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Abstract 

Although software-defined networks have seen a sharp increase in their deployment 

around the world, with big tech companies including Microsoft and Google, to name a 

few, tapping into the enormous potential that these networks offer, there are still various 

security loopholes that need to be plugged. One such security-related issues is that of a 

rogue controller bringing down an entire network. As we shall see in this paper, this 

problem is still short of any definitive solutions, especially when it comes to distributed 

software-defined networks. We attempt to resolve this issue by developing a centrally 

managed trust and reputation scheme. By proactively comparing the policies/flow rules 

that need to be installed in the switches with those that are actually installed, our scheme 

singles out a malicious controller. We have evaluated the scheme for scalability, message 

overhead, and for bad-mouthing attacks. Our results suggest that using trust and 

reputation system can greatly enhance the network security in this scenario as 

demonstrated by rigorous evaluations in Emulab network emulation testbed. 
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1. Introduction 

Network traffic volumes have soared in the last decade by an enormous amount 

because of the diversity of applications for which the networks are used today. Faster, 

always-on, and on-the-go network access are primary requirements of today’s network 

users. With the advent of bandwidth-intensive applications such as big data and video-on-

demand, it becomes imperative that the data handling capacity of routers be increased, so 

that they can route the packets to their destinations faster. This is not possible with 

traditional network devices because they are short of the flexibility which is required to 

handle different types of packets because routing rules are hardwired in them [13]. 

Conventional networks are dependent on standalone hardware components for different 

network functions, which include but are not limited to managing networks data flow, 

performing routing functions, etc., [12]. When a routing device receives a packet in a 

conventional network, it determines the path to its destination device by using the routing 

algorithm configured by a network administrator. In traditional networks, the routing 

plane and the forwarding plane are housed in a single device [13]. These routing devices 

usually make use of proprietary, closed-source algorithms [9], which leave little room for 

a network administrator to configure the network beyond the liberty given to him by the 

vendor.  

Apart from this, in a traditional network, each network needs to be programmed 

individually which is time-consuming and becomes a tedious task if the network is too 
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large. In case of a security breach, a policy change, or simply a change in network 

architecture, the traditional network devices cannot be reprogrammed easily [4].  

This poses a limit on the performance of traditional networks and is an impediment to 

the ever-increasing requirement of scalability, resilience, and above all, security. A 

solution to this problem is separation of control (routing) plane and data (forwarding) 

plane, and making the control plane fully programmable. This approach grants network 

administrators with more control over the network behavior because now they can 

dynamically reprogram their network keeping in view the situation.  

As will be seen, Software-Defined Networking (SDN) is a technology that provides 

this framework and has seen an enormous increase in its usage in the past few years [1]. 

SDNs are aimed at providing increased flexibility and control over network functions, and 

they achieve this by separating control and data plane from each other in routers and 

switches [8]. Separating the control plane from data plane enables the controlling entity to 

have a global overview of the entire network, in which the control plane can pass on 

commands to data plane, to all devices at once [7, 32]. 

In SDN, a network administrator has to implement the policy only in the controller, 

which is then replicated across the network's data forwarding devices [10]. Although the 

terminologies involved do imply that SDN is a physically centralized network 

architecture, it need not be so. In reality, large-scale software-defined networks make use 

of multiple controllers for managing the network, which appears to subordinate network 

devices as a single entity, or at least not in conflict with each other. This simplifies the 

network administration enhances network resilience and reliability, and also, (logically) 

centralized point of administration ensures that all network devices have a consistent, up-

to-date state of the network. Despite immense popularity and ever-increasing growth in 

deployment of SDNs, much research is needed as to whether SDN can be deployed on a 

large scale, that too with all the security [24]. Various researchers including [16, 17] 

acknowledge control layer as a highly vulnerable section of the SDN, which, if 

compromised, can result in losing the entire network to the malicious entity.  

This is a crucial security vulnerability keeping in view the ever-increasing growth of 

SDNs, and their deployment in large-scale, enterprise and corporate networks, where 

distributed SDN architecture is used. However, the models proposed for deploying SDNs 

so far do not answer one basic question: how to identify malicious or rogue controllers 

within a network, and how to prevent them from causing damage [23]. 

This paper proposes a scheme to enhance controller security in a distributed 

environment. The proposed framework identifies malicious/rogue controllers by finding 

out if a mismatch exists between the flows which should be installed in the switches by 

the controllers and those which are actually installed. 

