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Abstract 
 

As the feature sizes of the manufacturing processes is constantly shrinking, the possibility 

and demand for more functionality on a single chip goes up. This can lead to many 

problems,e.g. as the memory access bandwidth through the bus gets too low to cope with the 

demand, also the electrical performance of the bus gets degraded as the number of modules 

are increased. Our proposed architecture makes use of a switch fabric structure to eliminate 

the traditional drawbacks of bus based design. 

Scheduler becomes the integral part of the switch which decides the scheduling of the 

SOC devices. In this paper, we have proposed an area efficient scheduler which saves around 

22 - 26% of the total scheduler area on the silicon die. This becomes possible because the 

arbiter we designed is capable of executing two different steps of Islip algorithm in two 

different clock cycles. In the first cycle, it acts as a grant arbiter while   the next cycle makes 

it an accept arbiter. The design is modified using the folding concept which is used to reduce 

the silicon area by time multiplexing many algorithm operations into a single functional unit. 

Both the design of the scheduler is synthesized using 90nm SAED library using Design 

Compiler of SYNOPSYS with the design constraint of input delay, output delay and clock 

skew. The original scheduler occupies around 22206 area unit while the proposed scheduler 

occupies around 17285 area unit  of the total silicon area considering the constraint of input 

delay, output delay and clock skew. The area includes both cell area (Combinational + N-

Combinational) and Interconnect area.   
 

Keywords: Switch fabric, Folding, Virtual queues, Thermometer encoding, PPE, 

state pointer. 
 

1. Folding  
 

It is a technique to reduce the silicon area by time-division multiplexing many algorithm 

operations into a single functional unit[7]. Figure (a) shows an architecture using two adder 

units.  One output is produced every clock cycle.  Figure (b) shows a folded architecture 

where two additions are folded / time-multiplexed to a single pipelined adder.  In this case, 



International Journal of Future Generation Communication and Networking 

Vol. 4, No. 1, March 2011 

 

 

62 
 

one output is produced every two clock cycles.  Therefore input should be valid for two clock 

cycles. 

In general, the data on the input of a folded realization is assumed to be valid for N cycles 

before changing, where N is the number of algorithm operations executed on a single 

functional unit in hardware. 

 
2. Crossbar architecture 

 

A crossbar consists of N horizontal buses (rows) and N vertical buses(columns). In our 

design, we are proposing 8-SOC devices, so the value of N shall be equal to 8. Each 

horizontal bus is connected to an input port and each vertical bus is connected to an output 

port. Crossbar switches are fully connected switches. Therefore, in a crossbar switch, there is 

a direct path from every input to every output.  Figure 1 shows crossbar architecture with 

input queues. 

Figure 1: An input queued switch with crossbar architecture 

Crossbars provide a direct connection between each input and output port. The speed of 

the crossbar depends on whether input queues or output queues are used. In case of input 

queues, the input and output port controllers have the advantage of working with merely the 

speed of the links. If output queues are utilized, the switch fabric has to be fast enough not to 

cause contention at the output ports. Crossbar-based systems can be significantly less 

expensive than bus or ring systems with equivalent performance because the crossbar allows 

multiple data transfers to take place simultaneously. Furthermore, crossbars are non-blocking, 

which means any input-output pair can talk to each other as long as they do not interfere with 
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other input-output pairs. However, in the absence of a fast scheduling algorithm the crossbar 

becomes a performance bottleneck for big switches. Crossbars are generally expensive, but 

compared to the total cost of a switch, the crossbar component contributes only a small 

fraction. 

Here, we are using the mux based crossbar to connect the input port to output port once 

the scheduler declares the verdict. This helps us to make the design fully synthesizable. More 

efficient designs in the form of sense amps and pass gates are available, but they are not 

synthesizable.  
 

3. The Scheduling Algorithm: i-SLIP 
 

The proposed scheduler is embodied with i-SLIP algorithm. It has got its own traditional 

unique characteristics. There is no connection starvation, an output will continue to grant to 

the highest priority requesting input until it is successful. In one iteration, under heavy load, 

queues with a common output all have the same throughput. The algorithm converge in N 

iterations, but simulation suggest that on average, the algorithm converges in fewer than 

log2N iterations. 

The algorithm for i-SLIP, taken from [1], follows: 

Step 1: Request. Each unmatched input sends a request to every output for which it 
has a queued cell. 

Step 2: Grant. If an unmatched output receives any requests, it chooses the one that 
appears next in a fixed, round-robin schedule starting from the highest 
priority element. The output notifies each input whether or not its request 
was granted. The pointer to the highest priority element of the round-robin 
schedule is incremented (modulo N) to one location beyond the granted 
input if the grant is accepted in Step 3 of the first iteration. 

