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Abstract 
 
     In the present paper, we have investigated two characteristics of three different 
waveguides employed in arrayed waveguide grating (AWG) in passive optical networks 
(PON) where rates of variations are processed. Both the thermal and the spectral 
effects are taken into account. The waveguides are made of Lithium Niobate, germania-
doped silica, and Polymethyl metha acrylate (PMMA) polymer. The thermal and 
spectral sensitivities of optical devices are also analyzed. In general, both qualitative 
and quantitative analysis of the temporal and spectral responses of AWG and sensitivity 
are parametrically processed over wide ranges of the set of affecting parameters.  

 
     Keywords: PONs, Arrayed Waveguide Grating (AWG), Lithium Niobate (LiNbO3) material, Silica-doped 
material, Polymethyl-metha acrylate (PMMA) Polymer material. 

 

1. Introduction 
 

Current PON systems are generally based on Time Division Multiplexing (TDM-PON). 
The key issues in these systems are how to increase [1] their transmission capacity and how 
to diversify their transmission data. Since video streams are used in the access network [2], 
broadcast is a very important issue in PON systems. In TDMPON, there are several ways to 
broadcast data to the Optical Network Units (ONUs): sub-carrier multiplexing technique [3], 
frequency division multiplexing (FDM) and Time Division technique which multiplexes 
digital base-band and RF video signals in frequency domain and modulates the mixed signal 
onto single wavelength [4], and a CWDM-based approach which uses a separate wavelength 
for video [4]. Meanwhile, new demands from subscribers require more capacity than that of 
TDM-PONs can provide so that Wavelength Division Multiplexing (WDM) PONs have been 
proposed [5]. However, it is difficult in WDM-PON architectures to be able to broadcast a 
data or video stream to all subscribes at once because the output ports of the wavelength 
selective devices of the Optical Distribution Network (ODN) only passes [6] a specific 
wavelength channel on each specific port. Therefore, many researchers are now proposing 
novel solutions for this problem. One way to broadcast data over WDM-PON is to use N×N 
arrayed waveguide grating (AWG). In this structure, each optical network unit (ONU) 
receives the main signal along with the broadcast signal, but an extra WDM filter is needed at 
the ODN to separate the broadcast wavelength. Another way is to use a broadcast and 
selection method. This system is a simple network architecture [7], but the ONUs of this 
configuration have a much more complex structure than conventional ONUs. The continuous 
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demand for Internet and telecommunication services is expected to keep driving the 
development of wavelength division multiplexed (WDM) networks. Wavelength multiplexers 
and demultiplexers [8], capable of combining and separating different spectral channels, are 
the key components of WDM network. The planar waveguide based mux/demux devices 
include arrayed waveguide gratings (AWG) and echelle grating devices. State-of-the-art 
silica-on-silicon AWGs become prohibitively large for devices with higher channel counts 
and narrower channel spacing (CS), and the integration  of different functions on a single chip 
is not feasible for practical systems unless the size of the individual functional elements is 
significantly reduced. Silicon-based photonic waveguide circuits have recently emerged as 
commercially viable optoelectronic devices. In silicon on-insulator (SOI) waveguide devices 
[9-11], several orders of magnitude reduction of device size can be achieved as compared to 
devices based on silica-on-silicon materials. This is possible because of a very high difference 
in refractive index between the waveguide core (Si, n  3.5) and the surrounding cladding 
material (typically SiO2, n  1.5). AWG demultiplexers in SOI platform have been 
demonstrated [12-13]. Ultra compact AWG devices using silicon wire waveguides have 
recently been reported, but practical application of similar devices will require substantial 
improvements in quality of silicon waveguides of sub micrometer cross-sectional dimensions, 
particularly the sidewall roughness. Since conventional AWG demultiplexers require curved 
waveguides, the minimum available bend radius, which in turn is determined by the index 
contrast, sets the lower limit for the device dimensions [14-16]. At the same time, AWG 
dispersion, and hence minimum achievable CS, is limited by a maximum available length 
difference between the waveguides in the phased array. Here, a new dispersive element 
comprising the straight waveguides with sections of modified group index that, if placed in 
the phase array of a conventional AWG, can enhance dispersion properties of the latter. In the 
examples shown here [17-19], the group index is modified by changing the waveguide width 
or by the photonic-band gap effect. Fabrication challenges of such approach are obvious. 
These difficulties are obviated in our element because waveguide widths can be simply 
modified by lithography and no additional fabrication steps are required [20]. 

In the present study, both the thermal and spectral variations of three waveguides made of 
different materials are deeply and parametrically investigated over wide range of the affecting 
parameters. Thermal sensitivity and spectral sensitivity are also of major interest in photonic 
integrated circuits (PIC). 
 

2. Basic Model and Analysis 
 
2.1. Lithium niobate (LiNbO3) material 
 

     The investigation of both the thermal and spectral variations of the waveguide refractive 
index (n) require Sellmeier equation. The set of parameters required to completely 
characterize the temperature dependence of the refractive-index (n) is given below, Sellmeier 
equation is under the form [21]:  
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where λ is the optical wavelength in μm and 2
0

2 TTH  . T is the temperature of the material, 
K, and T0 is the reference temperature and is considered as 300 K. The set of parameters of 
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Sellmeier equation coefficients (LiNbO3) are recast and dimensionally adjusted as below 
[21]: 
A1=5.35583, A2=4.629 x 10-7, A3=0.100473, A4=3.862 x 10-8, A5=0.20692, A6= -0.89 x 10-8,   
A7=100, A8=2.657 x 10-5, A9=11.34927, and A10=0.01533. Equation (1) can be simplified as: 
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where: A12=A1+A2H, A34=A3+A4H, A56=A5+A6H, and  A78=A7+A8H. 
 
