
International Journal of Future Generation Communication and Networking

Vol. 4, No. 1, March 2011

61

Folded Architecture of Scheduler for Area Optimization in
On-Chip Switch Fabric

Vilas N. Nitnaware

Department of Electronics Design Technology,

Shri Ramdeobaba K. N. Engg. College, Nagpur, India.
nitnawarevn@rknec.edu

 Shyam S. Limaye
Principal, Jhulelal Institute of Technology,

Nagpur, India.
shyam_limaye@hotmail.com

Abstract

As the feature sizes of the manufacturing processes is constantly shrinking, the possibility

and demand for more functionality on a single chip goes up. This can lead to many

problems,e.g. as the memory access bandwidth through the bus gets too low to cope with the

demand, also the electrical performance of the bus gets degraded as the number of modules

are increased. Our proposed architecture makes use of a switch fabric structure to eliminate

the traditional drawbacks of bus based design.

Scheduler becomes the integral part of the switch which decides the scheduling of the

SOC devices. In this paper, we have proposed an area efficient scheduler which saves around

22 - 26% of the total scheduler area on the silicon die. This becomes possible because the

arbiter we designed is capable of executing two different steps of Islip algorithm in two

different clock cycles. In the first cycle, it acts as a grant arbiter while the next cycle makes

it an accept arbiter. The design is modified using the folding concept which is used to reduce

the silicon area by time multiplexing many algorithm operations into a single functional unit.

Both the design of the scheduler is synthesized using 90nm SAED library using Design

Compiler of SYNOPSYS with the design constraint of input delay, output delay and clock

skew. The original scheduler occupies around 22206 area unit while the proposed scheduler

occupies around 17285 area unit of the total silicon area considering the constraint of input

delay, output delay and clock skew. The area includes both cell area (Combinational + N-

Combinational) and Interconnect area.

Keywords: Switch fabric, Folding, Virtual queues, Thermometer encoding, PPE,

state pointer.

1. Folding

It is a technique to reduce the silicon area by time-division multiplexing many algorithm

operations into a single functional unit[7]. Figure (a) shows an architecture using two adder

units. One output is produced every clock cycle. Figure (b) shows a folded architecture

where two additions are folded / time-multiplexed to a single pipelined adder. In this case,

International Journal of Future Generation Communication and Networking

Vol. 4, No. 1, March 2011

62

one output is produced every two clock cycles. Therefore input should be valid for two clock

cycles.

In general, the data on the input of a folded realization is assumed to be valid for N cycles

before changing, where N is the number of algorithm operations executed on a single

functional unit in hardware.

2. Crossbar architecture

A crossbar consists of N horizontal buses (rows) and N vertical buses(columns). In our

design, we are proposing 8-SOC devices, so the value of N shall be equal to 8. Each

horizontal bus is connected to an input port and each vertical bus is connected to an output

port. Crossbar switches are fully connected switches. Therefore, in a crossbar switch, there is

a direct path from every input to every output. Figure 1 shows crossbar architecture with

input queues.

Figure 1: An input queued switch with crossbar architecture

Crossbars provide a direct connection between each input and output port. The speed of

the crossbar depends on whether input queues or output queues are used. In case of input

queues, the input and output port controllers have the advantage of working with merely the

speed of the links. If output queues are utilized, the switch fabric has to be fast enough not to

cause contention at the output ports. Crossbar-based systems can be significantly less

expensive than bus or ring systems with equivalent performance because the crossbar allows

multiple data transfers to take place simultaneously. Furthermore, crossbars are non-blocking,

which means any input-output pair can talk to each other as long as they do not interfere with

International Journal of Future Generation Communication and Networking

Vol. 4, No. 1, March 2011

63

other input-output pairs. However, in the absence of a fast scheduling algorithm the crossbar

becomes a performance bottleneck for big switches. Crossbars are generally expensive, but

compared to the total cost of a switch, the crossbar component contributes only a small

fraction.

Here, we are using the mux based crossbar to connect the input port to output port once

the scheduler declares the verdict. This helps us to make the design fully synthesizable. More

efficient designs in the form of sense amps and pass gates are available, but they are not

synthesizable.

3. The Scheduling Algorithm: i-SLIP

The proposed scheduler is embodied with i-SLIP algorithm. It has got its own traditional

unique characteristics. There is no connection starvation, an output will continue to grant to

the highest priority requesting input until it is successful. In one iteration, under heavy load,

queues with a common output all have the same throughput. The algorithm converge in N

iterations, but simulation suggest that on average, the algorithm converges in fewer than

log2N iterations.