Step 3: Accept. If an unmatched input receives a grant, it accepts the one that appears 
next in a fixed, round-robin schedule starting from the highest priority 
element. The pointer to the highest priority element of the round-robin 
schedule is incremented (modulo N) to one location beyond the accepted 
output only if this input was matched in the first iteration. 

The graphics shown below in Fig. 2 help to illustrate the algorithm.  

Figure 2: Working of i-slip scheduling algorithm with simple crossbar 
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4. Arbiters 
 

The arbiters are an important component of the scheduler design. The Grant Arbiters and 

Accept Arbiters are identically designed with the exception of the rules determining when the 

priority state may be updated. Figure 3 illustrates the arbiter design chosen for this 

implementation. The arbiter[5] is based on a simple round-robin arbiter, with the exception 

that it also includes an update_enable signal to allow the i-SLIP algorithm to only update the 

priority under certain circumstances. This limited updating produces desynchronizing 

behavior between the Grant and Accept arbiters, producing improved traffic fairness and 

decreasing undesirable bursting characteristics. 

As we see from the high-level block diagram in Figure 3, the delay through the grant 

and accept arbiters directly affects the speed of the scheduling algorithm. To make the 

arbiters fast, we first observe that a round-robin arbiter is equivalent to a programmable 

priority encoder, plus some state to store the round-robin pointer. A programmable priority 

encoder (PPE) differs from a simple priority encoder in that an external input dictates which 

input has  the  highest  priority.   

It has some state (called round-robin pointer, P_enc, of width log2N bits), which points to 

the current highest priority input. In every arbitration cycle, it uses this pointer P_enc to 

choose one among the N incoming requests, through a programmable priority-encoder. This  

PPE  takes  in  N  1-bit  wide  requests  and  a  log2N-bit  wide pointer (which we call P_enc) 

as inputs. It then chooses the first non-zero  request  value  beyond  (and  including)   

Req[P_enc], resulting in an N-bit grant. Clearly, the core function of contention  resolution  

is  carried  out  by  this  combinational  block.  The pointer-update  mechanism  is  generally  

simple  and  can  be  performed in parallel. To minimize overall delay, we focus on 

minimizing the path from Req to Gnt, which is a pure combinational path passing through 

the PPE. Hence, the problem of designing a fast round-robin arbiter is reduced to designing a 

fast PPE. It is to be noted that a fast PPE could be used in any arbiter, regardless of the pointer-

update mechanism. 

  

 

 

 

 

 

 

 

Figure 3: Original Arbiter 

 

5. Proposed Arbiter: 
 

The proposed arbiter as shown in Fig 4 is responsible for performing grant as well as 

accept function through time division multiplexing. It holds two priority update registers each 
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for grant[pri_gnt] and accept[pri_acc] arbitration, where original arbiter[6] was holding only 

one update pointer register as  it had to perform only one function. This is the folding concept 

as it was proposed by[7] where a single component is capable of performing two different 

operations on time sharing basis.  As per the original concept of the algorithm, in one clock 

cycle, all the three steps were executed - request, grant and accept - as we had exclusive set of 

arbiters to perform it. While in proposed arbitration, in one clock cycle grant is performed 

while in the next clock cycle accept is performed, as per the simulation results shown. 

During grant mode of operation, this arbiter acts as the grant arbiter.  It accepts the 

request signal for a given output port and generates the grant signal for that output port.  

During the accept mode of operation, this arbiter accepts the output port grant signal as input 

and generates the input port accept signal. 

 

 

 

 

 

 

 

 

 

 

Figure 4: Proposed Arbiter to perform grant as well as accept function 

 

6. Original Scheduler 
 

The Scheduler acts as the central switch arbiter. It analyzes the occupied Virtual Output 

Queues of each input_block and configures the input_blocks and interconnect muxes to 

connect inputs to outputs and allow  data transfer across the switch. The scheduling algorithm 

attempts to achieve a large number of simultaneous connections, but also avoids conflicts of 

multiple inputs connecting to a single output or a single input connecting to multiple outputs. 

The scheduling algorithm chosen is a modified i-SLIP [1] scheduler. 

This algorithm assumes an N-input by N output cell switch with input queuing. To 

alleviate head-of-line blocking at the input queues, each input maintains a separate queue for 

each possible output destination. The goals for the scheduling algorithm is to match input 

queues containing waiting packets with output queues to achieve the maximum throughput 

while maintaining stability and eliminating starvation. 

