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 Abstract 

 
Self-localization is a fundamental problem in mobile robotics. It consists of estimating the 

position of a robot given a map of the environment and information obtained by sensors. 
Among the algorithms used to address this issue, the Monte Carlo technique has obtained a 
considerable attention by the scientific community due to its simplicity and efficiency. Monte 
Carlo localization is a sample-based technique that estimates robot´s pose using a probability 
density function represented by samples (particles). The complexity of this algorithm scales 
proportionally to the number of particles used. The larger the environment, the more 
particles are required for robot localization. This fact limits the use of this algorithm in large 
size environments. In order to improve the efficiency of the Monte Carlo technique and allow 
it to be used in large environments we propose a parallel implementation of it. Our 
implementation is based on OpenMP and MPI message passing interface. Experimental 
results are used to show the efficiency of our approach. 

 
Keywords: Performance Attributes – parallel implementation of algorithms. 

 
1. Introduction 

Mobile robotics is a research area that has been obtaining considerable attention by the 
scientific community. The main challenge in this field is to develop robots that can interact 
with the environment, learn, and make decisions in order to successfully execute specific 
tasks. 

Self-localization is a main issue in mobile robotics. It consists of estimating the robot´s 
pose based on a previous acquired environment information (map) and data obtained from 
sensors like video cameras, sonars, and laser range finders. Most applications for mobile 
robots depend on correct localization to be accomplished, like path planning and autonomous 
navigation. The main difficulty to obtain correct localization is the inherent imprecision in the 
information obtained by sensors and maps. Almost all solutions to this problem are based on 
probability theory, which has been successfully used to handle the uncertainty caused by 
sensors inaccuracy [9]. 

The problem of mobile robot localization can be divided in local and global. For local 
localization or tracking, the initial pose of the robot is known a priori. The solution for this 
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problem consists of handle the uncertainty of the sensor information and track the robot in the 
environment. In the global localization, there is no a priori information about the robot´s 
initial pose and global search must be performed in the environment, which requires more 
complex techniques to be used. Several algorithms have been proposed in the literature in the 
last years. One of the more robust approaches to solve this problem is the Monte Carlo 
location algorithm (MCL), that has been proposed by [10]. 

The Monte Carlo (also known as particle filter) localization algorithm is based on keeping 
several hypothesis about robot position in a given environment. Each possible pose is 
represented by a unity called particle. During the initialization process, as the system does not 
have any a priori information about robot´s pose, particles are distributed all over the 
environment. As the robot moves, the particles are propagated following the motion of the 
robot. As the robot obtains information from sensors, this information is matched to the 
information that each particle would get from its pose in the environment. Particles that have 
a good information match obtain a high score. Particles with a poor matching receive a low 
score. The chance of a particle survives for the next iterations of the algorithm is proportional 
to its score. As a result of this process, only particles with a good sensor/environment 
information matching survive and, given enough particles, this algorithm is proven to 
converge to the robot’s correct pose. 

 One of the major issues of the MCL algorithm is that its processing time is proportional to 
the number of particles used. There is no formal study that precisely calculates the number of 
particles necessary to guarantee the convergence of the algorithm. However, the larger is the 
environment, the more particles are required. Therefore, the utilization of MCL in real time is 
restricted by the size of the environment. One manner to deal with this limitation and make 
possible robot´s pose estimation in large environments is using distributed parallel processing 
techniques. In this work we use Open MP and MPI to obtain a parallel implementation of the 
MCL technique in order to improve its computational efficiency and allow real time robot 
localization in large environments. 
 
2. Related Work 

The works by [1][2][3][5] use parallel techniques to improve efficiency in control of 
robotic manipulators.  In [4], a learning algorithm is implemented using PVM and applied to 
mobile robotics. In the work by [6] parallel techniques have been used for robot navigation 
and path planning. 

The Monte Carlo technique is also used in solving problems, even in parallel version. In 
[11] the authors present the use of the Monte Carlo technique in parallel to assess the 
reliability of power systems. This work used a distributed environment consisting of 10 
machines with processors power2 Risk 6000. As a result, the work presents an improvement 
in response time for the assessment of reliability in large systems. This demonstrates the 
feasibility of parallelization of the Monte Carlo technique. 

