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Abstract 

In order to effectively segment the eleven surfaces of ten retinal layers in optical 

coherence tomography (OCT) images, in this paper, a novel automated intra-retinal layer 

segmentation method based on the edge superpixel and manifold ranking method was 

proposed as illustrated in three steps. Firstly, we defined the edge superpixel that can 

well overcome some disturbances from the intrinsic speckle noise and organic texture 

artifacts, and designed a simple adaptive filter that wass able to automatically remove 

some disturbances from vitreous artifacts. Secondly, the OCT image was represented as a 

weighted graph with edge superpixels as nodes, and the affinity matrix were computed. 

Finally, each node was ranked optimally with the texture and spatial cues using the 

graph-based manifold ranking technology, so that the eleven surfaces of ten retinal layers 

in optical coherence tomography images were exactly, fast and reliably quantified in two 

stages. The proposed algorithm was evaluated by OCT images from two different 

databases, and was compared with the manual tracings of two independent observers and 

the Iowa algorithm. The experiment demonstrated the promising results in term of the 

mean unsigned boundaries errors and the mean signed boundaries errors, and the 

proposed algorithm outperformed the Iowa algorithm around macular fovea. In addition, 

the proposed algorithm could effectively segment the eleven surfaces of ten retinal layers 

in optical coherence tomography images with the central serous retinopathy (CSR). 

 

Keywords: Optical coherence tomography; Layer segmentation; Edge superpixel; 

Manifold ranking 

 

1. Introduction 

Optical coherence tomography was first introduced by Huang et al. [1], and it is a 

powerful, noninvasive and high resolution imaging modality, compared with the ocular 

fundus photography and fundus fluorescein angiography. Particularly, with the recent 

advancement of this technology from time domain to spectral domain optical coherence 

tomography (SD-OCT) [2], currently, the OCT has been widely used in the diagnosis and 

assessment of a variety of ocular diseases such as diabetic retinopathy, glaucoma and 

CSR [3-5]. However, lacking fast and accurate quantification approach for more 3D OCT 

data, it is unwelcome for clinicians or ophthalmologists to diagnose directly for retinal 

diseases by calculating nerve fiber layer thickness, or inner plexiform layer thickness, or 

total retinal thickness. Therefore, it has been actively explored for OCT image 
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segmentation during the last two decades, and a number of retinal layer segmentation 

algorithms of OCT images data have been proposed to improve the clinical benefit of the 

OCT technology. Based on the dimension (D) of the image analysis, depending on the 

exploration of the single pixel’s intensity and gradient information, the OCT segmentation 

algorithms mainly concentrated on the two categories of the single pixel and superpixel as 

follows.  

The early single pixel method used a 1-D edge detection kernel approach to measure 

total retinal thickness. Koozekanani et al., employed a Markov random field (MRF) 

model to detect robustly the inner and outer retinal boundaries for macula OCT images 

[6].  

Then, Mishra et al. also proposed a modified active contour algorithm that achieved 

accurate intra-retinal segmentation on low contrast image [7]. Compared to the initial A-

scan methods, though the active contour algorithm showed good performance in 

resistance to 2D noise and in error, there still exists the limitation of selecting the initial 

seed points of the contour. Pattern recognition techniques have increasingly played an 

important role in medical image segmentation, recently, and a number of unsupervised 

and supervised pattern recognition techniques have explored for the retinal layers 

segmentation. Mayer et al. used an unsupervised technique based on a fuzzy C-means 

clustering method to segment RNFL [8]. Vermeer et al. also presented a support vector 

machine (SVM) classifiers that were able to segment six retinal layers [9], a major 

drawback was that more time was required to complete the segmentation task.  

With the application of the graph optimal method for medical image segmentation, 

graph search technique and graph cuts technique were successively proposed for retinal 

layers segmentation. Haecker et al. firstly performed a complex 3D graph search method 

that successfully extracted two intra-retinal layers [10]. Based on the graph search 

method, combining with regional information, a multilayer segmentation method based 

on the graph cuts was proposed by Garvin et al., and the method demonstrated superior 

results for high quality 3D OCT data [11]. However, the method needs much more 

complex constraints that also lead to the high computation time, and a major flaw was a 

less ideal foveal detection. Recently, Shi and Chen et al. successfully used a multi-

resolution graph search based surface detection method that can automatically segment 

the retinal layers in 3-D OCT data with serous retinal pigment epithelial detachments 

[12]. Besides, the dynamic programming technique emerged as one of the important 

retinal layers segmentation method. Chiu et al. used a dynamic programming technique 

that was able to extract eight retinal boundaries [13], and Yang et al. also introduced a 

dual-scale gradient information model to segment eight retinal layers [14]. Han et al. also 

proposed an intelligent tracking kernel method to segment nine boundaries of eight retinal 

layers [15], but its processing time was also relatively high. 

