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Abstract 

Video surveillance applications need tools to track people trajectories. We present here a 

new method to extract the 3D head trajectory of a person in a room using only one calibrated 

camera. A 3D ellipsoid representing the head is used to track the person with a hierarchical 

particle filter. This method can run in quasi-real-time providing reasonable 3D errors for a 

monocular system. 
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1. Introduction 

 

1.1. Motivation 

A 3D trajectory gives a lot of information for behavior recognition and can be very useful 

for video surveillance applications. For instance, in our research on fall detection [12], the 3D 

head trajectory of a person in a room is needed. Indeed, Wu [16] showed in a biomechanical 

study with wearable markers that the 3D head velocities were efficient to detect falls. In this 

work, an original 3D head tracker is proposed to recover the person location in a room with 

only one calibrated camera and no wearable markers. Our objectives are to extract the 3D 

head trajectory in real-time with sufficient precision to compute 3D velocities.  

 

1.2. Related Works 

Usually, a multi-cameras system is used to have some 3D information. Wu and  

Aghajan [17] have recovered both the 3D trajectory of the head and its pose with a multi-

camera system without accurate calibration of the camera network. Their method was based 

on Chamfer matching refined with a probabilistic framework. Kawanaka et al. [6] have 

tracked the head in a 3D voxel space with four stereo cameras, using particle filtering with 

depth and color information. Kobayashi et et al. [8] have used AdaBoost-based cascaded 

classifiers to extract the 3D head trajectory using several cameras. 

For a low-cost system, we prefer to use only one camera per room, which explains our 

interest in monocular methods. Very few attempts have been done to track the 3D head 

trajectory in real-time with a single camera. Hild [4] has recovered a 3D motion trajectory 

from a walking person, but he has supposed that the person was standing and that the camera 

optical axis was parallel to the (horizontal) ground plane. These assumptions can not be 

assumed in video surveillance applications: the camera need to be placed higher in the room 
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to avoid occluding objects and to have a larger field of view, and the person is not supposed 

to be standing or facing the camera. 

 

1.3. Method Overview 

Birchfield [1] showed that a head is well-approximated by an ellipse in the 2D image 

plane. Its tracker was based on a local search using gradient and color information. A head 

ellipse was also tracked by Nummiaro et al. [9] using a color-based particle filter. In our 

previous work [12], we also have used this idea to compute the 3D head localization from a 

2D head ellipse tracked in the image plane. The 3D head pose was computed using a 

calibrated camera, a 3D model of the head and its projection in the image plane. This method 

worked well with a standing person, but the 3D pose can be wrongly estimated when the 

person falls (the ellipse ratio can change with the point of view).  

In this work, we explore the inverse method: the head is seen as a 3D ellipsoid which is 

projected as an ellipse in the 2D image plane, and tracked through the video sequence using a 

particle filter. Section 2 describes the 3D head model and its projection in the image plane. 

The head tracking module using particle filter is shown in section 3 and is tested in section 4 

with the HumaneEva-I dataset [14]. 

 

2. Head Model Projection 

We chose to represent the head by a 3D ellipsoid, which is projected in the image plane as 

an ellipse [15]. The 3D head model will be tracked in the world coordinate system attached to 

the XY ground plane. To project the 3D head model in the image plane, we need to know the 

camera characteristics (intrinsic parameters) and the pose of the XY ground plane related to 

the camera (extrinsic parameters). 

The intrinsic parameters can be computed using a chessboard calibration pattern and the 

camera calibration toolbox for Matlab [2]. The camera's intrinsic matrix K is defined by: 
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with the focal lenght (fx, fy) and (u0, v0) in pixels. Notice that image distortion coefficients 

(radial and tangential distortions) are also computed and used to correct the images for 

distortion before processing with our methodology.  

The extrinsic parameters are obtained from corresponding points between the real word 

and the projected image points. The plane-image homography obtained from these two sets of 

points is used to computed the extrinsic parameters: 
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Where R and T are respectively a 3D rotation matrix and a 3D translation vector, as 

described in the work of Zhang [18].  