Smith and Kent [12] present a study of the Monte Carlo Technique. They develop a code 
of Quantum Monte Carlo code in OpenMP [7] and compare this code with the MPI code. 
They provide a code that could mix the utilization of OpenMP and MPI parallelization to 
exploit the advantages of both parallelism approaches. This study presents that the code scales 
well with OpenMP threads to 32 processors and only slightly lower than with MPI processes. 
Above 32 processors the scaling is worse than with MPI processes, tailing off considerably 
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above 64 threads. It shows that the total time to develop a working OpenMP version was 
significantly less than the time taken to develop the original MPI code and that the majority of 
the time was spent in debugging and performance optimization rather than implementation.  
 
3. Monte Carlo Localization 

Self-localization (or just localization) is a major problem in robotics. Correct pose 
estimation is a requirement for most applications of mobile robots. One of the most efficient 
solutions to this problem is the Monte Carlo approach, proposed by [10]. It basically consists 
of estimating the position and the orientation of a robot given: sensor information, motion 
information, and a description of the environment (map). 

As MCL is a iterative technique, the estimation is recalculated for every new motion and 
observation performed by the robot. Basically, the algorithm can be divided in three steps: 
motion (also known as prediction), observation (or update) and re-sampling.  

The motion step consists of propagate the particles in the map based on robot´s motion 
information. Most robotic platforms are provided with encoders in the wheels, which generate 
odometric information (dead-reckoning) as the robot moves in the environment. 

 

   

 

 

 

 

 

  

 

 

 

Figure 1. Robot and sensors used in the experiments 

Unfortunately, the odometric data obtained by the encoders have some inherent uncertainty 
due to several factors, such as: mechanical imprecision, slippage, and difference in the 
pressure of tires. In order to compensate for the imprecision in the odometric information, a 
random error is added to the motion of each particle, which also increases the uncertainty in 
the robot´s pose estimation.  

 

Table 1. MCL Algorithm 

MCL Algorithm 

For n = 1 to N 

    Propagate the particle n based on the robot motion  
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End For 

For n = 1 to N 

    Calculate the score for particle n 

    Add the score of particle n to the total score sum 

End For 

For n = 1 to N 

    Sort a random number between 0 and total score sum 

    Add the correspondent particle to the particle set used for the 

    next iteration 

End For 

End Algorithm 

 

The observation step consists of matching the sensor information obtained by the robot to 
the environment around each particle. Usually, distance sensors like sonars or laser range 
finders are used for the observations (Figure 1). These sensors provide the relative position of 
the obstacles around the robot and this information is compared to the obstacles that each 
particle should detect at its position. A good matching means that a particle is a good 
candidate to represent the true position of the robot in the environment, resulting in a high 
score to that particle. A poor matching indicates that a particle is not likely to be in the correct 
position of the robot, therefore it results on a low score. 

Finally, the last step is the re-sampling, which consists in keeping the particles with a high 
likelihood of representing the true position of the robot (high score) and eliminate the low 
score particles.  

Assuming that there are N particles in a particular MCL implementation, every particle 
receives a score after the observation step. The re-sampling step will randomly choose new N 
particles from the previous set of particles. Each specific particle can be selected more than 
once. The probability of a particular particle being selected is proportional to its score. High 
scored particles have more chance to be chosen to the next iteration. Low scored particles 
tend to be eliminated. Usually, it is created a vector of size N with the partial sum of the 
scores. The value of the last position of the vector corresponds to the total sum of the particle 
scores. The selection of the particles that will be used in the next iteration is obtained 
generating N random numbers between zero and the total score sum. For each random 
number it is necessary to find the correspondent particle in the vector. This is usually, 
implemented using a binary search. This technique guarantees that high scored particles will 
have more chance to be selected.  

Figure 2 shows an example of the MCL execution over time with data obtained by a real 
robot. The white parts of the environment correspond to empty spaces, or spaces that can be 
occupied by the robot. Black parts correspond to obstacles like walls, doors and other objects 
in the environment. The spaces cannot be occupied by the robot. The grey dots in white areas 
represent the particles (or the possible positions of the robot). In Figure 2(a), at time 0s, there 
is no a priori information about robot localization; therefore, the particles are spread all over 
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the environment. At time 10s (Figure 2(b)), the robot already obtained sensor and motion 
information and the particles have grouped in specific regions in the environment. At time 
20s (Figure 2(c)), the particles converged to the right position of the robot in the environment. 