The proposed framework achieves this by making use of a centralized trust and 

reputation scheme inspired by Personalized Trust Model (PET Model) [18], in which 

controllers are rated positive or negative by other controllers according to their 

performance. The results are then reported to a central entity called the Trust Collector 

which aggregates the results and passes them on to the network administrator. Earliest 

detection of rogue controllers through such reputation management will ensure the 

isolation of rogue controllers before they can damage the network. 

The scheme of collecting ratings and aggregating trust and reputation using a Trust 

Collector component works more robustly and accurately than delegating trust and 

reputation management entirely to an individual controller in a distributed environment. 

This is because a central entity is always needed that can aggregate the ratings generated 

by all the controllers that are part of the distributed environment, and the central entity 

can then make a decision of whether a given controller is malicious by looking at what the 

majority of ratings say about that controller. 

Alternatively, the central entity can also output the result of the ratings to a human 

operator who can decide whether a given controller is malicious based on both their 
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domain knowledge about the network and also based on the majority of ratings that were 

received for that controller. 

A fully functional prototype was developed and was tested by deploying on Emulab 

(http://emulab.net/) network evaluation testbed, powered by the University of Utah for the 

evaluation of this scheme. As such, the results, as will be seen later in this paper, prove 

that the scheme serves its purpose and successfully singles out malicious controllers 

which have installed policies other than those asked by the network administrator to do 

so. 

The scheme was evaluated on the following three parameters. 

1. Scalability: Up to 15 controllers with 15 switches and 3 malicious controllers 

were deployed to test the time taken by the scheme to complete one trust rating. 

As the number of controller increases, the time taken also increases linearly, but 

not exponentially. Results are reported in Figure 4. 

2. Message overhead: Number of messages exchanged during one complete cycle of 

trust ratings. Up to 10 controllers with 20 switches and 3 malicious controllers 

were deployed to evaluate the overhead of the scheme. Results are reported in 

Figure 5.  

3. Bad mouthing attacks: The scheme was tested for identifying bad-mouthing 

attacks. Up to 6 controllers with 12 switches and 4 malicious controllers were 

deployed and tested for such attacks. The results are reported in Table. 3. 

To restate, the contributions include the following: 

– Developed a framework for singling out a malicious controller in distributed SDN.  

– Deployed the framework in Emulab network emulator to prove that the framework is 

successful in serving its purpose. 

An early version of this work appeared as a short paper in [19]. The extended version 

contains extensive evaluations with bigger and more complex configurations. The 

configurations used for this extended version are an insight into the scheme’s usability for 

production networks. As discussed in ‘Discussions’ section, the maximum number of 

controllers used in the topologies is 15, which may be too large for some networks. 

Therefore, testing against a large number of controllers provides us a fair evaluation of 

how the scheme would perform in environments smaller than those simulated for this 

paper. 

The rest of the paper is organized as follows. Section 2 discusses security problems in 

the SDN, along with the need for this paper and our scheme. Section 3 presents an 

overview of our scheme architecture and the components introduced along with their 

working. Section 4 is where we present the evaluation results. Section 5 discusses 

different points related to this scheme and finally conclude the paper in Section 6. 

 

2. Security Threats to SDNs 

There are several vulnerabilities that are easy doorways for hackers who want to get 

into the network. The attacks can be on resources, and as well as on the assets. For 

example, a hacker can compromise a switches flow table such that the traffic for a 

particular destination is forwarded instead of being dropped. Such kind of attack will have 

major consequences on network bandwidth and can also be used to launch a denial-of-

service attack. Similarly, an attacker can make SDN controllers a target. This is a 

lucrative option because controllers in SDN are centralized entities, and hijacking them or 

bringing them down can be disastrous for any organization. The communication channel 

between controllers and switches in SDNs is a major vulnerability, which if targeted, can 

impart an attacker with absolute control over the network. Similarly, the high-level 
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interfaces through which a controller communicates with the applications can be attacked 

which may lead to rogue application gaining control over the sensitive network 

information. 

An SDN can come under attack through several attack types. An attacker can 

compromise the data plane, manipulate the flow rules, and divert the traffic to another 

unintended destination or simply towards a black hole route. In another kind of attack, the 

attacker can take advantage of vulnerabilities in the data plane devices. 

However, the most devastating attack types are the ones which are on the control plane, 

because of the fact that the control plane is the central point of the SDN; bringing down 

an SDN controller means total hijacking of the network, and consequently exploiting it to 

launch attacks, steal information, or simply shut down the network as part of a DoS 

attack. 