Recently, Kafieh et al., presented a coarse grained diffusion map method that can 

segment eleven retinal layers [16], the method likes superpixel approaches that can avoid 

noise in OCT images. However, it still needs indirectly locate all the boundaries by single 

pixels, and the coarse graining computation, which result in the high time-consuming. 

Most existing retinal layers segmentation algorithms mainly focus on the single pixel or 

region based on its intensity or gradient within a local context. The single pixel can’t 

greatly reduce the complexity of image processing tasks, and is relatively susceptible to 

speckle noise or artifact. Particularly, for the large 3D OCT images, it will be 

inconvenient for ophthalmologists or clinicians to diagnose. 

 Inspired by superpixel, a graph-based SLIC superpixels and manifold ranking 

algorithm was well focused on the segmentation of the OCT images [17]. Using the 

superpixels and connected components, the novel method can’t only effectively avoid the 

speckle noise or artifact, but also fast and exactly segment the eleven surfaces and ten 

layers. However, there exist also two flaws or limitations in the method. On the one hand, 

in order to avoid the disturbance of the artifact, the number of superpixels need be set 
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beforehand by artificial means. On the other hand, in order to locate the connected 

components of the boundaries ILM and IS/CL, the Dijkstra’s algorithm was utilized, and 

a morphological closing was performed on the two paths with a disk structuring element, 

the step needs not only select a disk structuring element with the right size, but also their 

implementation need a certain processing times. 

This work is motivated by the parameter reduction, speed up, and the exact boundaries 

detection. A novel edge superpixel-based manifold ranking approach focused on intra-

retinal layer segmentation of OCT images, since its eleven intra-retinal boundaries mainly 

correspond to high, middle or low contrast in pixels intensity, positive or negative vertical 

gradient values, and their spatial relationship between intra-retinal boundaries. Fig.1 

illustrates eleven intra-retinal boundaries and surfaces we desired to find in macular 

spectral-domain OCT images.  

In comparision with the single methods and SLIC superpixels method [17], 

contributions in this paper mainly include as follows: 1) A simple adaptive filter was 

designed, and could well replace the superpixel and the Dijkstra’s algorithm to effectively 

remove some disturbances from vitreous artifacts. 2) The edge superpixel was defined, 

and was able to robustly extract the eleven boundaries around macular fovea. 3) The 

proposed method optimized the boundaries detection of the three stages into two stages. 4) 

A novel edge superpixel-based manifold ranking approach can detect the eleven 

boundaries of the macular OCT images with CSR, the errors were not only low, the 

detection was also fast and robust. 
 

 
(a)                                                                          (b) 

Figure 1. Illustrates Segmentation Results of Eleven Intra-Retinal Surfaces 
with Ten Retinal Layers. (a)  Eleven intra-Retinal Boundaries of 2D slice 

image from top to bottom: boundary 1 ILM, boundary 2 NFL/GCL, boundary 
3 GCL / IPL, boundary 4 IPL/INL, boundary 5 INL/OPL, boundary 6 OPL/ONL, 

boundary 7 ELM, boundary 8 IS/CL, boundary 9 CL/OS, boundary 10 
OS/RPE, and boundary 11 BM/Choroid. (b) The Segmented Surfaces of 3D 

OCT image (T: temporal; I: inferior; N: nasal; S: superior). 

Under fewer parameters and faster time, the research demonstrated that such an 

optimal approach was able to automatically segment eleven boundaries of ten retinal 

layers in OCT images, and improve the accuracy, efficiency, and robustness of retinal 

layers segmentation. 

