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Abstract 
 

Mobile radio channel simulators are essential for repeatable system tests in the 

development, design, or test laboratory. Field tests in a mobile environment are considerably 

more expensive and may require permission from regulatory authorities. Because of the 

random, uncontrollable nature of the mobile propagation path, it is difficult to generate 

repeatable field test results. The Nakagami model can be used to test the performance of  

radios in a mobile environment in the lab, without the need to perform measurements whilst 

actually mobile. The mobile fading simulation can also if required be replicated, and the 

effects can be varied according to the ‘velocity’ of the mobile receiver. This allows the 

comparison of the performance of different receivers under standardized conditions that 

would not normally be possible in actual mobile testing situations. In this paper, two 

techniques that are capable of generating correlated Nakagami channels with arbitrary 

fading parameters are proposed. Basically our approach is to generate Nakagami RVs from 

the square root of directly generated correlated Gamma RVs (not from sum of squares of 

Gaussian RVs). 
 

Keywords: gamma and Gaussian random variables, Nakagami random vector, 

correlations, probability density function. 
 

1. Introduction 
 

The early study of the error performance of diversity combining systems in a Nakagami 

environment was concentrated on some simple cases, assuming independent branch signals 

This implies that the antennas must be separated at least 50 wavelengths so that their 

correlation is negligible. In the real world, correlation between two antennas used in a base 

station is typically 0.7 or even higher due to the space limitation. The research focus was 

therefore gradually shifted to diversity systems with correlated Nakagami distribution. 

Generation of correlated Nakagami fading channels is  therefore an essential issue for a 

laboratory test of wireless systems or subsystems to operate in a fading environment. 

Unfortunately, general techniques for this purpose are not available in the literature. The only 

result available is the technique described in a paper by Ertel and Reed for the generation of 

two correlated Rayleigh fading envelopes of equal power. This useful technique is further 

enhanced by introducing some efficient computational methods and by revealing its 

connection to wireless communications. The idea used is to exploit the fact that the envelope 

of a complex Gaussian variable follows a Rayleigh distribution.. Once the relation-ship is 

determined, the Rayleigh envelopes can be generated. In fact, the equal-power constraint 
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imposed on the two Rayleigh signals can be easily removed if one directly invokes the results 

for the envelope correlation of two complex Gaussian variates. 

Generation of correlated Nakagami vector with an arbitrary covariance matrix should 

follow a different philosophy. A generic technique is derived for arbitrary  correlated  

Nakagami channels. A Nakagami variable is the square root of a gamma variable. One crucial 

step in our method is to introduce a decomposition principle for representing a gamma vector 

as a direct sum of independent vectors which, in turn, can be produced from a set of 

correlated Gaussian sequences. The next step is then to determine the relationship between 

the given Nakagami covariance structure and its counterpart for the Gaussian vectors.  

Diversity combining techniques have been shown to provide an effective means to 

combat multipath fading and mitigate co-channel interference in mobile  wireless 

communication systems. However, the diversity gain is reduced by the correlation of the 

multipath signals among the branches. The effects of correlated fading on the performance of 

a diversity combining receiver has received a great deal of research interest. Previous works  

used the Rayleigh distribution to model the fading channel statistics, but there has been 

increased interest in analyzing and evaluating the mobile wireless communication system 

performance in the Nakagami-m fading channel in order to represent a wider range of realistic 

fading conditions.[1]  

Experimental results  have shown that the Nakagami distribution fits experimental data 

better than Rayleigh, Rice and log-normal distributions. An advantage of the Nakagami 

distribution is that it can be reduced to the Rayleigh distribution and can model fading 

conditions more severe or less severe than those in the Rayleigh case. Most previous research 

investigations in correlated Nakagami fading channels focused on the theoretical analysis of 

performance (e.g. Bit-Error-Rate and outage probability) for various modulation schemes, 

with different pre-detection or post-detection diversity combining techniques. Computer-

aided modeling of correlated Nakagami fading channels for predicting the performance of a 

given modulation/coding scheme is essential for the efficient evaluation and validation of 

system designs. 
 