If this kind of attack takes place in a corporate data-center, financial institution, 

government database, then it can not only cause loss of billions of dollar but also 

compromise sensitive information which cannot be afforded. Securing the control plane is 

a necessary element of SDN deployment, however, as will be seen later in this document, 

this is the area which has several security loopholes, and there is no definitive security 

arrangement that tackles this problem. Apart from this, vulnerabilities in nodes that are 

connected to the SDN controller, for example, a network administrator’s workstation, can 

enable an adversary to manipulate the network in an easy manner. 

The SDNs also suffer from several security and dependability problems which include 

but are not limited to repudiation, spoofing, information disclosure, tampering, elevation 

of privileges, and denial of service [5]. Researchers have found out that several kinds of 

attacks can be launched against network based on OpenFlow [14]. These include stealing 

information during the flow installation. Fingerprinting [26] is a specialized kind of attack 

which can be launched as a precursor to the DoS on SDN. For launching such an attack, 

an attacker keeps a check on the time delay between the first packet of a flow and 

installation of flow by the SDN controller. 

Various researches have highlighted numerous security concerns which arise when one 

talks about deploying SDN on a large-scale. These include but are not limited to 

deficiency of documentation guiding developers to enable security. Moreover, TLS 

deployment is made optional and to date, there are many controller and switch platforms 

which do not implement TLS [30]. Similarly, those platforms which have TLS 

implemented do not provide any other inherent transport security mechanisms. There are 

some switches who by default are in listening mode thereby can enable a vicious TCP 

connection to form a connection [5]. It has already been mentioned that SDNs are 

centralized networks, and by virtue of this centralization, DoS attacks can wreak a havoc 

which can bring an entire network down in an instant [28]. For example, some researchers 

have demonstrated that a single vulnerable application can be exploited by an attacker to 

take over the control plane by launching a DoS attack and making the resources 

unavailable for legit users [26, 5]. 

Similarly, there have been demonstrations that various popular controller platforms 

including POX, Floodlight, Beacon, and OpenDaylight have their own vulnerabilities due 

to which they cannot be deemed as completely secure and dependent controllers [27]. 

These controllers can crash as well because of bugs in applications that bloat the memory. 

Other than being a victim of DDoS attacks, recent advents in SDN also bring us new 

approaches to deal with DDoS attacks in a collaborative manner. SDN controllers lying in 

different autonomous systems (AS) can securely communicate and transfer attack 

information with each other. A third party detection engine (similar to HADEC [35]) can 

feed the attack information into the destination network, which then forwards them to the 

neighboring network and this process continues until the definitions reach the source, thus 

saving valuable time and network resources [33, 34]. 
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In SDN paradigm, attention to the overall security of network architecture has not been 

pondered upon, rather, due to its modular nature, each layer of SDN has its own 

vulnerabilities, and hence its specific security requirements [2]. An in-depth study of 

security solutions proposed so far reveals that the scientific community is still short of a 

definite SDN architecture which is completely secure and makes use of a standardized set 

of security solutions and practices for increasing its reliability and dependency. The 

frameworks proposed so far have targeted specific security problems such as FRESCO 

[25] which facilitates the development of security applications for OpenFlow Networks. 

The authors in [28] have proposed a framework for verifying whether any flow policies 

are in conflict with security policies. Similar to these problems and their solutions, the 

authors in [3] identify a bucket-load of security vulnerabilities across the SDN 

architecture from top to bottom and discuss the solutions. Since this paper is specifically 

related to controller security in SDN, therefore, only the security issues in control layer 

will be discussed, and then the focus will be shifted to specific problems that were tackled 

through the proposed scheme. 

There are several studies which have tried to resolve controller security problems in 

SDN. For example, the Security Enhanced Floodlight (SE-Floodlight) controller provides 

a mechanism for authentication of applications, role-based authorization for avoiding 

conflicts in flow-rule insertion, and conflict detection and resolution [22]. It does not, 

however, address one core problem, that is, isolating a compromised controller in a 

distributed environment. SDNs are logically centralized networks in which a single 

controller maintains multiple switches and other network devices, but in case of a man-

made or technical mishap, this proves to be a single point of failure too [20]. 

To overcome this, distributed architectures like DISCO [21] have been proposed in 

which multiple controllers manage the network for better resilience and faster network 

management. Some network architectures such as HyperFlow [29] and Onix [15] 

distribute the control plane physically but keep it logically centralized. The distributed 

systems described above, however, do not take into account the security aspects. For 

example, they do not provide a comprehensive framework for identifying and isolating a 

malicious controller out of several others. On the other hand, so-far proposed schemes for 

securing the control layer do not discuss the feasibility of their solutions in the distributed 

environments. To the best of our knowledge, no concrete work has been done to resolve 

this problem, and therefore this is an open challenge for research. 