An ellipsoid is a quadric described by a matrix QC in the camera coordinate system such 

that [x, y, z, 1]
T 
QC [x, y, z, 1]=0 for a point (x, y, z) belonging to the ellipsoid. This ellipsoid is 

projected in the image plane with the projection matrix P as a conic C [11][15]: 
 

C =QC44
QC1:3,1:3

−QC1:3,4
QT

C1:3,4
     (3) 

 

The ellipse is described by the conic by [u, v, 1]
T 
C [u, v, 1]=0 for a point (u, v) in the 

image plane. 

Concretely, the ellipsoid matrix representing the head in the head coordinate system has 

the form: 
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     (4) 

 

With the semi-major A and the semi-minor B ellipsoid head axes. 

The head ellipsoid is projected as QC in the camera coordinate system with the projection 

matrix P: 
 

QC = P−1TQHP
−1
     (5) 

 

 

The projection matrix P represents here the transformation from the head ellipsoid 

coordinate system to the image plane: 
 

P = KMextMHead /World      (6) 

 

MHead/World will be defined during the tracking process by the translation and the rotation of 

the head in the world coordinate system (see eq. 9). Finally, the conic obtained from eq. 3 is 

used to define the ellipse parameters. 

The different coordinate systems used for the ellipsoid projection are shown in Fig. 1. 
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Figure 1. The different coordinate systems 

 

3. 3D Head Tracking with Particle Filter 

 

3.1. Particle Filter 

Particle filters have been used with success in several applications, and in particular to 

track the head with an ellipse [9][12], or a parametric spline curve [5] using color information 

or edge contours. In our work, a particle filter is particularly suitable as it allows abrupt 

variations of the trajectory and can deal with small occlusions.  

The main idea of particle filters is to estimate the probability distribution p(Xt|Zt) of the 

state vector Xt of the tracked object given Zt, representing all the observations. This 

probability can be approximated from a set of N weighted samples (also called particles) 

defined by St ={st
(n)
, πt

(n)
, 1 ≤ n ≤ N}. The main steps of the particle filter algorithm are: 

• Selection 

N new ellipsoids are randomly selected from the previous elipsoids by favoring the 

best ones. 

• Prediction 

The new ellipsoids are predicted with a stochastic dynamical model : 
 

′ S t
(n ) = A St

(n ) + B wt

(n )
     (7) 

 

Where wt
(n)
 is a vector of standard normal random variables, A and B are, 

respectively, the deterministic and stochastic components of the dynamical model. 
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• Measurement 

A weight πt
(n)
 is assigned to each ellipsoid (see Sect. 3.2}). 

• Estimation 

The mean state is then estimated from the weighted ellipsoids. 
 

E St[ ]= π t

(n )
st
(n )

n=1

N

∑      (8) 

 

In our work, each particle of the filter is an ellipsoid, represented by the state vector: 
 

X = [X e,Ye,Ze ,θXe,θYe ]     (9) 

 

Where (Xe, Ye, Ze) is the 3D head ellipsoid centroid expressed in the world coordinate 

system (translation component of the matrix MHead/World, and (θXe, θYe) are respectively the 

rotation around the X and the Y axes (rotation component of the matrix MHead/World). Figure 2 

shows the parameters of our 3D ellipsoid model. Notice that two angles (instead of three) are 

sufficient to define the position and orientation of the ellipsoid since its minor axes have both 

the same length in our model. 

 

Figure 2. The 3D ellipsoid model 

 

 

3.2. Particle Weights 

The particle weights are based on foreground, color and body coefficients. 

• Foreground coefficient CF 

To compute the foreground coefficient, we first need to extract the person 

silhouette in the image. For this purpose, we use a background subtraction method, 

which consists in comparing the current image with an updated background image. 

We use the codebook method from the work of Kim et al. [7], which takes into 

account shadows, highlights and high image compression. An example of foreground 

silhouette is shown in Fig. 3. 
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(a) Original image (b) Foreground silhouette 

Figure 3. From the current image (a), the foreground silhouette (b) is 

extracted with the codebook background subtraction method [7]. 

The foreground coefficient is computed by searching for silhouette contour points 

along Ne ellipse normals. For each normal, the distance de from the ellipse point to the 

detected silhouette point is used to compute the foreground coefficient: 
 

  

CF =
1

Ne

De (n) − de (n)( )/De (n)
n=1

Ne

∑     ,               CF ∈ 0K1[ ]  (10) 

 

Where De, the half-length of the normal, is used to normalize the distances. 