 

 

                    
              (a) Time=0s               (b) Time=10s         (c) Time=20s 

Figure 2. Monte Carlo localization. Robot´s pose estimation evolution in time. 

 
4. Parallel Processing 

There are several computer architectures that are referenced as parallel or multiprocessor 
architectures. All parallel architectures have as a main goal improving the computational 
power by increasing the number of processing elements. 

In this paper we exploit the parallelism in two manners, a shared memory parallel 
computing and a distributed parallel computing. The first one is based on OpenMP, a 
directive-based method to invoke parallel computations on many shared-memory 
multiprocessors and the second manner consists of using the Massage Passing Library MPI 
(Message Passing Interface). 

Distributed computing systems have been showing through the years its advantages over 
centralized systems, achieving a prominence place in the computing scenery in a considerably 
short time. This type of system has been continually improved by researches in order to 
provide better performance, at a rather low cost. The application of distributed systems to 
parallel computing allows a favorable cost/benefit for parallel computing. These systems 
provide computational power to appropriately execute parallel applications that do not require 
a massively parallel machine, but on the other hand, require more computational power than a 
sequential machine can offer. 
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 In order to execute parallel computing over distributed systems, a managing software is 
usually required. There is also need for information passage between the various machines 
that compose the platform. There are specific libraries for the treatment of inter-processes 
communication and synchronization in the literature to perform this task. According to 
Seinstra & Koelma [20], parallel programming based on the massage passing requires the 
programmer to have the control over the distribution of data, in addition to the explicit 
specification of parallel execution code between the different processors. This task requires a 
high degree of knowledge and control over the system when compared to sequential 
programming. 

The performance of parallel-distributed platforms is directly related to the process 
scheduling strategy. An effective scheduler improves the efficiency in resources utilization, 
thereby increasing its performance. More specifically, an efficient scheduling consists of an 
adequate assignment of loads or process to the computers in the system (load balancing). 

Some of the most used libraries for massage passing are MPI (Message Passing Interface) 
[16] and PVM (Parallel Virtual Machine) [18]. These libraries provide routines to initiate and 
configure the environment, as well as send and receive data between the processing elements 
of the system. There are many implementations of MPI and PVM applications developed in 
languages such as Fortran, C and C + +. Java is another type of application that can be cited 
the mpiJava [15] and JPVM (Java Parallel Virtual Machine) [14]. 

The advantage of OpenMP is the possibility of using shared-memory systems, as it is 
illustrated in Figure 3. 

 

 

Figure 3. Strategy of parallelization using OpenMP 

The basic requirements of parallel processing techniques, such as Monte Carlo, are an 
infrastructure that allows one to efficiently perform algorithms of low, medium, or high 
granularities. This infrastructure is composed mainly of communication and distribution of 
appropriate data. Techniques like MCL require high processing power, as in most cases they 
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handle large blocks of data to be processed. In this context, they can take advantage of the 
concepts of parallelization.  

When it comes to mobile robots localization, the importance of parallelism is further 
highlighted, as the number of particles limits the execution of the algorithms in real time. The 
parallel approach proposed in this paper is a technique to efficiently divide the data into 
smaller blocks distributed among processors.  

The data parallelism is the most adequate technique for the proposed algorithm because it 
is possible to execute the same code in different processors with different data. In this manner 
we have a single flow control - SPMD (Single Process Multiple Data). This strategy is shown 
in Figure 4. 

 

 

Figure 4. Strategy of parallelization using MPI 
 
4.1. Parallel Implementation  

The strategies presented in the previous section can be better illustrated with the real 
primitives used in the parallel implementation of the algorithms. The next subsection presents 
the OpenMP and MPI implementation. 