The rest of this paper is organized as follows, Section 2 defines the edge superpixel, 

briefly introduces the construction of the weighted graph and the manifold ranking 

method, and describes detailly the proposed intra-retinal layers segmentation algorithm 

using edge superpixel and graph-based manifold ranking technology. Section 3 presented 

the experiments and results. Finally, Section 4 concludes the paper. 
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2. Material and Methods 
 

2.1. Edge Superpixel 

Superpixels are some meaningful atomic regions by dividing the whole pixels. Not 

only they can retain the rigid structure of the pixel grid, but also extract image redundancy 

and greatly reduce the complexity of subsequent image processing tasks. The superpixels 

are also becoming increasingly popular in computer vision applications, such as object 

detection [18] and saliency detection [19].  

In this work, inspired by the theory of the vertex coloring and edge coloring in 

graph theory [20], the edge superpixel was defined by the connected components, 

and makes the boundary detection easier to understand and analyze. It is shown as 

Figure 2e that fourteen edge superpixels can be detected by a classic canny edge 

detector [21]. And the positive edge superpixel was defined by the edge superpixel  

whose vertical gradient value is positive, conversely, and was called the negative 

edge superpixel. They are some perfect examples that the boundaries 1, 3, 5, 7, 8, 

and 10 all correspond to the positive edge superpixels as shown the edges in Figure 

2c and the blue and red edges in Figure 3k, and the other three boundaries 

correspond to the negative edge superpixels as shown the other color edges in 

Figure.3k. 

 

2.2. Weighted Graph Construction and Affinity Matrix 

It is shown as the Figure 2e, a weighted graph G=(V, E, W) is constructed by the edge 

superpixels, well represents OCT image, and exploit the texture information and the 

spatial relationship. Where each node corresponds to an edge superpixels. The edge set E 

is a set of undirected edges, and W denotes the affinity matrix that represents the weights 

of the edges between two arbitrary nodes. In this work, each node is not only connected to 

those nodes neighboring it, but also connected to the nodes with its neighboring node, 

such as the two blue nodes as shown in Figure 2e. It is clear that the weighted graph G is a 

sparse. That is, the affinity matrix W is sparse matrix, which is also able to upgrade 

compute rate. In this work, W is defined by Eqs.1, due to eleven intra-retinal boundaries 

of the OCT image mainly correspond to low, middle or high contrast in pixels intensity, 

positive or negative vertical gradient values, and their spatial relationship between intra-

retinal boundaries. 
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Where ( , )i i iF f g  or ( ig , iy ), 
if  is the sum of the edge superpixel corresponding to a 

node in the intensity of the pixels,
 ig denotes the sum of the edge superpixel 

corresponding to a node in the gradient value of the pixels, iy
 
is the mean of the edge 

superpixel corresponding to a node in the row-coordinate of the pixels, Xi and Yi denote 

respectively the start and end vertex of edge superpixel corresponding to a node in the 

coordinate of the pixels, for i, j=1,2,…,|V|. In Eq.1, naturally, texture information could be 

captured by the first term, and spatial relationship information by the second term. That is, 

the closer their intensity value or spatial distance, the higher the affinity value W(i, j) 

between nodes. So that Eq.1 can represent texture information and constraint spatial 

relationship well. 

 

 

 



International Journal of Future Generation Communication and Networking 

Vol.10, No.6 (2017) 

 

 

Copyright ⓒ 2017 SERSC      85 

2.3. Manifold Ranking 

The manifold ranking method is used to exploit the intrinsic manifold structure of data 

for labeled graph [22], essentially, can be equivalent to a one-class classification problem 

[23], and has achieved great success on image saliency detection [19]. Generally, for a 

dataset *

1 2{ , , , } m n

nX x x x  , and a weighted graph G = (V, E, W) is constructed for 

the dataset X, where the nodes set V are the same to the dataset X, the edges set E={eij| 

eij=(xi, xj), i, j=1,2,…,n } and the affinity matrix W =[wij]n×n. Thereby, the degree matrix D 

is equal to 
11 22{ , ,..., }nndiag d d d , where 

ii ijj
d w . Then, similar to the spectral 

clustering algorithms [24], the optimal ranking problem can be computed by the Eq.2. 

Certainly, the optimal ranking solution could be conveniently written as by Eq. 3 using 

the unnormalized Laplacian matrix. 
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Where the first term represents the smoothness constraint, that is, if both the vertices xi
 
 

and xj are adjacent, then their rank scores fi and fj should not change too much. The second 

term is the fitting constraint, that is, fi should not differ too much from the initial query 

assignment yi. The parameter µ  can well control their balance. 

