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Abstract 

In this paper, a 2D propagator method (PM) algorithm for DOA estimation has been 

proposed and its performance is analyzed for the large number of antennas which 

constitutes massive (MIMO) antennas. The eigenvalue decomposition (EVD) of the 

signal’s covariance matrix is an additional requirement in the previous DOA estimation 

algorithms which increases its computational complexity. But in the proposed algorithm it 

contains very low amount of computational complexity because there is no need of EVD 

for its autocorrelation matrix. The performance of this 2D PM algorithm is evaluated on 

the basis of RMSE criteria and the Monte Carlo simulated result which indicates that the 

proposed algorithm has much lower complexity than the ESPRIT and MUSIC algorithms 

as well as its performance is equivalent with the ESPRIT algorithm at the higher values of 

SNR.  

 

Keywords: Direction of Arrival (DOA), Massive MIMO, Propagator Method (PM), 

Eigenvalue decomposition (EVD), Estimation of Signal Parameters via Rotational 

Invariance Techniques algorithm (ESPRIT). Multiple Signal Classification (MUSIC) 

 

1. Introduction 

The large array of antenna system, commonly known as massive (MIMO) is becoming 

an essential technology as it overcomes the ever-growing demand of high data 

consumption by providing higher spectral efficiency, extreme channel capacity, and link 

reliability. 3D Beamforming is an important technique in this regard that enables the most 

perfect approximation of direction of arrival (DOA), at the base radio station in order to 

measure the two angles, the first one is elevation angle and the second one is azimuth 

angle of the signal sources. In recent decade, it has been observed that the demand of 

mobile communication data rate is rapidly increasing and according to the predictions its 

growth will reach 1000 times higher in 2020. Therefore, in order to meet the ever growing 

demand of tremendous growth in density/volume of mobile internet traffic and 

connectivity, 5G will be launched in 2020[1-2]. 

Full-dimension (MIMO) system is one of the essential technique in the most advance 

generation communication system [3-4]. The addition in antenna array dimension gives 

the flexibility in terminal more importantly due to the spatial pre-processing at both 

vertical and horizontal domains. Furthermore, massive MIMO technology plays a crucial 

role in the latest transportation systems e.g. train carriages and high speed railway stations 

[5-6]. The large number of signal processing systems in today’s world includes massive 

MIMO system and 3D beamforming for improved link reliability. 3D beamforming is a 

technique which enables to approximate perfectly (DOA), including both angles of the 

source signals [7-8]. In the previous decades DOA estimation has got much attention in 

the community of signal processing (SP). There are many existing methods for the DOA 

estimations such as maximum likelihood method, multiple signal classification (MUSIC), 

estimation of signal parameters via rotational invariance techniques (ESPRIT), Capon 
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algorithm, parallel factor (PARAFAC) technology, etc., for the estimation of both 1D and 

2D DOA [9]. However, the massive MIMO application is not yet well explored due to the 

high computational complexity of the dispersion matrix or covariance matrix of the input 

signal source. DOA estimation of 3D massive MIMO system has high complexity and 

limited accuracy that has made it difficult to understand and explore by researchers [10]. 

The previous methods of DOA has some restrictions particularly in large array of sensors, 

so for this purpose some fast algorithms on the basis of DOA, which have the ability of 

performing Eigen decomposition along with low computational load were devised such as 

propagator method (PM). However, this method has also some limitations such as 

implementation of white-Gaussian noise, further more in spatial non-uniform noise its 

performance criteria decreases substantially. [11-12].  

Subsequently, an advance PM algorithm has been introduced in literature [13] to 

approximate DOA algorithms for the 1D stationary case. It has the ability of carrying out 

partially cross-correlation of array output data for the implementation of off-diagonal 

elements related to array dispersion matrix. Furthermore, the PM method has been 

extended to the 2D-DOA estimation in massive MIMO system for better results. As we all 

are well informed that propagator method is known for its low complexity method 

without estimating Eigen value decomposition (EVD) of the covariance matrix or 

dispersion matrix of the received output data, which is mentioned in the literature [14-15].  