 

Table 2. MCL Algorithm. OpenMP primitives in bold 

 

MCL Algorithm with OpenMP strategy 

#pragma omp parallel shared() private(n) 

   { 

           #pragma omp for 

For n = 1 to N 
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    Propagate the particle n based on the robot´s motion  

End For 

} 

For n = 1 to N 

    Calculate the score for particle n 

    Add the score of particle n to the total score sum 

End For 

For n = 1 to N 

    Sort a random number between 0 and total score sum 

    Add the correspondent particle to the particle set used for the 

    next iteration 

End For 

End Algorithm 

 

4.1.1 . OpenMP Implementation 

It is possible to write parallel programs for multiprocessors in MPI but we can obtain better 
performance in same cases using a programming language tailored for a shared-memory. 
OpenMP is an application interface (API) for parallel programming on multiprocessors, 
which consists of a set of compiler directives and a library of support functions. Table 2 
presents the primitives (in bold) used in the method presented in this paper.  

This modification in the code allows the algorithm execute in parallel and obtain the 
advantages when the total of particles are considerably large. 

 

Table 3. MCL Algorithm. MPI primitives in bold 

 

MCL Algorithm with MPI strategy 

If Master do { 

   Sub-Vector generation 

   SEND (Sub-Vector, N) 

   RECEIVE (Sub-Vector-processed) 

} 

Else { 

     RECEIVE (Sub-Vector, N) 

      For n = 1 to N 
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       Propagate the particle n based on the robot´s motion  

       SEND (Sub-Vector-processed) 

       End For 

} 

For n = 1 to N 

    Calculate the score for particle n 

    Add the score of particle n to the total score sum 

End For 

For n = 1 to N 

    Sort a random number between 0 and total score sum 

    Add the correspondent particle to the particle set used for the 

    next iteration 

End For 

End Algorithm 

 

4.1.2. MPI Implementation 

The strategy using MPI provides sub-vectors of particles that are sent from the master to 
the slaves. The slaves work in the data set of particles and than return a processed sub-vector 
to the master. The master receives all the results and gives the final results to the entire 
application. 

The motivation to study both cases (shared and distributed memory) is the possibility to 
combine them. Most commercial multicomputers with hundreds of CPU are actually 
collections of centralized multiprocessors, and we can explore both capabilities of the system 
and use the entire platform. The literature demonstrated that programs using hybrid programs 
that use MPI and OpenMP execute faster than programs using only one of them. 

 
5. Experimental results 

The experimental results presented in this paper demonstrate the performance 
improvement obtained with parallel programming to solve problems in different areas. 

Our tests have been performed with data collected with a real robot in an indoor 
environment. Three experiments have been executed in order to validate the proposed 
approach.  

The first results were obtained in a parallel homogeneous distributed environment. The 
first homogeneous setup consisted of 5 homogeneous Dual Core AMD Athlon 64x2 with 
4GB of memory. All the machines were interlinked by a network Ethernet Gigabit and used 
Linux Kernel 2.6 (Debian 5.0). The third setup is a SMP machine. It is a DualCore Pentium 
each core with 1,66GHz, with 2Gb of memory and Linux Kernel 2.6 (Ubuntu 8.0).  
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In order to evaluate the performance of the different implementation, the execution times 
obtained from sequential and parallel versions of the algorithms have been compared. The 
case studies show the response time of the algorithm for the same number of iteration with 
40.000 and 400.000 particles, for both parallel and sequential implementations.  

The results presented in Figure 5 were obtained from an average of 30 executions for 
sequential application and for each parallel implementation (for five hosts and five process; 
five hosts and six process; five hosts and seven process and five hosts and eight process). The 
performance tests were done in parallel with five machines and increasing the number of 
process in each machine providing the comparison of the performance of each possible 
combination. All results were statistically evaluated to demonstrate their level of significance.  

Figure 5 presents the results of the sequential implementation and the executions of the 
same algorithm in parallel on 5 machines with 5, 6, 7 and 8 processes respectively. It is 
possible to notice that the execution time of sequential algorithm is statically worst than the 
parallel, using different numbers of process. The best case is when we use, with 400.000, five 
machines and 6 processes. Based on these examples we can prove that the use of parallel 
programming could be used when we have a big amount of particles.  

Figure 6 shows the results obtained with OpenMP. Analyzing the graph, we can notice that 
the results obtained with this technique are worse than the results obtained with a sequential 
implementation. This is probably caused by the race condition presented in the OpenMP 
code. However, modify the original code to use OpenMP is easier than using MPI. An 
alternative solution to OpenMP is the Pthreads (Posix Threads Programming) [19]. 