2. Gamma and Gaussian Random Variables: 
 

Nakagami distribution (also known as m-distribution) is an important probability function 

(pdf) used in the study of mobile radio communications. A wide variety of fading effect can 

be modeled as Nakagami fading with different m parameters, including Rayleigh and one-

sided Gaussian fading as special cases when m equals to 1 and 1/2, respectively. Furthermore, 

experimental and theoretical work has shown that the Nakagami distribution is the best m-

distribution for data obtained for many urban multipath radio channels. Nakagami distribution 

is also suitable for modeling the output statistics of diversity combining system that are 

employed extensively to mitigate multipath faded effect. For maximum diversity gain, it is 

desirable for all diversity branches in a diversity combining system to be fading 

independently. However, under practical constraints or operating conditions, the branches 

may sometimes be correlated. Therefore a flexible algorithm with the ability to generate 

correlated Nakagami fading branches with arbitrary fading parameters and correlations is 

handy for the simulation of such systems. In the literature, however, only algorithms 

generating correlated Nakagami channel with the same m parameter are found. The approach 

is to use the summation of squared Gaussian random variables (RVs) to obtain Gamma 

distributed RVs; Nakagami RVs are then obtained from the square root of Gamma RVs. The 

correlation relationship of the Gaussian vectors is determined by the correlation relationship 

of the Gamma RVs, which in turn is determined from the correlation relationship of the  
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Nakagami channels. A limitation of  this approach is that it is useful for identical and integer 

values of m parameter for all the branches only. Although improved the algorithm to non-

integer m parameter by introducing a correction factor came into existence, it still cannot deal 

with branches with different fading parameters. 
 

3. Derivation of Parameters and Correlations for Gamma Random 

Variables: 
 

For a general I-branch diversity system in Nakagami fading environment, the fading 

envelope variable xi of the ith (1  i  I ) branch follows the Nakagami-m distribution 

                        

                    

 

        where (.) is the Euler Gamma function and 

 

                                    (3.2) 

 

The moments and variance for Nakagami RV are given in  to be 

 

 

                                    (3.3) 

 

                    Var [xi] = Pi                       (3.4) 

 

Representing the fading envelope for all branches in vector  form as 

                

                           X = [x1  x2  …..  xI-1   xI ]
T
                                             (3.5) 

                    

       The covariance matrix of x is 
                         

   
CX = E [(X-E[X]) (X-E[X])

T 
]                                                                    (3.6) 

 

       The square of a Nakagami RV follows the Gamma distribution, i.e.  

 
 where gamma random variable  follows the Gamma distribution  

 

                         f( ) =  exp                                   (3.7) 

 

The moments and variance for a Gamma RV can be obtained in terms of mi and pi to be   

                            E[ ] =                                                   (3.8)     

And 
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 Var[ ] =                                                                  (3.9) 

 

       Similarly, the vector form of  can be represented as 

 

                                   (3.10) 

 

The covariance matrix of   is denoted as  , which is a positive definite matrix defined 

by 

        

E [(  -E[ ]) (  -E[ ])
T 

]                                           (3.11) 

 

Since we are going to generate correlated Nakagami RVs from correlated Gamma RVs, 

given the specifications for Nakagami RVs, we need to determine the parameters for the 

corresponding Gamma RVs, i.e., 

 

                                                            (3.12) 

From (3.1) and (3.7), mi and Pi are the same for both Nakagami and Gamma RVs, hence 

we only need to determine the covariance matrix   of the Gamma RVs based on the 

knowledge of . First of all, we know that the diagonal elements for the covariance matrix 

are the variances of . Hence, the diagonal elements for  can be directly obtained from mi 

and Pi based on (3.9), i.e., 

=                                                             (3.13) 

 

Next, the cross covariance between    and  (i  j) is required. By definition, the 

normalized covariance (also known as the correlation coefficients) between any two RVs  and 

is 

 

   =                                  (3.14) 

where cov( ) is the covariance. For the relationship between the correlation coefficient  

of Nakagami and of Gamma, there are two cases to be considered. 