Evidently, PM algorithm is highly used in 2D-DOA estimation due to its low 

complexity. Therefore, we present the Propagator method to approximate 2D-DOA 

algorithm which is superimposed on large-scale massive MIMO system. The proposed 

algorithm has the advantage of calculating better angle estimation then the previous 1D-

DOA (PM) algorithm. The remaining sections of this paper are organized in following 

sections. System model is presented in second section while PM based-algorithm is 

introduced in third section. Moreover, forth section demonstrates the Monte Carlo 

simulations and performance evaluation. The paper concludes with fifth section that 

elaborate the findings of this paper. 

Notations: Lower-case (upper-case) boldface symbols denote vectors (matrices); 

(.)T
, (.)H

,
1(.) , (.) denote the transpose, the conjugate transpose and the pseudo inverse, 

respectively; KI  is the identity matrix of K× K; whereas diag(.) denotes the diagonal 

matrix and the values which are present in the brackets are diagonal elements; angle(.) 

presents the phase. 

 

2. System Model 

Figure 1 shows the structure of 2D large-scale massive MIMO system. The number of 

array elements are set as M× N. The N antenna elements in the X-axis and M antenna 

elements in the Z-axis respectively. The distance between the elements is denoted by d 

and / 2d  , while represents the wavelength of the signal.  
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Figure 1. 2D Large-scale Massive MIMO with a Structure of M×N. The DOA is 
Shown by ( , )  which Represent Elevation Angle and Azimuth Angle 

Respectively 

We consider there are K signal sources, where is  represents the incident 

signal,1 i K   impinging on the base station (BS) and ( , )i i   represents the elevation 

and azimuth angles respectively. The signal received from antenna array is modeled as: 

 

X S N A                   (1) 

1

2

x z

x z

x M z

D

D
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                             (2) 

 

where the steering matrix at the X-axis is: 
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where the steering matrix at the Z-axis array is: 
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where  i zD A  is the diagonal matrix with the diagonal elements being the thi  row of 

the
zA     

  

    1 2(i 1) (i 1) (i 1), , , Kj v j v j v

i zD diag e e e  A               (5) 
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Where the transmitted signal matrix S is S=[s(1), s(2), …. ,s(L)] K LC   , L presents 

the number of snapshots, and N is the additive white Gaussian noise matrix, N=[n(1), 

n(2), …. ,n(L)] K LC  . 

 

3. Two Dimensional DOA Estimation of Low-Complexity PM 

Algorithm 
 

3.1. Proposed Algorithm 

Matrix A is the combination of two subarray matrices which are describe as 1

K KA   

and
(MN )

2

K K A  

 

1

2

 
  
 

A
A

A
                  (6) 

We assume (A is the full rank column matrix) and the sub matrix 2A is the linear 

transformation of sub matrix 1A  and 1A  is the non-singular matrix. 

 

2 1

HA P A                    (7) 

[ , ]H H

NM K Q  P I A A O                  (8) 

 
(MN )K K P is the propagator operator and from equation (6) and (7) we have 

(MN K) K

HQ  A O   Now we construct the function of spatial spectrum for the 2D-PM as 

 

2

0 0

1
( , )

[a ( , ) a ( , )] [a ( , ) a ( , )]
D PM H H

z x z xQ Q
 

       
 

 
P            (9) 

 

The covariance matrix which obtained from the received signals is shown as 

1

1
C X(t)X (t)

L
H

tL 

   for the estimation of propagator matrix P we partition the covariance 

matrix C as: 

 

1 2C [C ,C ]                 (10) 

 

1C MN K  and 
( )

2C MN K MN   , as the noise is present the P estimator is: 

 
1

1 1 1 2
ˆ (C )H HC C CP                 (11) 

 

Construct matrix cP   as: 

 

k
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I 
  
 

P
P

                (12) 

 

According to the equations (6), (7) and (12) we obtain 
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1
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We divided cP  into two sub matrices 
(M 1) K

1

N

a

 P  and 
(M 1) K

2

N

a

 P  . 1aP belongs 

to the first N(M-1) rows of cP  , while 2aP belongs to the last N(M-1) rows of cP . We also 

use aA   and bA   to represent the first N(M-1) rows and the last N(M-1) rows of A . 

 

1

1

2
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In the above equation, zΦ is for the diagonal matrices of 2D  and  

1 2{(e ,e ,......,e )}Kjv jv jv

z diagA  

 

Therefore 

 
1

1 2 1 1a a z

 P P AΦ A                 (15) 

 

According to the definition zΨ  must be equal to the 

 

1 2z a a

Ψ P P                  (16) 

 

The eigenvalues of zΨ  and zΦ  are same and 1A  is the eigenvectors matrix of zΦ . 