The SLIP algorithm[1] matches inputs to outputs in a single iteration; however, after this 

iteration, several possible input and output ports may remain unutilized. The i-SLIP algorithm 

uses multiple iterations to find paths to utilize as many input and output ports as possible 

(pseudo-maxsize matching) until it converges to finding no more possible matches.  
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Figure 5 shows the i-SLIP scheduler[10] implementation chosen for this design. The 

input to the scheduler is the occupancy vectors from each of the input_blocks with packets 

waiting to be scheduled. There are 8 such vectors (1 per crossbar input port), each with 8 bits 

(1 per destination per input). This 8x8 state is used as the request vector to the iterative 

arbitration logic. 

The scheduler also contains 8 Grant Arbiters and 8 Accept Arbiters. The Grant and 

Accept Arbiters each consist of programmable priority encoders and a state pointer to record 

which input should have the highest priority on the next arbitration cycle. The 8-bit feedback 

signal from the Decision registers to the Grant arbiters is an enable vector, which enables 

arbitration only for unmatched ports on each successive iteration. 

Finally, after a number of iterations, the scheduler arrives at a final scheduling solution 

which it outputs to each of the input blocks (indicating which destination the data block has 

been scheduled to transmit a packet for) and each interconnect mux (indicating which input 

block it is receiving data from). 

 

 

 

 

 

 

 

 

 

Figure 5: Original scheduler with independent grant and accept funtion. 
 

As an enhancement to the original i-SLIP algorithm proposed in [1], this scheduler also 

includes an 8-bit busy input from each of the switch outputs. These busy signals are asserted 

if that output does not have enough downstream credit to send another transfer. When the 

busy signal is asserted, that output port is disabled from the Grant Arbitration. 
 

7. Programmable Priority Encoder 
 

The slowest timing path through the scheduler passes through the programmable priority 

encoder logic of the grant/accept arbiters. There are many different ways to implement a 

priority encoder that supports a programmable priority [5]. Some require rotating the request 

vector and then rotating the resulting priority vector, while others resemble a ripple-carry-

adder design. However, the design chosen here for the original scheduler utilizes a request 

masking mechanism and two simple non-programmable priority encoders for this 

implementation. 

Simple priority encoder is implemented using a simple verilog casez statement. When 

Boolean optimizations were enabled in the DesignVision synthesis tool, it synthesized the 

casez into a tree-like structure to achieve a very low delay through the priority encoder[5].  
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Figure 6: Original PPE in the arbiter 

 

8. Proposed PPE 
 

As shown in Figure 7, only 2:1 mux is added to select the priority for accept and  grant 

arbiter. The three bit priority selected by the mux will be given as an input to the encoder. The 

encoded bits are the inputs to the AND while the 8-bit request is the other input.  

 

 

 

 

 

 

 

 

Figure 7: Proposed PPE diagram including gi[pri_gnt] & ai[pri_acc] 
 

The bits will be finally encoded by the thermo_ppe and the 8-bit signal, which is nothing 

but the programmable grant, will be given as an input to the OR gate. At the same time the 

request signals will also be given to the simple priority encoder. It will encode the bits and the 

simple 8 bit grant signal will be anded with another grant signal. 

The output of this second and gate is nothing but the programmable grant signal. This 

signal will be given as another input to the OR gate. Finally the 8-bit grant will be obtained at 

the output of the programmable priority encoder. 

The other hardware required for the arbiter design is encoder and the latch as the 

feedback blocks. 
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9. Proposed Scheduler: 
 

As shown in the original scheduler [10], there are total 16 arbiters used for 8 SOC 

devices.   Here the concept of the folding mechanism is exploited to minimize the silicon die 

area wherein a single component is  used to perform two different operations of the same 

algorithm. Here the single arbiter is performing dual role of  grant as well as accept function 

on time division multiplexing. This is shown in fig.8, where only one set of arbiters is used to 

execute both the operations, so the number of required arbiters is reduced to only 8. The 

architecture of the original arbiters and the original PPEs modified are shown in Figures 4 and 

7 respectively. 

Figure 8: Proposed Scheduler 

 

10. Synthesis Results:  
 

The results shown below are obtained using DC of SYNOPSYS with 90nm saed library. 