The algorithm for i-SLIP, taken from [1], follows:

Step 1: Request. Each unmatched input sends a request to every output for which it
has a queued cell.

Step 2: Grant. If an unmatched output receives any requests, it chooses the one that
appears next in a fixed, round-robin schedule starting from the highest
priority element. The output notifies each input whether or not its request
was granted. The pointer to the highest priority element of the round-robin
schedule is incremented (modulo N) to one location beyond the granted
input if the grant is accepted in Step 3 of the first iteration.

Step 3: Accept. If an unmatched input receives a grant, it accepts the one that appears
next in a fixed, round-robin schedule starting from the highest priority
element. The pointer to the highest priority element of the round-robin
schedule is incremented (modulo N) to one location beyond the accepted
output only if this input was matched in the first iteration.

The graphics shown below in Fig. 2 help to illustrate the algorithm.

Figure 2: Working of i-slip scheduling algorithm with simple crossbar

International Journal of Future Generation Communication and Networking

Vol. 4, No. 1, March 2011

64

4. Arbiters

The arbiters are an important component of the scheduler design. The Grant Arbiters and

Accept Arbiters are identically designed with the exception of the rules determining when the

priority state may be updated. Figure 3 illustrates the arbiter design chosen for this

implementation. The arbiter[5] is based on a simple round-robin arbiter, with the exception

that it also includes an update_enable signal to allow the i-SLIP algorithm to only update the

priority under certain circumstances. This limited updating produces desynchronizing

behavior between the Grant and Accept arbiters, producing improved traffic fairness and

decreasing undesirable bursting characteristics.

As we see from the high-level block diagram in Figure 3, the delay through the grant

and accept arbiters directly affects the speed of the scheduling algorithm. To make the

arbiters fast, we first observe that a round-robin arbiter is equivalent to a programmable

priority encoder, plus some state to store the round-robin pointer. A programmable priority

encoder (PPE) differs from a simple priority encoder in that an external input dictates which

input has the highest priority.

It has some state (called round-robin pointer, P_enc, of width log2N bits), which points to

the current highest priority input. In every arbitration cycle, it uses this pointer P_enc to

choose one among the N incoming requests, through a programmable priority-encoder. This

PPE takes in N 1-bit wide requests and a log2N-bit wide pointer (which we call P_enc)

as inputs. It then chooses the first non-zero request value beyond (and including)

Req[P_enc], resulting in an N-bit grant. Clearly, the core function of contention resolution

is carried out by this combinational block. The pointer-update mechanism is generally

simple and can be performed in parallel. To minimize overall delay, we focus on

minimizing the path from Req to Gnt, which is a pure combinational path passing through

the PPE. Hence, the problem of designing a fast round-robin arbiter is reduced to designing a

fast PPE. It is to be noted that a fast PPE could be used in any arbiter, regardless of the pointer-

update mechanism.

Figure 3: Original Arbiter

5. Proposed Arbiter:

The proposed arbiter as shown in Fig 4 is responsible for performing grant as well as

accept function through time division multiplexing. It holds two priority update registers each

International Journal of Future Generation Communication and Networking

Vol. 4, No. 1, March 2011

65

for grant[pri_gnt] and accept[pri_acc] arbitration, where original arbiter[6] was holding only

one update pointer register as it had to perform only one function. This is the folding concept

as it was proposed by[7] where a single component is capable of performing two different

operations on time sharing basis. As per the original concept of the algorithm, in one clock

cycle, all the three steps were executed - request, grant and accept - as we had exclusive set of

arbiters to perform it. While in proposed arbitration, in one clock cycle grant is performed

while in the next clock cycle accept is performed, as per the simulation results shown.

During grant mode of operation, this arbiter acts as the grant arbiter. It accepts the

request signal for a given output port and generates the grant signal for that output port.

During the accept mode of operation, this arbiter accepts the output port grant signal as input

and generates the input port accept signal.

Figure 4: Proposed Arbiter to perform grant as well as accept function

6. Original Scheduler

The Scheduler acts as the central switch arbiter. It analyzes the occupied Virtual Output

Queues of each input_block and configures the input_blocks and interconnect muxes to

connect inputs to outputs and allow data transfer across the switch. The scheduling algorithm

attempts to achieve a large number of simultaneous connections, but also avoids conflicts of

multiple inputs connecting to a single output or a single input connecting to multiple outputs.

The scheduling algorithm chosen is a modified i-SLIP [1] scheduler.