Then, the differentiation of Eq. (2) w. r. t λ gives: 
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Also, the differentiation of Eq. (2) w. r. t T gives: 
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2. 2. Germania doped silica (GeO2(x)+SiO2(1-x)) material 
 

  The refractive index of this waveguide is cast as [22]: 
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The Sellemier coefficients as a function of temperature, and germania mole fraction, x, as 
follows: 
 

B1= 0.691663+0.1107001* x,    B2= (0.0684043+0.000568306 * x)2 * (T/T0)
2 

B3= 0.4079426+0.31021588 * x,   B4= (0.1162414+0.03772465 * x)2 * (T/T0)
2 

B5= 0.8974749-0.043311091 * x, and B6= (9.896161+1.94577 * x)2. 
 
The differentiation of Eq. (5) w. r. t λ gives: 
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Also, the differentiation of Eq. (5) w. r. t T yields: 
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2. 3. Polymethyl-metha acrylate (PMMA) polymer material 

  

The refractive index of this waveguide is cast as [23]: 
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The set of parameters of Sellmeier equation coefficients (PMMA) are recast below [23]: 
 

C1=0.4963, C2= 0.0718 (T/T0), C3=0.6965, C4=0.1174 (T/T0), C5=0.3223, and C6=9.237. 
 
where T is the temperature of the material, and T0 is the reference temperature. 

 
The differentiation of Eq. (8) w. r. t λ gives:    
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Also, the differentiation of Eq. (8) w. r. t T yields: 
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Figure 1. Variation of dn/dT  versus wavelength for LiNbO3 material. 
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Figure 2. Variation of dn/dT versus wavelength for Silica- doped material. 
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Figure 3. Variation of dn/dT versus wavelength for PMMA material. 
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 Figure 4. Variation of dn/dλ versus temperature for LiNbO3 material. 
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Figure 5. Variation of dn/dλ versus temperature for Silica-doped material. 
 

dn
/d
λ 

[x
 1

0-1
 /

 µ
m

] 
dn

/d
λ 

[x
 1

0-1
 /

 µ
m

] 



International Journal of Future Generation Communication and Networking 

Vol. 2, No. 2, June, 2009 

 

 

31 

1

2

3

4

5

6

7

8

300 302 304 306 308 310 312 314 316 318 320

λ = 0.6 μm

λ = 0.8 

λ = 1 

Material temperature T [K] 
 
 

 Figure 6. Variation of dn/dλ versus temperature for PMMA material. 
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 Figure 7. Variation of spectral sensitivity versus wavelength for LiNbO3 material. 
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Figure 8. Variation of spectral sensitivity versus wavelength for Silica-doped 
material. 
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Figure 9. Variation of spectral sensitivity versus wavelength for PMMA material. 
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Figure 10. Variation of thermal sensitivity versus temperature for LiNbO3 
material. 
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Figure 11. Variation of thermal sensitivity versus temperature for Silica-doped 
material. 
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Figure 12. Variation of thermal sensitivity versus temperature for PMMA material. 
 

 
2. 4. Sensitivities of waveguides 
 

In fact, the thermal sensitivity n
TS  of n w. r. t  T is defined as follows:  
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And the spectral sensitivity nS  of n w. r. t λ is defined as follows:  
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3.  Results and Discussion  
 

     Thermal and spectral variations of n for the three waveguides are displayed in Figs. (1-6), 
these figures assure the following: 
1- As the wavelength increases, (dn/dT or dn/dλ) of LiNbO3 material decrease at constant T, 

and as the temperature increases, (dn/dT or dn/dλ) of LiNbO3 material increase at 
constant λ. This indicates its thermal stability of LiNbO3 material, dn/dT is constant at (T 
or λ). 
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2- As the wavelength increases, (dn/dT or dn/dλ) of Silica-doped material increase at 
constant T, and as the temperature increases, (dn/dT or dn/dλ) of Silica-doped material 
also increase at constant λ. This indicates its spectral stability of Silica-doped material, 
dn/dλ is constant at (T or λ). 

3- As the wavelength increases, (dn/dT or dn/dλ) of PMMA Polymer material decrease at 
constant T, and as the temperature increases, (dn/dT or dn/dλ) of PMMA Polymer 
material also decrease at constant λ.  

 

     Thermal and spectral variations of n
TS and nS  for the three waveguides are also displayed in 

Figs. (7-12), the following features can be concluded: 
4- As the wavelength increases, both the thermal and spectral sensitivities of LiNbO3 

material decrease at constant T, and as the temperature increases,  the thermal sensitivity 
of LiNbO3 material increase at constant λ. 

5- As the wavelength increases, both the thermal and spectral sensitivities of Silica-doped 
material increase at constant T, and as the temperature increases, also both the thermal 
and spectral sensitivities of Silica-doped material increase at constant λ. 

6- As the wavelength increases, both the thermal and spectral sensitivities of PMMA 
Polymer material decrease at constant T, and as the temperature increases, the thermal 
sensitivity of PMMA Polymer material increase at constant λ. 

 

4. Conclusions 
 

     In a summary, three passive optical waveguides employed in PON and made of either 
Lithium niobate, Silica-doped fiber, and PMMA polymer fiber are spectrally and thermally 
investigated based on Sellmeier equation. Thermal and spectral sensitivities are also 
investigated. Positive correlations or negative correlations or both are found. In general, the 
three waveguides possess weak nonlinear correlations. 
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