Some examples of foreground coefficients, obtained for a projected ellipse, are 

shown in Fig. 4. From the projected ellipse shown in green, Ne ellipse normals (in 

blue) are used to detect the foreground silhouette points (in red). 
 

  

CF = 0.89 CF = 0.43 

Figure 4. Examples of foreground coefficients. 
 

• Color coefficient CC 

The color coefficient is based on the normalized 3D color histogram of the head 

ellipse [9]. The color histogram, in the RGB color space, is composed of Nb = 8x8x8 

bins and is computed inside a rectangular zone included in the ellipse. The 

comparison is done by computing the histogram intersection between an updated 

color head model and the target model: 
 

  

CC = min H(i),Href (i)( )
i=1

NB

∑     ,               CC ∈ 0K1[ ]  (11) 
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• Body coefficient CB 

The body coefficient is used to link the head to the body through the body center. 

The projection of the 3D point corresponding to the centroid of the person should be 

near the centroid of the 2D silhouette (distance db compared to the half-major axis of 

the bounding box Db). This coefficient is only used when the bounding box is valid 

(not used in case of occlusion for example).  
 

  
CB = Db − db( )/Db    ,               CB ∈ 0K1[ ]   (12) 

 

• Final coefficient 

The final ellipsoid coefficient is an amplified combination of these three 

coefficients giving larger weights to the best particles: 
 

C final =
1

2πσ
exp

CFCCCB( )/ 2σ 2

           with  σ = 0.25   (13) 

 

Each coefficient has an important role in the head tracking. The foreground coefficient is 

useful for the 3D localization precision when the ellipse well matched the foreground 

silhouette. The color coefficient is used to prevent the ellipsoid to hang on to something else 

inside the silhouette, and the body coefficient helps to prevent an abnormal rotation of the 

ellipsoid around its center. 

 

3.3. Tracking 

Initially, a head detection module is used to calibrate our system. When the person stands 

up, the top head point is detected in the foreground silhouette. From this point, several 2D 

ellipses are tested and the one, which has the biggest foreground coefficient CF, is kept. When 

CF >0.7, the ellipse is supposed sufficiently reliable. This head ellipse is used to calibrate the 

ellipsoid proportion related to the human height (The height H of the person is supposed to be 

known and the aspect ratio of the ellipse is fixed at 1.2 for a human head [1]). Finally, to 

obtain the initial 3D position of the ellipsoid, we use a floor-image homographic 

transformation of the image position of the feet to get the (X, Y) location and the person 

height H to infer the Z coordinate. 

To have a reliable 3D head localization, we need to precisely estimate the head projection 

in the image. With a conventional particle filter, a lot of particles are needed for precision, 

which severely affects the computational performance and is incompatible with real-time 

operation. We rather prefer using an improved particle filter based on a hierarchical scheme 

with several layers, similar to the annealed particle filter [3]. We chose to work with 250 

particles and 4 layers, which is a good compromise between performance and computational 

time. The known velocity between two successive images is added to the particles to predict 

the next 3D ellipsoid localization before propagating the particles.  

 



International Journal of Future Generation Communication and NetworkingInternational Journal of Future Generation Communication and NetworkingInternational Journal of Future Generation Communication and NetworkingInternational Journal of Future Generation Communication and Networking    

Vol. 3, No. 4, December, 2010Vol. 3, No. 4, December, 2010Vol. 3, No. 4, December, 2010Vol. 3, No. 4, December, 2010    

    

    

50 

Each layer has a different stochastic component for the model propagation: 
 

B = [BX e
,BYe

,BZ e
,Bθ Xe

,BθYe
]     (14) 

The stochastic component is sufficiently large for the first layer and decreases for the next 

layers, such as Bl+1=Bl/2 with l the current layer and l+1 the next layer. At the beginning, to 

refine the initial head position, B will be large for the X and Y components (initially, the 

person is supposed to be standing up, so that Ze is approximately known and, θXe and θYe are 

close to zero). For the next images, B is reinitialized from the current velocity between two 

successive images and fixed to 0.1m or 0.1 rad if the velocity is too small. 

Figure 5 shows some examples of 3D head tracking for a running person analyzed at 10Hz. 

The first layer ‘Layer 1’ shows the large diffusion of the particles at the beginning directed 

towards the movement. Then, the diffusion decreases until the final layer, which allows to 

obtain a well matched 3D ellipsoid. 
 