 
* 1( ) ,f D W y            …….(3) 

 

Where the vector y consists of zeros and some queries that are assign a positive ranking 

score (such as 1), and zero to the remaining points. 

 

2.4 Boundaries Detection by Two-stage 

In this section, the proposed two-stage scheme is utilized for OCT boundaries detection 

using edge superpixels and graph-based manifold ranking method with texture 

information, the spatial relationship. 

 

2.4.1 Detect the two prominent boundaries: The ILM and IS/CL are the two most 

prominent boundaries among eleven boundaries in an SDOCT retinal image, due to 

their high contrast in pixel intensity. Thereby, both ILM and IS/CL boundaries are 

firstly extracted by the proposed algorithm as follows. Inevitably, it is possible that 

some intrinsic speckle noise and vitreous artifacts make disturbance to exactly 

extract their endpoints, for example, in the upper left and upper right corner of 

Figure 2a, there exist two vitreous artifacts. 

Firstly, in order to simultaneously reduce noise and preserve edges, a classic and 

effective median filter is quickly performed in OCT images as shown in Figure 2b. 

Subsequently, a classic canny edge detector is used to detect the high contrast edge 

superpixels by high threshold, so that the significant boundaries could be not only 

detected, but also could remove the false boundaries as shown in Figure 2c. The high 

threshold value is equal to the half of the automated threshold. For the possible presence 

of two vitreous artifacts, which easily joint with ILM boundary in Figure 2c. Using the 

spatial cues of the endpoints with the edge superpixels, an adaptive filter was designed to 

automatically cut the joint between the true boundary and the false boundary. Namely, for 

the left region of the macular center, if the right endpoint of one edge superpixels is 

adjacent with the other edge superpixels above it, then the latter will be cut in the right 

endpoint of the former. Conversely, for the right region of the macular center, if the left 

endpoint of one edge superpixels is adjacent with the other edge superpixels above it, then 
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the latter will be cut in the left endpoint of the former. The yellow edge of the vitreous 

artifact is effectively cut by the adaptive filter as shown in Figure 2d. Next, a weighted 

graph G=(V,E,W) is constructed by the edge superpixels, and its affinity matrix W is 

computed by Eq.1, where the ( , )i i iF f g . Then, all nodes are ranked according to their 

final ranking scores by Eq.3. Where the queries are automatically selected two nodes from 

the highest gradient value of the nodes as shown in Figure 2f, so that the queries of both 

ILM (up) and IS/CL (down) could be selected. Figure 2g shows the result of the edge 

superpixels with manifold ranking, which could not only well reserve the edge 

superpixels both ILM and IS/CL, but also effectively reject some edge superpixels of the 

other salient noise boundaries relative to the result of Figure 2d. Finally, in order to show 

so much smooth boundary, respectively, the results are enhanced by sixteen and twenty 

orders polynomial smoothing as shown in Figure 2h. Meanwhile, the other edge 

superpixels can be restricted to successively two smaller search areas as shown in Figure 

2i, respectively, all the other boundaries are detected as follows.  

 

 
(a)    (b)    (c) 

 
(d)    (e)    (f) 

 
(g)    (h)    (i) 

Figure 2. Images show how the ILM and IS/CL boundaries are found via the 
graph-based manifold ranking approach. (a)Original OCT image. (b) Result 
of applying median filter.(c) High contrast edge superpixels.(d) Result of 
applying an adaptive filter. (e) Our graph mode (f) Automatically selected 

queries the ELM and IS/CL boundaries. (g) Detected the edge superpixels of 
both ILM and IS/CL boundaries by manifold ranking method. (h) Result of 

the ILM and IS/CL boundaries after smoothing. (i) The main edge 
superpixels 

2.4.2 Detect the other weak boundaries: In order to the next segmentation step in the 

smaller image sizes and more consistent shape, and make visualization easier and 

conform to clinical practice [12], firstly, the OCT image is aligned according to the 

boundary IS/CL. Then, the low and middle contrast edge superpixels can be also 

detected in the aligned image by a classic canny edge detector with low-valued 
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threshold (0.05*automated threshold), which detects the significant boundaries and 

preserves other potential boundaries as shown in the Fig. 2i. During the remaining 

nine boundaries, in the spatial relationship, the boundaries 2, 3, 4, 5, and 6 are 