This algorithm assumes an N-input by N output cell switch with input queuing. To

alleviate head-of-line blocking at the input queues, each input maintains a separate queue for

each possible output destination. The goals for the scheduling algorithm is to match input

queues containing waiting packets with output queues to achieve the maximum throughput

while maintaining stability and eliminating starvation.

The SLIP algorithm[1] matches inputs to outputs in a single iteration; however, after this

iteration, several possible input and output ports may remain unutilized. The i-SLIP algorithm

uses multiple iterations to find paths to utilize as many input and output ports as possible

(pseudo-maxsize matching) until it converges to finding no more possible matches.

International Journal of Future Generation Communication and Networking

Vol. 4, No. 1, March 2011

66

Figure 5 shows the i-SLIP scheduler[10] implementation chosen for this design. The

input to the scheduler is the occupancy vectors from each of the input_blocks with packets

waiting to be scheduled. There are 8 such vectors (1 per crossbar input port), each with 8 bits

(1 per destination per input). This 8x8 state is used as the request vector to the iterative

arbitration logic.

The scheduler also contains 8 Grant Arbiters and 8 Accept Arbiters. The Grant and

Accept Arbiters each consist of programmable priority encoders and a state pointer to record

which input should have the highest priority on the next arbitration cycle. The 8-bit feedback

signal from the Decision registers to the Grant arbiters is an enable vector, which enables

arbitration only for unmatched ports on each successive iteration.

Finally, after a number of iterations, the scheduler arrives at a final scheduling solution

which it outputs to each of the input blocks (indicating which destination the data block has

been scheduled to transmit a packet for) and each interconnect mux (indicating which input

block it is receiving data from).

Figure 5: Original scheduler with independent grant and accept funtion.

As an enhancement to the original i-SLIP algorithm proposed in [1], this scheduler also

includes an 8-bit busy input from each of the switch outputs. These busy signals are asserted

if that output does not have enough downstream credit to send another transfer. When the

busy signal is asserted, that output port is disabled from the Grant Arbitration.

7. Programmable Priority Encoder

The slowest timing path through the scheduler passes through the programmable priority

encoder logic of the grant/accept arbiters. There are many different ways to implement a

priority encoder that supports a programmable priority [5]. Some require rotating the request

vector and then rotating the resulting priority vector, while others resemble a ripple-carry-

adder design. However, the design chosen here for the original scheduler utilizes a request

masking mechanism and two simple non-programmable priority encoders for this

implementation.

Simple priority encoder is implemented using a simple verilog casez statement. When

Boolean optimizations were enabled in the DesignVision synthesis tool, it synthesized the

casez into a tree-like structure to achieve a very low delay through the priority encoder[5].

International Journal of Future Generation Communication and Networking

Vol. 4, No. 1, March 2011

67

Figure 6: Original PPE in the arbiter

8. Proposed PPE

As shown in Figure 7, only 2:1 mux is added to select the priority for accept and grant

arbiter. The three bit priority selected by the mux will be given as an input to the encoder. The

encoded bits are the inputs to the AND while the 8-bit request is the other input.

Figure 7: Proposed PPE diagram including gi[pri_gnt] & ai[pri_acc]

The bits will be finally encoded by the thermo_ppe and the 8-bit signal, which is nothing

but the programmable grant, will be given as an input to the OR gate. At the same time the

request signals will also be given to the simple priority encoder. It will encode the bits and the

simple 8 bit grant signal will be anded with another grant signal.

The output of this second and gate is nothing but the programmable grant signal. This

signal will be given as another input to the OR gate. Finally the 8-bit grant will be obtained at

the output of the programmable priority encoder.

The other hardware required for the arbiter design is encoder and the latch as the

feedback blocks.

International Journal of Future Generation Communication and Networking

Vol. 4, No. 1, March 2011

68

9. Proposed Scheduler:

As shown in the original scheduler [10], there are total 16 arbiters used for 8 SOC

devices. Here the concept of the folding mechanism is exploited to minimize the silicon die

area wherein a single component is used to perform two different operations of the same

algorithm. Here the single arbiter is performing dual role of grant as well as accept function

on time division multiplexing. This is shown in fig.8, where only one set of arbiters is used to

execute both the operations, so the number of required arbiters is reduced to only 8. The

architecture of the original arbiters and the original PPEs modified are shown in Figures 4 and

7 respectively.

Figure 8: Proposed Scheduler

10. Synthesis Results:

The results shown below are obtained using DC of SYNOPSYS with 90nm saed library.