     

Layer 1 Layer 2 Layer 3 Layer 4 Final ellipsoid 

  

Layer 1 Layer 2 Layer 3 Layer 4 Final ellipsoid 

Figure 5. Examples of 3D head tracking. The images show the particles and 

the mean state ellipsoid obtained for each layer and the resulting ellipsoid. 
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Our hierarchical particle filters with 4 layers and 250 particles is a good compromise 

between tracking precision and reasonable computational time. In a more recent work, we 

have shown the ability of our 3D head tracker to deal with large motion occurring during a 

fall [13]. The resulting 3D head trajectory can then be used for fall detection. 

 

4. Experimental Results 

Our method is implemented in C++ using the OpenCV library [10] and can run in quasi-

real time (130ms/frame on an Intel Core 2 Duo processor (2.4 GHz), not optimized code and 

image size of 640x480). The precision of our algorithm is evaluated with the HumanEva-I 

dataset [14], which contains synchronized multi-view video sequences and corresponding 

MoCap data (ground truth 3D localizations). As our method works with a single camera, we 

compare the results obtained from three different viewpoints (color cameras C1, C2 and C3) 

using the video sequences of three subjects (S1, S2 and S3). The HumanEva dataset contains 

several actions. We used the motion sequences "Walking" and "Jog" to evaluate our 3D 

trajectories at 30Hz, 20Hz and 10Hz.  

Figure 6 gives an example of 3D head trajectories obtained from different viewpoints. This 

figure shows that the curves are similar to the MoCap trajectory. The X, Y and Z curves 

obtained with these trajectories are shown in Fig. 7. The error is mainly a depth error in X and 

Y location. The Z location is rather well estimated and it is even possible to see the periodic 

motion of the walking person. 

 

 
 

Figure 6. 3D head trajectories for a walking sequence of subject S1 (20Hz). 
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Figure 7. X, Y and Z curves obtained for the walking sequence  

of subject S1 (20Hz). 

 

Table 1 summarizes the 3D mean errors obtained for each subject and each camera.  

 

Frame 

rate 
Camera 

Action “Walking” Action “Jog” 

S1 S2 S3 S1 S2 S3 

30Hz 

C1 23.4±15.6 23.2±9.2 23.6±12.6 17.8±9 25.7±18.2 22.3±16 

C2 17.5±14.6 24±9.5 21.4±11 27±11.6 26±9 17±9 

C3 21±13.7 24.1±9.8 22.9±13.6 27±12.1 21.5±9.4 33.1±21.7 

20Hz 

C1 23.4±14.2 22.9±9.3 24.1±11.9 21.4±14.5 28.8±22.3 26.4±21.1 

C2 20.7±11.4 22.9±8.4 19.5±9 30±11.6 29.5±12.4 18.8±13.6 

C3 19.7±9.8 23.1±10.8 24.6±13.1 23.4±8.7 25.8±12.1 30.9±17.6 

10Hz 

C1 22.6±12.3 24.1±12.8 21.2±15.6 20.7±16.8 30.8±24.4 51.3±45.7 

C2 33.3±15.9 23.1±7.7 21.2±15.3 35.6±15.4 34.4±15.4 37.8±23.5 

C3 21.7±14 20.4±9.5 25.7±12.7 18.5±8.2 35.3±12.5 39.2±28.9 

Table 1. Mean 3D errors (in cm) obtained from walking and jog sequences 

for different subjects (S1, S2, S3) and several view points (C1, C2, C3). 
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The 3D mean errors are about 5% at a 4 to 6 meters distance. The similar mean errors for 

the different viewpoints demonstrate that our method is view independent. As expected, when 

the movement is larger, the error tends to be slightly higher, but the 3D ellipsoid remains well 

tracked. Notice that our 3D head tracker is automatically initialized with a good 2D detected 

head ellipse and can deal with body occlusions (e.g. chairs or entry in the scene). However, a 

well-defined and not occluded head is necessary. 

 

5. Conclusion 

In this paper, we have shown that a 3D head trajectory can be computed with only one 

single calibrated camera.  The method gave similar results for different viewpoints, different 

frame rates and different subjects. The 3D locations were estimated with a reasonable mean 

error of around 25cm (5% at 5 meters), which is sufficient for most activity recognition based 

on trajectories. 
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