between the boundary ILM and boundary IS/CL, and the boundaries 7, 9, 10 and 11 

are around the boundary IS/CL. In the texture relationship, due to the contrast of the 

boundary 5 is higher than the contrast of the boundary 3, the detection of the 

boundary 5 is easily compared to the boundary 3, though they all correspond to the 

positive edge superpixels. Similarly, the detection of the boundaries 4 and 6 are 

easily compared to the boundary 2, though they all correspond to the negative edge 

superpixels. Both the detection of the boundaries 7 and 10 all correspond to the 

positive edge superpixels, conversely, both the detection of the boundaries 9 and 11 

all correspond to the negative edge superpixels, their contrasts are similar each 

other. Therefore, the boundaries 5, 4, 6, 2, 3, 7, 9, 10 and 11 could be successively 

detected by manifold ranking method as follows. 

Next, successively, we could construct the weighted subgraphs G5=(V5, E5, W5), 

G3=(V3, E3, W3) G7=(V7, E7, W7) and G10=(V10, E10, W10) by the positive edge superpixels, 

and G4=(V4, E4, W4), G6=(V6, E6, W6), G2=(V2, E2, W2), G9=(V9, E9, W9), G11=(V11, E11, 

W11) by the negative edge superpixels. And then their affinity matrices W5, W4, W6, W2, 

W3, W7, W9, W10, and W11 are also computed successively by Eq.4 and Eq.1. Where 

( , )i i iF g y  in Eq.1, whose purposes are able to constraint spatial and texture relationship 

between nodes well. 
 

     
(a)                            (b)                            (c)                          (d)                       (e) 

     
(f)                            (g)                            (h)                             (i)                        (g) 

  
        (k)                       (l) 

Figure 3. Images show how the boundaries between ILM and IS/CL are 
found via the graph-based manifold ranking approach. (a)–(e)The queries of 

the boundary 5 INL/OPL, boundary 4 IPL/INL, boundary 6 OPL/ONL, 
boundary 2 NFL/GCL, and boundary 3 GCL/IPL, respectively. (f)-(j) Result of 

the edge superpixels of the boundary 5 INL/OPL, boundary 4 IPL/INL, 
boundary 6 OPL/ONL, boundary 2 NFL/GCL and boundary 3 GCL/IPL with 
manifold ranking, respectively. (k) Ranked the edge superpixels between 

boundaries 2 and 6. (l) Result of boundaries 2, 3, 4, 5 and 6 after smoothing. 
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            1 2 21, , . ( ) ( )* * .* ( ) .* ,kk k G R i ik k k RW i j W i j sgn s W i sgn W i x sgn xbd d bd d W i      (4) 

 

Where WG(i)= ig , WR(i)= iy , i=1, 2, … , |V|, and k=2,3,4,5,6,7,9,10, and 11. In the 

Eq.4, the first term W(i, j) is from Eq.1. The second term sgn(sk*WG(i)) presents the 

positive or negative edge superpixels, and the variable sk is 1 when the node represents the 

positive edge superpixel, conversely, sk is -1. The third and fourth terms are the spatial 

constraint. For the kth boundary, both bdk1( ix )+dk1 and bdk2( ix )+dk2 represent the upper 

and lower bound of the ith node, namely, the product of both the third and fourth terms is 

1 if the ith node belongs to the corresponding region, otherwise, it is zero. Where ix  

denotes the mean of edge superpixels corresponding to the ith node in the column-

coordinate of the pixels. Therefore, in neighboring regions, the Wk(i, j) is a positive value 

when both two nodes are positive or negative edge superpixels, conversely, Wk(i, j) is 0. 

So that Eq.4 can present texture information and constraint spatial relationship well. 

For that reason, in Eq.4, the s5, s3 s7 and s10 are equal to 1, and conversely the 

other si is equal to -1. In Eq.4, let dyij denote the mean distance of the row-

coordinate of the ith boundary and the jth boundary. For k=5, let both bdk1 and bdk2 

respectively correspond to the boundary 1 and boundary 8, so d51 and d52 are 

respectively equal to 0.1*dy18 and -0.25*dy18. For k=4 and 6, both bd41 and bd42 all 

correspond to the boundary 5, both bd61and bd62 respectively correspond to the 

boundary 5 and boundary 8, d41 is equal to -0.25*dy15, d42 is equal to -1, d61 is equal 

to 1, and d62 is equal to -12. For k=2, both bd21 and bd22 respectively correspond to 

the boundaries 1 and 4, d21 is equal to 1, and d22 is equal to -0.3*dy14. For k=3, 

bd31and bd32 respectively correspond to the boundary 2 and the boundary 4, d31 and 

d32 are respectively equal to 1 and -1. Finally, for k=7, 9, 10 and 11, let both bdk1 

and bdk2 correspond to the boundary 8, d71 and d72 be respectively -10 and -1, and 

conversely d91=1, d92=10, d101=3, d102=20, d111=10, and d112=25. 