 

3. Centralize Reputation Management Architecture for SDN 

The objective of this work is to develop a framework for singling out a malicious 

controller in distributed SDN. It was achieved by employing a trust and reputation scheme 

among controllers. The scenario was that of a distributed controller environment in which 

the secondary controllers are deployed not as a dormant backup but as active load-

balancers. However, for either use case, the controllers need to have access to all 

switches, so that in case one controller goes down due to an act of sabotage or for any 

other reason, the other controllers can prevent disruptions in the network environment. 

 

3.1. Components 

In this architecture, controllers rate each other after verifying the policies installed by 

them in switches against the policies that are dictated by a central entity called the Policy 

Distributor. The Policy Distributor is a component introduced by us for consistent policy 

enforcement throughout the distributed SDN. The second component specific to this 

scheme is the Trust Collector, which asks controllers to rate their peer controllers and 

takes ratings from them. The code for both the components was written in Python and 

they were deployed as separate components. The working of individual components is 

described below. 
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3.1.1. Third-order Headings: It contains all of the policies that are to be installed by the 

controllers. Conventionally, a network administrator defines the policies directly into the 

controller, but in this scheme, a network administrator defines the policies in the Policy 

Distributor. These policies are then periodically pushed to all of the controllers in the 

network. This ensures network-wide consistency as there is only one place where the 

policies need to be defined, thereby centralizing the administration of a distributed SDN. 

A HashMap was used for policy assignments which take arguments (Controller, Policy). 

Copy of this HashMap can be retrieved by all controllers when needed, but every 

controller installs it in only the switches directly under its control. 

This helps them later in verifying whether other controllers have installed correct 

policies or not, and is also good for fault tolerance; in case a controller goes down, other 

controllers will automatically know which flow rules were in effect in the affected 

controller. It is assumed that the Policy Distributor is secure and protected from hijacking, 

and any changes made to it are purely intentional. 

 

3.1.2. Trust Collector: It is another central entity which is responsible for trust 

management. After the Policy Distributor has pushed the policies to the controllers, the 

Trust Collector, after a specific time, asks all the controllers of the network for their 

opinion about their peer controllers. Specifically, it asks other controllers to check 

whether their peer controllers have installed the policies in switches as dictated by the 

Policy Distributor, or they have (maliciously) installed different policies. The controllers 

then initiate their respective Policy Checkers (discussed in next section) and fetch the 

flow tables from the switches. If a controller finds any discrepancy between the flow 

tables fetched from switches and the policies sent by the Policy Distributor, it reports the 

results to the Trust Collector. We use the flow tuple format to specify and compare 

policies, e.g., 

policy1 : srcIP = 8.8.8.8,action = drop.               (1) 

 

3.1.3. Policy Checker: Another simple component called the Policy Checker was 

introduced by integrating it into the Ryu SDN Framework (https://osrg.github.io/ryu/) 

controller. The primary purpose of Policy Checker is to simply probe the switches to fetch 

the installed policies so that they can be compared with the policies sent out by the Policy 

Distributor. 

 

3.2. Trust Collection 

The mechanism of trust collection in this scheme is based on Personalized Trust Model 

(PET Model) [49], however, necessary changes were made to their method to suit the 

environment that was in focus. The PET model is designed for strict P2P environments 

where there is no central entity, and the nodes are dependent on ratings obtained from 

each other to calculate trustworthiness. In this scheme, however, a central entity called the 

Trust Collector collects individually calculated trustworthiness values from all controllers 

and presents it to the operator for review. 

When the Trust Collector asks controllers to find out any mismatch between policies 

installed and policies that had to be installed, the controllers start probing the switches. At 

this point, all the controllers simultaneously act as recommender and recommendee. A 

recommender who finds out a mismatch flags the recommendee based on the following 

function. 
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Where G and B are the constants used for match and mismatch, respectively. In case of 

a match, a score of S1 is output, whereas, in case of a mismatch, S2 is given as output. 

The rating output by the hash function is then used in calculating the recommendation Er. 

Note that G is used to represent good behavior, similar to PET model, but B is used to 

represent bad behavior while the PET model uses it to represent Byzantine behavior. 

Figure 3 shows the different parameters that go into the calculation of the trustworthiness 

value. The recommendation value Er for a controller A is the average value of 

recommendations that other controllers have given to A. Therefore, in order to calculate 

Er for, let’s say, controller A, controller B will need access to recommendations that other 

peers have given to A. 