The gate level netlist is obtained without setting any prior constraint. Without constraint the 

DC optimizes the design for minimal area and assumes ideal clock[11]. As shown in Table1, 

the original scheduler takes 17129 units of the silicon die while the proposed scheduler 

requires 12950 units.  With the proposed scheduler with folding concept, it is possible to save 

area upto 25%. 
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Table 1 
 

Original Scheduler[U]  Proposed Scheduler[U] 

Report : area 
Design : sc 
Version: Y-2006.06-SP6 
Date   : Tue Oct 19 14:17:25 2010 
************************** 
Library(s) Used: saed90nm_typ (File: 
/home/student1/2010-09-
22/risc_design/libs/saed90nm_typ.db) 
 
Number of ports:              220 
Number of nets:               851 
Number of cells:              379 
Number of references:          36 
 
Combinational area:       12996.039062 
Noncombinational area:    3035.730469 
Net Interconnect area:    1098.012329 
 
Total cell area:          16031.669922 
Total area:               17129.681641 

 

Report : area 
Design : sc 
Version: Y-2006.06-SP6 
Date   : Tue Oct 19 14:17:40 2010 
************************** 
Library(s) Used: saed90nm_typ (File: 
/home/student1/2010-09-
22/risc_design/libs/saed90nm_typ.db) 
 
Number of ports:              222 
Number of nets:               751 
Number of cells:              422 
Number of references:          30 
 
Combinational area:       8836.385742 
Noncombinational area:    3284.561035 
Net Interconnect area:     829.488525 
 
Total cell area:          12120.953125 
Total area:               12950.441406 

 
 

As shown in Table 2, the longest combinational path in original scheduler takes around 
0.57 ns of time while in proposed scheduler the longest path takes around 0.64ns of time. The 
time overhead in the proposed scheduler is increased because of the inclusion of the 
additional update pointer register in the same arbiter. 
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Table2 
 

Original Scheduler[U]  Proposed Scheduler[U] 

   Report : timing 
        -path full 
        -delay max 
        -max_paths 1 
        -sort_by group 
Design : sc 
Version: Y-2006.06-SP6 
Date   : Tue Oct 19 14:12:14 2010              
 ********************************* 
Operating Conditions: TYPICAL   Library: 
saed90nm_typ 
Wire Load Model Mode: enclosed 
Startpoint: datactrl4_reg[4] 
              (rising edge-triggered flip-flop) 
Endpoint: in_dec_valid[4] (output port) 
 Path Type: max 
data arrival time                                   0.57 
  -------------------------------------------------- 
  (Path is unconstrained)                                                                                            

Report : timing 
        -path full 
        -delay max 
        -max_paths 1 
        -sort_by group 
Design : sc 
Version: Y-2006.06-SP6 
Date   : Tue Oct 19 14:18:47 2010 
******************************** 
Operating Conditions: TYPICAL   Library: 
saed90nm_typ 
Wire Load Model Mode: enclosed 
Startpoint: datactrl4_reg[4] 
              (rising edge-triggered flip-flop) 
Endpoint: in_dec_valid[4] (output port) 
Path Type: max 
data arrival time                              0.64 
  ------------------------------------------------ 
  (Path is unconstrained) 
 

 

Another set of results are obtained by applying constraint of input delay, output delay and 

clock skew as per the guidelines by SYNOPSYS manual[11]. If no prior set of input and 

output delays are mentioned in the specification, then we have to consider its values as 40% 

of the clock period. First set of readings in both Table3 and Table4 are the outcome of the 

first consideration while the second set of readings stand for fixed output and input delays. In 

both set of readings, the common point of discussion is area with 20-25% improvement over 

the original scheduler.  

Proposed Scheduler with constraint of input delay, output delay and clock skew: 

 
Table 3 

Total Area Clock Period input delay output delay status of slack 

17285 30ns 18ns 18ns met 

15524 30ns 2ns 0.5ns met 

 

Original Scheduler with constraint of input delay, output delay and clock skew: 
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Table 4 

Total Area Clock Period input delay output delay status of slack 

22206 4ns 2.4ns 2.4ns met 

21504 4ns 2ns 0.5ns met 

 

11. Simulation result of folded Scheduler using XILINX ISE: 

 

12. Conclusion 
 

Since the majority of the area in the scheduler is consumed by the grant and accept 
arbiters,  the structure of the arbiter  in Figure 3  is modified to  Figure 4 to reuse the priority 
encoding logic for both the Grant and Accept arbiters.  This saves area, but introduces 
additional sequential logic overhead as the Grant result must be stored in the decision 
registers on every other cycle. The different test patterns are applied to the scheduler to test its 
functionality. The algorithm works with its original nature except in every alternate iteration, 
it takes only two clock cycles to complete its scheduling as  shown in the simulation result. 
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The proposed scheduler is synthesized using Design Compiler of SYNOPSYS in 90nm 

SAED synthesis library. In the  mode of synthesis, the design was optimized using input and 

output delays at 40% of clock period as it is recommended in SYNOPSYS manual. The most 

optimized results are available at 30ns with the total area of 17285 units while with lowering 

the values of input/output delays as shown in Table 3, the area is further reduced to 15524 

units. The corresponding area readings of the original scheduler is higher at least by 22-25% 

as per the readings in Table 3 and Table 4. 
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