 

We perform the eigen-decomposition of zΨ  and the estimator of can be obtained by kv . 

 

( )
ˆ

2

k
k

angle
v

d

 


                        (17) 

 

where 
2 kj dv

k e
    is the thK  eigenvalue of xΨ  , 1,2, ,k K . 

 

By equation (13) we have 
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We recreate  cP  to  c
P  

 

 1c c x
 P P A                 (19) 

 

By putting the values of (18) in (19), we get 
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Similarly, we have to fragment c
P  into 1a

P  and 2a
P  for the presentation of first 

( 1)N M  rows and the last ( 1)N M   rows, respectively. 

 

1 2x a a

 Ψ P P                  (21) 

 

According to the theoretical point of view, zΨ  and xΨ   have the same eigenvectors 

matrix that is. 
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The estimator of ku  can be calculated by 
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where 
2 kj du

k e
    is the thK eigenvalue of xΨ  and 1,2, ,k K  . Finally, the 

correct paired of the elevation and azimuth angle  ( , )
k k

 can be projected through 

following expressions. 
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3.2. Two-Dimensional MUSIC Algorithm 

The MUSIC algorithm is attractive for its accuracy and immunity to noise due to the 

use of the signal subspaces of the receive signals at the antenna array. A brief introduction 

of 2-D MUSIC algorithm is presented. It simultaneously estimates the azimuthal angle 

and the elevation angle of multiple signal sources. 2D-MUSIC is similar to the one-

dimensional case, but the direction is given as 
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Another form is 

 

1 1 1 1 2 2 2 2[ ( , ) ( , ), ( , ) ( , )z z         x xA a a a a , , ( , ) ( , )]z K K K K    xa a     (27) 
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In the above equation ( , ), ( , ), 1,...,x k k z k k k K    a a , xA , zA ,the first k column vector. 

The space spectrum function of the 2D-MUSIC algorithm is written as under 

 

2

1
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D MUSIC H H

z z

P  
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 
 x N N xa a V V a a

         (28) 

 

In the above equation NV is the matrix whose columns are the noise subspace 

eigenvectors. 

 

3.3. Complexity Analysis 

As we early declared that the proposed algorithm has much lower complexity than the 

estimation of signal parameters via rotational invariance technique (ESPRIT) algorithm 

and the multiple signal classification (MUSIC) algorithm on the basis of complexity 

analysis, in which N×M represents the number of antenna elements which lies in the 

dimensions of the X-axis and Z-axis respectively. Furthermore ‘L’ is use to represent 

number of snapshots while the signal sources are represented by ‘K’. Now here we 

present the complexity of algorithms. 
2 2 2 3 2 2 2( ( ) 4 ( ) 2 ( 1) (O LM N MNK MN MN K K K MN K K M N K MN N           

1)MK is the complexity of proposed algorithm. Now the complexity of the ESPRIT 

algorithm is as
2 2 3 3 2 3 2 2( 2 ( 1) 3 ( 1) )O LM N M N K M N K K MN N MK K MN        

( 1) )N MK . Now the complexity of MUSIC is 2 2 3 3{ [ ( )gO LM N M N n MN MN K     

]}MN K  among them 
gn  is the number of global search. 

Figure. 2 clearly shows the comparison based on complexity between the algorithms 

along with the properties of N=M, K=6 and, L=100. The figure proves that ESPRIT and 

MUSIC algorithm has higher computation complexity than the proposed algorithm which 

is 2D-PM. And figure also clarifies that rise of computational load in the proposed 

algorithm is much lower as compared to the computational load of MUSIC and ESPRIT 

algorithm. 
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Figure 2. Algorithms Complexity Comparison 
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3.4. Advantages of the Proposed Algorithm 

 In proposed algorithm, we discover automatic matching of the angle parameters; 

in addition it avoids the extra computational burden which has been brought by 

the matching of angle parameters.  

 While comparing it with the performance of ESPRIT algorithm, we discover that 

the signal's covariance matrix doesn't require any eigenvalue decomposition.  

 The performance of the proposed algorithm reaches to the performance of the 

ESPRIT algorithm when the SNR proceeds towards the higher values.  