The Trust Collector helps here by allowing all controllers to send their calculated 

recommendations about other controllers to itself. Once all recommendations are at the 

Trust Collector, each controller can then retrieve the (global) accumulation of all 

recommendations about any given controller from the Trust Collector. 

The second thing the controllers need to calculate is the interaction-derived information 

Ir. In the PET model, Ir is a special recommendation given by a peer A to other peers 

based on how much good or bad service those other peers have provided to peer A, that is, 

unlike Er, Ir does not take into account the recommendations from other peers. 

The controller environment in this paper is slightly different from the pure P2P 

environment assumed by the PET model, since in this environment no controllers directly 

provide any services to other controllers as in a P2P system, so the meaning of Ir was 

changed, such that Ir is now each controller’s individual recommendation about its peer 

controllers based on whether they have installed policies in the switches correctly or not. 

Thus Ir is an individual controller’s own opinion about a given controller A and it does 

not take into account what other controllers say about A. This saves Ir from getting 

overwhelmed if a majority of controllers (maliciously) rate controller A as negative. The 

Er and Ir values are finally used to calculate the reputation Re in a weighted fashion such 

that, 

W(Er) = 0.2 and W(Ir) = 0.8                 (2) 

The values are based on suggestions from the PET model. A higher value for W(Er) 

would mean that a lot of trust is put in the environment but since the environment had to 

be considered risky for being realistic, a very high value was not set. The purpose of 

reputation Re is to accumulate the past and current values of a controller’s performance. 

That is, the reputation value is the historical accumulation for a recommendee’s past 

behavior from the recommender’s viewpoint. It will reflect the overall quality of the 

recommendee for a long time period. 

For example, if a controller which is being rated has installed 99 correct policies but 1 

incorrect policy due to, let’s say, a software bug, then it shouldn’t mean that the 

controller’s reputation immediately becomes completely negative. Rather, the final 

reputation value is calculated through a combination of current and past recommendations 

from both individual and a collective group of controllers. Since Ir gives us the 

personalized view of a node for its peers, therefore the PET model uses only Ir to 

calculate the risk value Ri for the network. This results in each controller having its own 

Ri value that represents its own view of the risk in the network. 

The reputation Re and risk Ri values are used by the controllers to calculate 

trustworthiness T values. Each controller thus generates one trustworthiness value that 

gets collected by the Trust Collector. On PET model’s suggestions, the weight of 

reputation and weight of risk was set to 0.5 in all controllers for calculating the T value 

such that: 

W(Re) = 0.5 and W(Ri) = 0.5                (3) 
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The Trust Collector accumulates all these trust values it receives from controllers. It 

then averages all the trustworthiness values and notifies the network administrator as to 

which controllers are malicious since their trustworthiness value was very low or which 

controllers are good since their trustworthiness value was high. 

 

 

Figure 1. Trust Calculation Model. Nodes Collect Final Trustworthiness 
Value Based Upon a Number of Factors 

3.3. Scheme Overview 

In presence of the Policy Distributor, Trust Collector, and Policy Checker integrated 

within the controllers, this scheme progresses as follows: 

A network has three controllers and three switches, such that each controller directly 

administers two switches. The network is in a full mesh setting so that all the controllers 

have access to all switches for backup. Assuming that the network has just booted, and the 

switches do not have any flow rules as of now. A network administrator defines a policy 

in the Policy Distributor that all traffic originating from IP address 8.8.8.8 is to be 

dropped. 

After some time, the Trust Collector asks controllers to probe all the switches to find 

out if there is a mismatch between installed policies and those dictated by the Policy 

Distributor. The controllers then run their respective Policy Checkers over the network. 

As shown in Figure 2, each controller probes switches managed by other controllers 

too. The Policy Distributor pushes flow rules to the controllers. 

 

 

Figure 2. Flow Diagram for the first Three Steps of the Scheme. Shows 
Message Exchange flow between Switches, Controllers, Trust Collector, 

and Policy Distributor 
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Figure 3. Flow Diagram for the other Four Steps of the Scheme. Shows 
Message Exchange Flow between Switches, Controllers, Trust Collector, 

and Policy Distributor 

Every controller receives all flow-rules, but only the intended controller acts upon it 

and installs them in its slave switch. 

After some time, the Trust Collector instructs the controllers to inspect the switches for 

installed flow-rules. This is where the benefit of providing every controller with all flow-

rules comes in. As seen in Figure 2 and 3, every controller inspects the slave switches of 

other controllers. 