 

4.1  Direct Generation of Correlated Gamma RVs 
 

The method used for generating correlated Gamma RVs is the Decomposition 

method.Our decomposition method is based on Cholesky decomposition of the covariance 

matrix, and the correlated Gamma RVs are obtained by linear summations of weighted 

independent Gamma RVs. The weighting coefficients are determined by the decomposed C. 

[2] 

 We want to generate an n -by-1 correlated Nakagami vector z with fading parameter m 

and covariance matrix R z . Before proceeding, let us define some notations.  

 The symbols 
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                                     (4.1) 

 

are used to indicate that the vectors  x , y and z follow a joint Gaussian, gamma, and 

Nakagami distribution, respectively. The Gaussian process has zero mean, and m is the fading 

parameter for the last two distributions. As a convention in this paper, we use R x to denote 

the covariance matrix of the random vector x, and use  to denote the vector obtained by 

taking power r of each element of x.  

Namely 

 

 
 

with superscript T denoting transposition. Similar symbols can be defined for the same 

operation on a matrix. We will use x (k) to denote the k th entry of x and  R( i, j) to denote  

the (i ,j)th element of R. Directly generating a Nakagami sequence is extremely difficult, and 

no simple methods are available in the literature.  

 

We will take an indirect approach, which follows the philosophy illustrated below: 

 

                                       (4.3) 

 

where {X k } is a set of independent Gaussian vectors, each having covariance matrix Rx. 

The reason we start from Gaussian vectors x k is that they are easy to generate. Recall that the 

Nakagami vector z can be obtained from a gamma distributed vector y by taking the square 

root of each individual element of the latter, namely 

 

                                                   (4.4) 

 

The gamma distributed vector y can be easily described by its characteristic function (CF) 

   

                                                  (4.5) 

 

where S is the diagonal matrix of the variables in the transform domain; that is,  S= 

diag(jt1, , jtn )  The positive-definite matrix A is determined by the covariance matrix of y , 

which is denoted by Ry. The (k, l) th entry of is related to the covariance matrix of  y  by 

                              (4.6) 

 

which, again, can be simply denoted as 

 

                                              (4.7) 

 

Before we are able to implement the idea given in (4.3), we need to determine the 

relationship among  R x , R y , and Rz 

 

The logical relation can be shown  as 
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                                  (4.8) 

 

Clearly, given Rz , we need a systematic procedure to determine R y , and R z , whereby 

desired Nakagami sequence can be synthesized. 
 

4.2 Determination of Ry from Rz: 
 

The covariance matrix of a random vector is uniquely determined by the variances and 

cross-correlations of its random components. The determination of the variances and cross-

correlation coefficients follow different approaches and we therefore address them 

separately.[3] 
 

4.2.1 Variance 
 

Suppose we want to determine the variance of the component of y , y(i) , from the 

corresponding component of z(i) . Since index is not important in the derivation, it will be 

dropped for brevity. To begin with, we relate the variance of a gamma variable to its 

counterpart for Nakagami variate. Consider the moments of the Nakagami distribution NK(m, 

)Using the probability density function (PDF) of NK (m,  ) , it follows that 

 

       (4.9) 

 

which, after making change of variable yields 

  

 
 

The Gamma function (m) is defined by 

   

              (4.11) 

 

 

which, for a positive integer m , can be simplified to (m) = (m-1)!.  

 

The average power Ω is an intermediate parameter, which we do not need to specify. 

With this expression, it is easy to obtain 

      

           

 

 
 

 Var[ ] =                                                (4.12) 
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Recall that  y=  . Hence, we can represent the variance of the gamma variable, var[ y] , 

in terms of var[ z ] 

 

 var[y] =                                     (4.13) 

 

This equation will be used to determine the variance of squared Nakagami signal. When 

using the results obtained above, appropriate indices should be added. For example, var[y(i)] 

should be understood to be var[y(i)]= R y (i, i) . 
 