 

 

Figure 5. Graph illustrating the response time in execution of parallel and 
sequential MCL with MPI 

 

As it can be seen in Figures 5 and 6, the results obtained with MPI were better than the 
ones obtained from OpenMP. Although it has not been tested in this work, combining both 
approaches may lead to even better results. A massive parallelism could be achieved through 
the use of multiple processors and multiple threads simultaneously. 
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Figure 6. Response time in execution of parallel and sequential MCL 
implementations using OpenMP 

The results presented in Figures 7, 8 and 9 were also obtained from an average of 30 
executions for sequential application and for each parallel implementation (for three, five and 
seven hosts and three, four, five, six, seven and eight process). The performance tests were 
done in parallel with three machines and increasing the number of process in each machine. 
They demonstrate a performance comparison of each possible combination, with a increasing 
number of machines. All results were statistically evaluated to demonstrate their level of 
significance and the mean times are given in milliseconds. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Graph illustrating the response time in execution of parallel and 
sequential MCL with MPI using 7 hosts 
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Figure 8. Graph illustrating the response time in execution of parallel and 
sequential MCL with MPI using 5 hosts 

Figure 9 presents the results of the sequential implementation and the executions of the 
same algorithm in parallel on 5 machines with 3, 4, 5, 6, 7 and 8 processes respectively, 
where the best results have been obtained. It is possible to notice that the execution time of 
sequential algorithm is statically worst than the parallel, using different numbers of process. 
The best case occurs when 7 machines and 7 processes are used, and it is obtained a 
performance gain of 43%. We can also observe that the best gain in all case is when we have 
until two processes in each machine. This probably happens because the large amount of 
particles used in the tests, which benefits from using primitives or functions that explore the 
parallelism in each core. Based on these examples we can notice that the use of parallel 
programming could be used when we have a large amount of particles. 

 

 

 

 

 

 

 

 

 

 

Figure 9. Graph illustrating the response time in execution of parallel and 
sequential MCL with MPI using 3 hosts 

Figure 10 shows the results obtained with OpenMP. Analyzing the graph, we can notice 
that the results obtained with this technique are worse than the results obtained with a 
sequential implementation. This is probably caused by the race condition presented in the 
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OpenMP code. However, modifying the original code to use OpenMP is easier than using 
MPI. An alternative solution to OpenMP is the Posix Threads Programming (Pthreads) [19]. 

 

 

 

 

 

 

 

 

 

 

Figure 10. Response time in execution of parallel and sequential MCL 
implementations using OpenMP 

As it can be seen in Figure 10, the results obtained with MPI were better than the ones 
obtained from OpenMP. Although it has not been tested in this work, combining both 
approaches may lead to even better results. A massive parallelism could be achieved through 
the use of multiple processors and multiple threads simultaneously. 
 
6. Conclusion and Future work 

Localization is a fundamental problem in mobile robotics. One of the most used techniques 
to solve this problem is the Monte Carlo localization algorithm, which use a sample-based 
strategy to estimate the robot´s pose. The computational complexity of the algorithm is 
proportional to the number particles used in the process, which limits its use in very large 
environments that demand a high number of particles. 

This paper has presented a parallel implementation of the MCL algorithm based on Open 
MP and MPI. The results obtained from our experimental tests demonstrate the efficiency of 
our approach, increasing the number of particles that can be used for real time localization. 

Based on the results achieved, it can be observed that there is a considerable benefit on 
using parallel computing to estimate the localization of a robot, i.e., there is a significant 
decrease in the response time when the proposed parallel approach is compared to a regular 
sequential implementation. 

As a future work we plan to mix the OpenMP with MPI using the available cores in the 
machines and organizing the data application to get the best of the both words: the 
distributed-memory and the shared-memory parallel computing using the hybrid strategy 
making a comparison and attesting the real advantages in use hybrid programs.  

The case studies presented in this paper were performed in homogeneous platforms. For 
future work we plan to investigate the use of the heterogeneous environment in the 
computation of MCL. We can also use load balancing strategies to improve the response time 
and to use the Monte Carlo Technique to estimate robot location in real time in a large 
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environment. The use of load index, performance index and mobile agents could also improve 
the load balancing and give better results to problem addresses in this paper. 
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