When the probe has finished and matches/mismatches have been found, each controller 

gives out a rating map for every other controller, which contains good or bad scores for 

them. Three controllers will generate three such maps, such that in case of three 

controllers A, B, and C, controller A will report about B and C, controller B will do it for 

A and C, and controller C will do it for A and B. All of these ratings are sent to the Trust 

Collector. 

Once the Trust Collector has received the reports from all of the controllers, it 

combines all of them and sends back to all of the controllers, so that A will receive reports 

of B and C about each other, B will receive reports of A and C, and C will receive reports 

of A and B. Each of the controllers now has information about what its peer controllers 

think about other controllers. This information helps a controller in calculating the 

average value of recommendation (Er) for other controllers. 

Controllers then output final trust value about other controllers to the Trust Collector. 

Er combined with Ir are used to calculate reputation Re. Combined with risk Ri, the Re is 

used to calculate final trustworthiness as: 

T = Reputation(Re)∗WeightofReputation[W(Re)]+Risk(Ri)∗WeightofRisk[W(Ri)]     (4) 

Each controller outputs trustworthiness values for other controllers. The results are fed 

to the Trust Collector, which aggregates the results from all the controllers and shows it to 

the network administrator for review. 

 

4. Evaluations 

A prototype implementation was developed in Python for Trust Collector, Policy 

Distributor, Policy Checker, and rating mechanism of the controllers. The Policy Checker 

and rating mechanism were integrated into Ryu controller, whereas the Policy Distributor 

and Trust Collector were deployed as separate modules. A small number of controllers 

and OpenFlow switches were also deployed in the Emulab network evaluation testbed. 
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In the topology, one Policy Distributor, one Trust Collector, and a varying number of 

controllers and switches were deployed for different evaluations. For the scalability tests, 

simulated switches were used, and the number of controllers was increased to up to 15, 

and the number of switches to up to 20. The results of scalability evaluation that 

calculates the time taken for the trust collection process is shown in Table 1. The 

corresponding results for the time taken by the trust collection process for each of the 

configurations from Table 1 are shown in Figure 9. The graph is labeled from C1, ..., C12 

which correspond to configuration numbers from Table 1. 

For correctness evaluations, which were performed alongside the scalability 

evaluations mentioned above, one or more of the controllers were deliberately triggered to 

randomly install a malicious policy and then ran the rating mechanism in the controllers. 

All other controllers were able to detect the controller which installed the wrong policy 

and rated it negatively. The Trust Collector aggregated the ratings from all these 

controllers. For all the tests conducted, the scheme was always able to find the malicious 

controller(s) with zero false positives or false negatives. 

Figure 9 shows the time taken to perform the entire process of rating and trust 

collection as the number of controllers involved in the process is increased. As seen from 

the graph, the time shows a linear pattern of increase and our scheme is able to work fast 

in finding out the malicious controller. 

The scheme defines a specific number of message exchanges (as shown in earlier 

sections) between the different components in the system, i.e., the controllers, switches, 

Trust Collector, and Policy Distributor. A centralized graph database, Neo4j [31], which 

serves as a 'noticeboard' for communication using the publish-subscribe mechanism, was 

used. This saves network bandwidth since the Policy Distributor or Trust Collector do not 

have to broadcast messages containing commands such as 'startTrustCalculation', a 

command meant to be sent to all controllers to start the trust calculation process, to all 

controllers. Instead, the Trust Collector can publish this command by writing it in the 

centralized database and the controllers can read it from there. Thus only one message 

exchange has to be used instead of a broadcast of messages to all controllers. 

Table 1. Different Network Configurations Created of Controllers and 
Switches for Scalability Evaluation of Time Taken. In each 

Configuration, Number of Switches Controlled by One Controller is 
Equal to (Number of switches / Number of controllers)  
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Figure 4. Scalability of the Scheme: Shows the Time Taken in Seconds 
for Entire Rating and Trust Collection Scheme to Fnish as the Number 
of Controller is Increased. C1, .. , C12 refer to Config1, , Config12 from 

Table 1 

Neo4j has a Python library that handles the lower level network communication code 

and provides a RESTful web API which is invoked from the code to perform publish or 

subscribe functions. Note that each node in evaluation setup has an IP address, this 

includes the node running Neo4j, and so the REST API can be invoked on the Neo4j 

database from any of the controllers and Trust Collector or Policy Distributor components 

by using the IP of the Neo4j node. The number of messages that need to be used for one 

complete process of trust calculation is: 

No.ofmessages = O(N ∗M)                 (5) 

Where N is the number of controllers involved in calculating the trust and M is the 

number of switches in the network, and there exists one instance of the Policy Distributor 

component and one instance of the Trust Collector component. While the Neo4j database 

based communication scheme described earlier helps get rid of broadcast messages, each 

controller (from N number of controllers) has to communicate with each of the switches 

(from the M number of total switches). 