The gate level netlist is obtained without setting any prior constraint. Without constraint the

DC optimizes the design for minimal area and assumes ideal clock[11]. As shown in Table1,

the original scheduler takes 17129 units of the silicon die while the proposed scheduler

requires 12950 units. With the proposed scheduler with folding concept, it is possible to save

area upto 25%.

International Journal of Future Generation Communication and Networking

Vol. 4, No. 1, March 2011

69

Table 1

Original Scheduler[U] Proposed Scheduler[U]

Report : area
Design : sc
Version: Y-2006.06-SP6
Date : Tue Oct 19 14:17:25 2010

Library(s) Used: saed90nm_typ (File:
/home/student1/2010-09-
22/risc_design/libs/saed90nm_typ.db)

Number of ports: 220
Number of nets: 851
Number of cells: 379
Number of references: 36

Combinational area: 12996.039062
Noncombinational area: 3035.730469
Net Interconnect area: 1098.012329

Total cell area: 16031.669922
Total area: 17129.681641

Report : area
Design : sc
Version: Y-2006.06-SP6
Date : Tue Oct 19 14:17:40 2010

Library(s) Used: saed90nm_typ (File:
/home/student1/2010-09-
22/risc_design/libs/saed90nm_typ.db)

Number of ports: 222
Number of nets: 751
Number of cells: 422
Number of references: 30

Combinational area: 8836.385742
Noncombinational area: 3284.561035
Net Interconnect area: 829.488525

Total cell area: 12120.953125
Total area: 12950.441406

As shown in Table 2, the longest combinational path in original scheduler takes around
0.57 ns of time while in proposed scheduler the longest path takes around 0.64ns of time. The
time overhead in the proposed scheduler is increased because of the inclusion of the
additional update pointer register in the same arbiter.

International Journal of Future Generation Communication and Networking

Vol. 4, No. 1, March 2011

70

Table2

Original Scheduler[U] Proposed Scheduler[U]

 Report : timing
 -path full
 -delay max
 -max_paths 1
 -sort_by group
Design : sc
Version: Y-2006.06-SP6
Date : Tue Oct 19 14:12:14 2010

Operating Conditions: TYPICAL Library:
saed90nm_typ
Wire Load Model Mode: enclosed
Startpoint: datactrl4_reg[4]
 (rising edge-triggered flip-flop)
Endpoint: in_dec_valid[4] (output port)
 Path Type: max
data arrival time 0.57
 --
 (Path is unconstrained)

Report : timing
 -path full
 -delay max
 -max_paths 1
 -sort_by group
Design : sc
Version: Y-2006.06-SP6
Date : Tue Oct 19 14:18:47 2010

Operating Conditions: TYPICAL Library:
saed90nm_typ
Wire Load Model Mode: enclosed
Startpoint: datactrl4_reg[4]
 (rising edge-triggered flip-flop)
Endpoint: in_dec_valid[4] (output port)
Path Type: max
data arrival time 0.64
 --
 (Path is unconstrained)

Another set of results are obtained by applying constraint of input delay, output delay and

clock skew as per the guidelines by SYNOPSYS manual[11]. If no prior set of input and

output delays are mentioned in the specification, then we have to consider its values as 40%

of the clock period. First set of readings in both Table3 and Table4 are the outcome of the

first consideration while the second set of readings stand for fixed output and input delays. In

both set of readings, the common point of discussion is area with 20-25% improvement over

the original scheduler.

Proposed Scheduler with constraint of input delay, output delay and clock skew:

Table 3

Total Area Clock Period input delay output delay status of slack

17285 30ns 18ns 18ns met

15524 30ns 2ns 0.5ns met

Original Scheduler with constraint of input delay, output delay and clock skew:

International Journal of Future Generation Communication and Networking

Vol. 4, No. 1, March 2011

71

Table 4

Total Area Clock Period input delay output delay status of slack

22206 4ns 2.4ns 2.4ns met

21504 4ns 2ns 0.5ns met

11. Simulation result of folded Scheduler using XILINX ISE:

12. Conclusion

Since the majority of the area in the scheduler is consumed by the grant and accept
arbiters, the structure of the arbiter in Figure 3 is modified to Figure 4 to reuse the priority
encoding logic for both the Grant and Accept arbiters. This saves area, but introduces
additional sequential logic overhead as the Grant result must be stored in the decision
registers on every other cycle. The different test patterns are applied to the scheduler to test its
functionality. The algorithm works with its original nature except in every alternate iteration,
it takes only two clock cycles to complete its scheduling as shown in the simulation result.