4.2.2    Cross Correlation: 
 

Given RZ , the (i, j) th correlation coefficient is equal to 

                                     (4.14) 

 

Let us show how to obtain  from its counterpart for the gamma vector y. The latter 

is denoted by v(i, j) for distinction and is given by 

               (4.15) 

 

The relation between the correlation coefficients of the Nakagami and the Gamma vectors 

is revealed by 

 

 
 

              {2F1         (4.16) 

 

Where 

                                   (4.17) 

and the hyper-geometric function is defined by 

 

                                                                    2F1                              (4.18)       

  

With   and In this expression, n represents 

the order-n correlation of the Nakagami vector. The physical significance of (4.16) is clear, 

indicating that an arbitrary-order correlation of two Nakagami variables can always be 

expressed in terms of the correlation of the gamma variables y(i) and y( j). Our interest is,  

however, to determine the correlation v(i, j) between the two gamma variables from the given 

value of Nakagami correlation  . 

Namely, given  , we need to solve the equation 
 

2F1                       (4.19) 

for the unknown v(i,j). 
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4.2.3 Computational Issues : 
 

It remains for us to find a simple method for solving (4.19). To simplify notation, we will 

drop the indices and simply write and v ( i, j) as and v, respectively. Let us define  

           (4.20) 

 

Since we can easily obtain the derivative of the hypergeometric function, we will use the 

Newton Raphson method. 

                       (4.21) 

 

whereby the iterative algorithm is obtained as shown. 

                                                   (4.22) 

 We need an initial value to start the iteration. It has been shown that a good 

approximation to v is  . Thus, we can set  

                                                                          (4.23) 

 

The expressions (4.16) to (4.23) constitute the iterative algorithm for determining the 

desired value of v. The algorithm usually con-verges in a few steps. The iterative technique 

described above is also applied to the special case of Rayleigh fading channels. The hyper 

geometric function is approximated in one way or another to simplify the procedure for 

solving the nonlinear equation. This approximation, however, is unnecessary since the 

Newton Raphson method can provide a more accurate result at the rate of geometrical 

convergence.[4] 

Techniques for generating a Gaussian vector with a specified covariance matrix are well 

developed. A natural way to generate a gamma vector is therefore to represent the gamma 

vector in terms of a set of Gaussian vectors. To gain inspiration, suppose  

       x ~N(0, R x ) and consider the CF of the vector  

                                                     (4.24) 

Denote the elements of u given by . By definition, its CF is given 

by 

 

 
 

           =  

 

                                         (4.25) 

where S, the diagonal matrix of transform variables, has been defined right after (4.5). 

Observe that (4.5) and (4.25) have a similar form, suggesting that we can factor (4.5) such 

that 
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                               (4.26) 

 where R x needs to be determined, this is an important expression. 

First, (4.26) allows us to relate the covariance matrix of y to that of x. By applying (4.7) 

to the right-hand side, it follows that the covariance matrix of y equals 
 

                                 (4.27) 

It implies that R x must meet the following condition: 

 

                                                  (4.28) 

From (4.26), it also follows that y has a simple direct-sum decomposition. This is easy to 

understand if we consider the case in which 2m takes an integer value. Recall that the 

probability density function of independent random variables is Fourier transformed to the 

product in the CF domain. When transformed back to the original domain, the left-hand side 

of (4.26) is simply equal to y , whereas the right-hand side leads to the sum of uk . 

Accordingly, we obtain 

 

                                                          (4.29) 

We use the subscript k to indicate that x k are independent sequences. The above 

expression reassures us that a Nakagami vector has the same direct sum decomposition as that 

of its scalar counterpart, and that the correlation is uniquely deter-mined by the correlation of 

the generating Gaussian vector. Correspondingly, for the Nakagami vector, we have 

 

                      (4.30) 

 

In this notation, the i th entry of z is given by 

 

                                                      (4.31) 

This expression forms a basis for synthesizing a correlated Nakagami fading channel 

from a set of independent Gaussian vectors. 