 

4. Simulation and Analysis 

The angle estimation of 2D PM algorithm has been carried out by using 1000 

simulations of Monte Carlo. The preferable technique to measure the DOA accurately is 

the root means square error (RMSE) which can be define as: 

 

1000
2 2

, ,

1 1

1 1
[( ) ( ) ]

1000

K

k n k nk k

k l

RMSE
K

   
 

 

               (29) 

 

Where 
,

ˆ
k n  is the estimation of elevation angle k  at the thn  Monte Carlo trial and 

similarly for 
,

ˆ
k n .There are 9 incident to narrow band signals which are shown in Fig. 1 

and their direction of arrival is given as: 

(25 ,20 ) , (35 ,60 ) , (40 ,110 ) , (80 ,25 ) , (85 ,65 ) , (90 ,115 ) , (130 ,30 ) , 

(135 ,70 ) , (140 ,120 ) .  

The spacing between the array element is d = λ/2. Where N and M are the number of 

sensors at the X-axis and Z-axis respectively. The number source target represented by K 

and L represents the number of snapshots. 

 

4.1. Performance Evaluation 

In this section the numerical conclusions demonstrate the performance criteria of the 

proposed algorithm, which consists of simulation trails up to 1000 as discussed earlier. 

The space assigned to the adjacent antenna elements is d = 0.5λ. The number of antennas 

are installed in two dimensions which is M =N = 16. Snapshots are denoted by L and they 

are equal to 100. For elevation and azimuth angles there are nine narrow band signal 

sources that is applied to the antenna array which are: 

θ={25°,35°,40°,80°,85°,90°,130°,135°,140°},ϕ={20°,60°,110°,25°,65°,115°,30°,70°,

120°} 

The different SNRs are presented in Figure. 3 and Figure. 4, which demonstrate the 

DOA estimation of the proposed algorithm. The simulation results point out the 

performance of the DOA estimation is poor in low SNR conditions but in high SNR 

the results are totally different, that estimation of the desired elevation and azimuth 

angles are highly accurate. 

The number of signal sources are denoted by K=10. The evaluation of elevation and 

azimuth angles under root means square error (RMSE) implemented for the different 

number of sources signals are presented in Figure. 5. It is the clear condition for massive 

MIMO which is K<< M and by this condition it clearly proves that if we increase the 

number of signal sources then the performance of DOA estimation becomes worse.  

Figure. 6 indicates the RMSE of the proposed algorithm in different number of 

snapshots. As the number of snapshots increases then the DOA estimation performance 

becomes better. This happens due to the increase in the number of snapshots which 

acquires more and more accurate covariance matrix. 
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In Figure. 7, the algorithm is used to compare the different values of antenna elements. 

As can be seen from the figure, the algorithm performance approaches towards better 

outcomes with increase in the number of array elements, the simulation indicates that as 

we increase the number of antenna in the massive MIMO the angle estimation becomes 

more accurate, because it increases the diversity gain. 

In Figure. 8, a comparison of proposed, 2D ESPRIT and, 2D-MUSIC algorithms is 

shown. The figure illustrates that the proposed algorithm acquires a high RMSE in low 

SNR but the performance reaches to ESPRIT algorithm when the SNR moves towards 

higher values. Therefore, the proposed algorithm has wide range of applications on the 

basis of DOA estimation accuracy. 
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Figure 3. Angle Estimation Performance (M=N=16, L=100, SNR = 15dB) 
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Figure 4. Angle Estimation Performance (M=N=16, L100, SNR = 20dB) 
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Figure 5. RMSE Estimation Performance with Different Numbers of Source 
Signals (M = N = 16, L = 100)   
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Figure 6. RMSE Estimation Performance in Different Numbers of Snapshots 
(M = N = 16, K = 6) 
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Figure 8. RMSE Performance of Three Algorithms 

5. Conclusion 

In this paper, a low-complexity 2D-DOA based on PM algorithm for the Massive 

MIMO system using 2D antenna array has been proposed. The proposed algorithm avoids 

EVD for the signal’s covariance matrix. Moreover, there is no need of peak searching 

thus it is simple in its structure. The proposed algorithm acquires a high RMSE in low 

SNR but the performance approaches to ESPRIT algorithm when the SNR approaches to 

higher values. The simulation results verify our analytical approach. Therefore, the 

proposed algorithm has wide range of applications on the basis of DOA estimation 

accuracy. 
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