Table 2 shows the various configurations of controllers and switches which were 

created in the evaluation setup for scalability evaluations for the number of messages used 

for the entire trust calculation and collection process. Note that this set of configurations 

created are different than those created for the earlier evaluation and were shown in Table 

1. 

Figure 10 shows the number of messages that were used to perform one complete 

process of trust collections for the various configurations mentioned in Table 2. Note that 

here a message from a component A to component B is defined as one write of a message 

from a component A and its corresponding read by a component B. As can be seen from 

the graph, the scheme scales smoothly as the number of controllers and switches involved 

in the process is increased. For the highest configuration, Config 10, with 10 controllers 

and 20 switches, the scheme uses less than 250 messages to finish the entire process of 

trust calculation. Note that in each configuration, the switches are equally divided 

between the controllers. That is, 

No.ofswitchescontrolledbyacontroller = No.ofswitches/No.ofcontrollers           (6) 

Finally, Table 3 shows the different network configurations of controllers and switches 

for doing bad mouthing evaluations to show that the trust-based scheme provides defense 

against bad mouthing attacks [6]. Bad mouthing is a technique where a malicious party (a 
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malicious controller in our case) provides dishonest recommendations for one or more 

other parties (controllers in our case) to malign them. 

The scheme guarantees to catch bad mouthing attacks as long as the number of bad or 

malicious controllers in the network is less than n/2 where n is the number of total 

controllers in the network. If the number of malicious controllers is exactly equal to n/2 

then the scheme can output an unsure result which can be shown to a human operator for 

final decision making. For example, if n=4, we have 4 controllers C1, C2, C3, and C4 and 

lets say that there are 2 malicious controllers C1 and C2 in the network, and lets say both 

C1 and C2 rate C3 as a bad controller but C3 and C4 rate C3 as a good controller then our 

scheme will output an unsure result since the votes for C3 are equally divided between 

good and bad. In such a scenario, a human operator will look at the results and will have 

to make the final decision based on his expertise and knowledge about the network. 

Table 2. Different Network Configurations Created of Controllers and 
Switches for Scalability Evaluation of Number of Messages. In each 
Configuration, Number of Switches Controlled by One Controller is 

Equal to (Number of switches / Number of controllers)  

 

 

Figure 5. Shows the Number of Message Exchanges that Take Place for 
Different Network Configurations of Controllers and Switches, the 
Names of the Configurations on the X-axis (e.g. Config1, Config2, , 

Config10) Refer to the Configurations in Table 2. 
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Table 3. Evaluations for Bad Mouthing Attacks. In each Configuration, 
Number of Switches Controlled by one Controller is Equal to (No. Of 

switches / No. Of controllers). And CX Refers to the Controller Number, 
e.g. C1, C2, etc. The Result Column Shows the final Result after the 

Trust Calculation Round which Aggregates Trust Values from all 
Controllers in the Network 

 
 

5. Discussion 

The test results presented earlier show that the scheme works correctly and efficiently 

in weeding out malicious controllers. Since the Trust Collector decides whether a 

controller is malicious based on an aggregate of recommendations from all other 

controllers, therefore the scheme provides defense against bad mouthing attacks [6]. 

In bad mouthing attacks, a malicious party provides dishonest recommendations for 

another good party to malign the name of the good party. But since the scheme does not 

make a decision of whether a controller is malicious based on the recommendation from 

just one other controller, therefore it can provide defense against bad mouthing as long as 

malicious controllers are not the majority in the total number of deployed controllers. This 

assumption is reasonable since the number of controllers which would need to become 

malicious before the network collapses can be guaranteed. 

That is, in a network with N controllers, the scheme is guaranteed to work correctly 

and identify malicious controllers as long as (N/2)+1 controllers are uncompromised. This 

assumption is realistic since a majority of controllers is unlikely to become malicious in 

an instant and if they become malicious one by one over time, then the scheme will 

identify the malicious controllers at all times when (N/2)+1 controllers are still 

uncompromised. 

This scheme of collecting ratings and aggregating trust and reputation using a Trust 

Collector component works more robustly and accurately than delegating trust and 

reputation management entirely to an individual controller in a distributed environment. 