Finally, from (4.28) and (4.13), it follows that  

               (4.32) 

                       

Where 

          Var[Z(k)] =  

 

                                     (4.33) 

This expression shows the way to determine R x directly from the covariance matrix of Z. 
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4.3  Generation of the Nakagami Random Vector,  xk 
 

Given the covariance matrix Rx , it is easy to generate a random vector x k . We identify 

two cases. If the size of x is not very large (say, for the application in diversity reception), we 

can use the technique of Cholesky or eigen decomposition. We only consider the former. 

Cholesky decompose R x such that 

                                                       (4.34)                                                               

with denoting Hermitian transposition. We next generate independent identically distributed 

(iid) Gaussian sequence with zero mean and unit variance 

 

                                                          (4.35) 

Then the vector  

                                                                     (4.36) 

will be the one we want. 

If the size of x k is very large, decomposition of R x will be very time consuming. In this 

case, it is more efficient to fit the time sequence with an autoregressive (AR) model. It can be 

shown that any sequence with a rational spectrum can be fit by using an AR model with 

arbitrary accuracy as long as the model order is sufficiently long. The model order can be 

chosen by using an information-theoretic criterion. Suppose we are able to determine the AR 

model, say q . The AR coefficients a can be determined from the (q +1)  (q+ 1)  submatrix 

Rq+1 of Rx. 

                                                                            (4.37) 

 

where p is the q -by-1 vector. Then the AR coefficient vector is given by  

                                                                     (4.38) 

and the desired sequence x is obtained as 

                                         (4.39) 

 

where e k(k)  is the iid Gaussian error sequence with zero and variance given by 

 

                                                                             (4.40) 

 

Besides AR modeling, one may also consider using autoregressive moving average 

(ARMA) models especially when the model order q is large. Generally speaking, the 

Cholesky decomposition method guarantees meeting the requirement on the covariance 

structure. On the other hand, the AR technique, although efficient, only provides an 

approximation to the specified correlation function. 
 

4.4 Decomposition Form of Real Value : 
 

In the previous discussion of direct-sum decomposition, we assumed that m was integer-

valued. Let us extend the results to the general case of an arbitrary fading parameter. Denote 

the integral part of 2m by  



International Journal of Future Generation Communication and Networking 

Vol. 4, No. 2, June, 2011 

 

 

59 

 

                                               (4.41) 

For the general case 2m, the decimal of is nonzero and we cannot express y in the same 

form as (4.29). However, we can add a correction terms to (4.29) such that 

 

                                   (4.42) 

 

The second term is the correction term. The vectors xk are the Gaussian vectors having the 

same characteristics as we previously discussed. The constants  and  are the only 

unknowns to be determined. The idea behind this expression is a principle in statistics; 

namely, the summation of independent chi-square variables can be accurately approximated 

by a single gamma variable . This technique has been widely used in statistical theory and 

engineering .  

The expression given in (4.42) can be considered to be a direct-sum decomposition for 

the general case in which m takes on anarbitrary value.  

It remains for us to determine the unknown coefficients  and  . Consider a single 

component of y and x k , say r th, and hence we can write 

                                              (4.43) 

Both gamma and squared Gaussian variables can be ex-pressed in terms of chi-square 

variables. In particular, by applying (4.5)  we obtain 

 

 
 

                           (4.44)             

 

We then combine (4.6) and (4.28) to obtain 

 

                                                       (4.45) 

Applying these results to (4.43) allows us to write 

 

                                    (4.46) 

the symbol  means the both sides have the same distribution. We take the first two 

moments of both sides and note that 

 

And  

 
 

yielding 
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                                     (4.47) 

 

Solving the equations we obtain, 

 

                                (4.48) 

There are two possible values for . We suggest choosing the one closer to unity. The 

reason becomes clear if we employ the closure property of independent variables to 

rewrite (4.46) as 

 

                                 (4.49) 

For illustration, suppose m =1.8. Then, the two solutions for are 1.0732 and 0.7268. 