Then, successively, the nodes of the nine affinity matrices are ranked according to their 

final ranking scores by Eq.3. For the 5th and 3rd boundaries, respectively, their queries 

are automatically selected two nodes from the highest gradient value of the nodes for the 

left and right parts of the own boundary as shown in Fig. 3a and 3e, which could avoid no 

connectivity of the boundary due to its low contrast in pixel intensity around macular 

fovea. Conversely, For the 6th, 4th  and 2nd boundaries, respectively, their queries are 

automatically selected two nodes from the lowest gradient value of the nodes for the left 

and right parts of the own boundary as shown in Fig. 3b, 3c and3d. Fig. 3f-3j show the 

results of the edge superpixels that are optimally ranked by manifold ranking method, 

from left to right, and belong to the boundaries 5 ,4, 6, 2 and 3. By contrast, due to the 

boundaries 7, 9, 10 and 11 are barely affected by macular fovea. For the 7th and 10th 

boundaries, respectively, their queries are automatically selected one node from the 

highest gradient value of the nodes. Conversely, for the 9th and 11th boundaries, 

respectively, their queries are automatically selected one node from the lowest gradient 

value of the nodes. Fig. 4a shows the four edge superpixels are successively belong to 

queries of the boundaries 7, 9, 10 and 11 from up to down. Fig. 4b shows the results of the 

edge superpixels that are optimally ranked by manifold ranking method, from up to down, 

and belong to the boundaries 7, 9, 10 and 11. The ranking results could not only 

effectively reject some edge superpixels of the other salient noise boundaries, but also 

well reserve the edge superpixels of the five and four boundaries as shown in the Fig. 3k 

and Fig. 4b, relative to the Fig. 2i. Particularly, in Fig. 4b, such as the right end of the 

boundary 7 can’t be detected, since its low or middle contrast in pixel intensity. 

Nevertheless, in order to the next smoothing step, the right end of the boundary 7 is 

defined to the mean vertical distance of the edge superpixels between the detected 

boundary 7 and 8. 



International Journal of Future Generation Communication and Networking 

Vol.10, No.6 (2017) 

 

 

Copyright ⓒ 2017 SERSC      89 

Finally, in order to show so much smooth boundary, for the boundaries 5, 4, 6, 2, 3, 7, 

9, 10 and 11, respectively, the results are enhanced by sixteen, sixteen, sixteen, twenty, 

sixteen, twenty, six, six and six orders polynomial smoothing as shown in Fig. 3l and Fig. 

4c. And Fig.4d shows the extracted results of the eleven boundaries.  

The eleven surfaces form the final segmentation on 3D OCT as shown in Fig.1b. 

 

    
 (a)                                (b)                                (c)                                 (d) 

Figure 4. Images show how the ELM and boundaries below IS/CL are found 
via the graph-based manifold ranking approach. (a) Automatically selected 

queries of the ELM and boundaries below IS/CL. (b) Result of the edge 
superpixels of the ELM and boundaries below IS/CL with manifold ranking 

approach. (c) Result of boundaries 7, 9, 10 and 11 after smoothing. (d) Final 
segmentation for the original image after smoothing. 

The main steps of the proposed lay segmentation algorithm are summarized in 

Algorithm 1. 

 

 

Algorithm 1 

Input: An OCT image and required parameters 

Step1. Detect the two prominent boundaries. 

Step 1.1 Detect the high contrast edge superpixels by canny edge detector for filtered 

image. 

Step 1.2 Perform an adaptive filter on edge superpixels image, construct a graph G 

with edge superpixels as nodes, and compute its affinity matrix W by Eq.1, use the 

manifold ranking method to detect their own edge superpixels, and obtain boundaries 

ILM and IS/CL by fitting. 