This is because a central entity is always needed to aggregate the ratings generated by all 

the controllers that are part of the distributed environment, and the central entity can then 

make a decision of whether a given controller is malicious by looking at what the majority 

of ratings say about that controller. 

Alternatively, the central entity can also output the result of the ratings to a human 

operator who can decide whether a given controller is malicious based on both his domain 

knowledge about the network and also based on the majority of ratings that were received 

for that controller. 

Introducing a central trust managing entity also helps in solving an important dilemma, 

which is, what happens if a majority of rogue controllers vote against a controller which 

otherwise has installed correct policies? Let us examine a case of distributed trust 
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management, in which the controllers find the policy mismatches themselves, and there is 

no central entity for managing the trust and reputation. There are three controllers in a 

network, A, B, and C, each managing one switch under them, and connected to other 

switches too. A network administrator defines one flow rule, i.e. block any traffic 

originating from IP address 200.0.0.1. The controllers install the flow rules in their 

respective switches. After some time, controllers probe the switches to find out whether 

other controllers installed correct policies in their respective switches. A finds out that B 

and C have (maliciously) installed flow rules in their switches which allow traffic 

originating from 200.0.0.1. It rates B and C negative. B and C on the other hand rate A as 

negative. In presence of an automated solution of shutting down or restricting a malicious 

controller, this will prove to be disastrous. If, however, a human operator has to approve 

the shutting down or restricting of a malicious controller, then it will be a burden for him 

to sort through the conflicting ratings of controllers against each other. Using the Trust 

Collector for aggregating the opinions about other controllers from each controller not 

only helps us in ascertaining the validity of recommendations with surety, but it also helps 

in eliminating broadcasts. 

If, for example, there are three controllers A, B, and C, then all of the nodes will have 

to send their reports to each other so that they can perform final trust calculation (since 

the final step in the trust calculation process inside a controller needs input from other 

controllers too). However, by introducing the Trust Collector in between, all controllers 

send their reports to this central entity, which simply forwards it to individual controllers. 

While it is true that the scheme introduces this one central point of compromise, the 

Trust Collector, but it is much easier to guard and protect one component if it can help us 

have a safe distributed environment of controllers where each controller does not have to 

be guarded very well. As long as the majority of controllers are not compromised, the 

scheme guarantees that the network will keep functioning correctly. Extensive evaluations 

conducted by varying the number of controllers and switches ensures that the scheme still 

holds itself together when different topologies are used. The maximum number of 

controllers were used during evaluations is 15, which may be too large a number for most 

network topologies. Researchers have used the Internet2 (http://www.internet2.edu/) 

OS3E topology for determining the ideal number of controllers, and their placement 

across the networks. The Internet2 is a research network for collaboration between 

different universities across the United States and is an SDN comprising of 34 nodes. 

Researchers in [26] have demonstrated that adding more controllers to the network 

does increase resilience and provides defense against complete network failures, however, 

proper placement of controllers within the network is an ongoing research problem. In 

case a network controller goes down, the switches should connect to next possible 

controller with minimum latency, therefore placing the controllers in such a fashion that 

they provide minimum latency to all switches is desirable, but not always possible [11]. 

Authors in [26] have selected up to 5 controllers and authors in [11] have performed 

their evaluations with up to 8 controllers and found promising results (with some 

tradeoffs, of course). This means that the choice of using up to 15 controllers is not in any 

way insufficient in demonstrating the feasibility of the scheme. 

 

6. Conclusion 

Securing the controllers in SDN is an open problem for research. Researches carried so 

far do not address the problem of identifying malicious controllers, especially in a 

distributed environment. In our work, we have focused on this problem and have tackled 

it by employing a trust and reputation management scheme in which controllers rate each 

other for the services they provide. This was done by introducing a centralized entity 

which keeps a record of policies to be installed so that controllers can compare them with 

installed policies for rating purpose. 
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The scheme was coded in Python, and implemented into Ryu controller as a prototype 

and demonstrated promising results. Emulab network emulation testbed was used for 

evaluations. In the evaluations, the number of controllers, switches, and malicious 

controllers was varied to reflect different network topologies. Metrics that were evaluated 

included the number of message exchanges that take place for different network 

configurations of controllers and switches, time taken in seconds for our entire rating and 

trust collection scheme to finish as the number of controllers is increased, scalability 

evaluation, and finally, the scheme was tested against bad mouthing attacks common in 

trust management systems. 

Overall it was found out that the scheme works well in isolating a malicious controller 

by probing the switches for any rogue flow rules thus completing the objective of this 

work. 
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