Choosing the former, we have 

               (4.50) 

The first term provides a coarse approximation to (2m) , while the second term 

provides a fine correction. In general, the weighting coefficients can be determined by 

 

 
 

                                               (4.51) 

where p = [2m]. It is interesting to examine the case of m =  under this 

situation, we have p = [2m] = 2m which, when inserted into (4.51), gives 1 and 0 . 

Namely, no correction component is required. This is exactly the result we obtained in the 

previous sections.[5] 

A drawback of our proposed decomposition method is that it is not an exact pdf model, so 

minor inaccuracy can be expected. However, inaccuracy in this method is fairly small for 

most practical purposes. 
 

5. Implementation and Simulation Results for Decomposition Method: 
 

  Let us implement the use of the new decomposition technique through an example for  

multi branch channels as encountered in diversity reception in a fading environment. 

We would like to generate a multi branch channel, which suffers from a  Nakagami fading 

with the envelope correlation specified by 
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and variance vector specified by  = [2.16,1.59,3.32,2.78]. We need to generate the 

vector channel for m =2.18,  m =2.5, m= 3, m=3.5 and m=4 respectively. 

 

 
 

 
 

Fig (5.a) Generated pdf Using Decomposition Method vs. Theoretical pdf for 
Branch1 
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Fig (5.b) Generated pdf Using Decomposition Method vs. Theoretical pdf for 
Branch2 

 

 

 
 

Fig (5.c) Generated pdf Using Decomposition Method vs. Theoretical pdf for 
Branch3 

 
 

 
 

Fig (5.d) Generated pdf Using Decomposition Method vs. Theoretical pdf for 
Branch4 

 



International Journal of Future Generation Communication and Networking 

Vol. 4, No. 2, June, 2011 

 

 

63 

 

 
 

Fig (5.e) Generated pdf Using Decomposition Method vs. Theoretical pdf for All 
Branches 

 

 

 

 

 

 

 
 

Fig (5.f) Generated pdf Using Decomposition Method vs. Theoretical pdf for All 
Branches in Single Plot for m=2.18 
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Fig (5.g) Generated pdf Using Decomposition Method vs. Theoretical pdf for All 
Branches in Single Plot for m=2.5 
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Fig (5.h) Generated pdf Using Decomposition Method vs. Theoretical pdf for All 
Branches in Single Plot for m=3 
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Fig (5.i) Generated pdf Using Decomposition Method vs. Theoretical pdf for All 
Branches in Single Plot for m=4 

 

6. Conclusion  
 

The paper discusses the computer generation of correlated Nakagami RVs with arbitrary 

fading parameters and correlations. 

 A new approach to generate correlated Nakagami fading signals with arbitrary fading 

parameters and correlations is the decomposition method. Basically we obtain the Nakagami 

signals by taking the square root of correlated Gamma RVs. It is shown that the correlation 

coefficient between Gaussian is derived from Gamma which is in turn obtained from the 

correlation coefficients of Nakagami RVs. For generating correlated Gamma RVs, we 

propose the Cholesky decomposition method to transform correlated Gamma RVs into 

weighted sum of independent Gamma RVs.  

As the m Parameter is increasing from 2.18 to 4 the Nakagami Probability Density 

Function (PDF), f(Z) peak value is increasing. PDF  indicates the probability of occurrence of 

the Nakagami random variable and since the quality of the received signal  increases  with 

increasing m parameter  we find the pdf increasing.  

The advantage of our proposed Decomposition Method is its capability of generating 

correlated Gamma RVs for any non-integer fading parameter and cross-correlation. It is 

versatile and also simpler to implement as it requires only the generation of independent 

Gamma RVs. 
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