted with no 

special knowledge . Our Experiments in two benchmark environments show that 

discovering subgoals and including policies to achieve these subgoals in the action set 

can significantly accelerate learning in other, related tasks. 
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