International Journal of Future Generation Communication and Networking

Vol. 4, No. 1, March 2011

72

The proposed scheduler is synthesized using Design Compiler of SYNOPSYS in 90nm

SAED synthesis library. In the mode of synthesis, the design was optimized using input and

output delays at 40% of clock period as it is recommended in SYNOPSYS manual. The most

optimized results are available at 30ns with the total area of 17285 units while with lowering

the values of input/output delays as shown in Table 3, the area is further reduced to 15524

units. The corresponding area readings of the original scheduler is higher at least by 22-25%

as per the readings in Table 3 and Table 4.

13. References

[1] McKeown, N. W. 1995 Scheduling Algorithms for Input-Queued Cell Switches. Doctoral Thesis. UMI Order
Number: UMI Order No. GAX96-02658., University of California at Berkeley.

[2] N. McKeown, M. Izzard, A. Mekkittikul, B. Ellersick, and M.Horowitz, "The Tiny Tera: A Packet Switch
Core," IEEE Micro, vol. 17, pp.26-33, Jan.-Feb. 1997.

[3] Wijetunga, P., "High-performance crossbar design for system-on-chip," System on-Chip for Real-Time
Applications, 2003. Proceedings. The 3rd IEEE International Workshop on , vol., no.pp. 138- 143, 30 June-2
July 2003

[4] Pape, J; “Implementation of an On-chip Interconnect Using the i-SLIP Scheduling Algorithm: Intermediate
Report – Specification and Timeline,” Nov 2006.

[5] Gupta, P.; McKeown, N., "Designing and implementing a fast crossbar scheduler," Micro, IEEE , vol.19,
no.1pp.20-28, Jan/Feb 1999.

[6] Nitnaware V.; Limaye S. S., “An efficient arbiter in the On-chip scheduler embodying i-SLIP algorithm ”,
WASET 2010, Amsterdam, September 28th - 30th.

[7] A Book by Keshabh K. Parhi on “VLSI Signal Processing”

[6] Mhamdi, L., Kachris, C., and Vassiliadis, S. 2006. A reconfigurable hardware based embedded scheduler for
buffered crossbar switches. In Proceedings of the 2006 ACM/SIGDA 14th international Symposium on Field
Programmable Gate Arrays (Monterey, California, USA, February 22 - 24, 2006). FPGA '06. ACM Press,
New York, NY, 143-149.

[7] S.Q. Zheng, M. Yang, and F. Masetti-Placci, "Constructing schedulers for high speed, high-capacity
switches/routers," Int. J. Comput. Appl., vol.25, no.4, pp.264–271, 2003.

[8] R. Ahuja et al. “Multicast Scheduling for Input-Queued Switches,” IEEE JSAC, June 1997.

[9] A. Dua, N. Bambos, W. Olesinski, H. Eberle, N. Gura: “Backlog aware low complexity schedulers for input
queued packet switches”, IEEE Symp. on High-Perf. Interconnects, 2007.

[10] Nitnaware V., Limaye S. S., “Time Efficient Arbiter in the design of Scheduler embodying Islip
algorithm for on chip interconnection,” Int. J. IJAST, vol.21, ISSN: 2005-4238, August 2010.

[11] SYNOPSYS Manual for Design Vision/Design Compiler available at SOLVNET
{https://solvent.synopsys.com/}.

Authors

Vilas Nitnaware pursuing PhD from R.S.T.M.Nagpur University, India,
in the field of “SOC Interconnect”. He is an Assistant Professor and
working as a coordinator for the department of Electronic Design
Technology since last 10 years. He has been associating with
Microprocessors and Microcontrollers related subjects right from his
inception. His masters was in the field of VLSI. He undergone training
on SYNOPSYS “Design Compiler”. He developed some Embedded
System products and also delivered training on microcontroller and its
applications at various Institutes.

International Journal of Future Generation Communication and Networking

Vol. 4, No. 1, March 2011

73

Dr. Shyam S. Limaye received his PhD from Nagpur University in the
faculty of Electronics Engg. Currently he is working with JIT as a
Principal. He has got vast experience of 33 years in teaching as well as
in industry. He also carried out no. of consultancy projects at DCM
Data products, Delhi, PSI Data systems Bangalore, Zen and Art New
York. His area of specialization includes Digital Signal processing,
VLSI design, LDPC codes, CORDIC algorithm. He is recognized
Supervisor to guide the PhD scholars in Nagpur University.