Step 2. Detect the other weak boundaries  

Step 2.1 Align the filtered image according to the boundary IS/CL. 

Step 2.2 Detect the low and middle contrast edge superpixels by canny edge detector 

for aligned image. 

Step 2.3 Construct nine weight graphs G5, G4, G6, G2, G3, G7, G9, G10 and G11 with 

edge superpixels as nodes, successively, compute their own affinity matrix W by Eq.4, 

and utilize manifold ranking method to extract their own edge superpixels, and obtain 

their own boundaries by fitting. 

Output: The lay segmentation 3D image. 

 

3. Experiments and Results 

We evaluated the proposed algorithm on two different labeled macular OCT datasets 

(Cirrus, Zeiss Meditec). All the 2D OCT slices were scanned from 6 × 2 × 6 mm3 around 

macula-centered 3D OCT volumes, and their main boundaries were manually traced by 

two independent observers (retinal specialists) with the use of a computer-aided manual 

segmentation procedure, and they marked the boundaries as ground truths. The first 

dataset contains 55 slices, which are from 11 different normal human's eyes, and each eye 

randomly selected 5 slices, respectively, there are seven 19 × 496 × 1024 and four 19 × 
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496 × 512 voxels. The second dataset contains 60 slices, is from 12 different abnormal 

human's eyes with CSR. Each eye randomly selected 5 slices whose sizes are 128 × 200 × 

300 voxels, and their resolutions are much lower.  

The proposed algorithm mainly compared with the two independent observers, the 

SLIC superpixels method [17], and the Iowa’s algorithm [11] by the mean signed and 

unsigned border positioning differences of the ILM, NFL/GCL, IPL/INL, INL/OPL, 

OPL/ONL, ELM, IS/CL and BM/Choroid boundaries, since the two independent 

observers did not attempt to trace the GCL/IPL, CL/OS and OS/BM boundaries that are 

considered invisible. In addition, for the purpose of the clinical and medical analysis, the 

thickness map of each layer was respectively plotted by the proposed algorithm in the 

dataset 2.  

In a personal computer (CPU: Core 2, 2.53GHz, RAM: 4 GB), the proposed 

algorithm was implemented in Matlab 2012b, and successfully detected all eleven 

intra-retinal boundaries in the two different datasets. For the full ten layers 

segmentation of each 2D slice, the proposed algorithm took about 5.28s much faster 

than 9.02s [11] and 9.6s [17] in dataset1, and the proposed algorithm also took 

about 2.9s much faster in dataset2. For the mean signed and unsigned border 

positioning differences of the two datasets, Tabels 1, 2, 3 and 4 respectively 

summarize the main boundaries as follows. 

Table1. Unsigned border position differences (mean±SD in pixel) in 
Dataset1 

Border 

Segmenter 

Obs.1vs. 

Obs.2 

Alo_Iowa.vs. 

Avg. Obs 

Alo_SLIC. 

vs.Avg. Obs 

Alo_Proposed. 

vs. Avg.Obs. 

ILM 1.16±0.35 2.70±1.15 0.80±0.19 0.78±0.29 

NFL/GCL 1.88±0.64 3.96±1.62 1.18±0.64 1.06±0.41 

IPL/INL 1.47±0.39 3.41±1.80 1.06±0.49 0.94±0.35 

INL/OPL 1.56±0.40 2.65±1.00 0.94±0.32 1.02±0.36 

OPL/ONL 1.80±0.56 2.46±0.69 1.13±0.57 1.13±0.46 

ELM 1.14±0.42 --- 0.98±0.45 1.31±0.66 

IS/CL 1.03±0.24 1.33±0.38 0.72±0.52 0.65±0.22 

BM/Choroid 1.51±0.54 1.70±0.38 0.90±0.25 0.90±0.28 

Overall 1.44±0.13 2.60±0.57 0.96±0.16 0.97±0.14 

 

For the dataset1, the Table 1 demonstrates that all the mean unsigned errors between 

the proposed algorithm vs. the reference standard are less than 1.31 pixels, are closed to 

the two independent observers, are similar with the SLIC superpixels algorithm, 

particularly, and less than the Iowa algorithm vs. the reference standard. In Table 2, for 

the mean signed border positioning differences, all the errors computed between the 

proposed algorithm vs. the reference standard are so much better than ±0.41 pixels and the 

Iowa algorithm vs. the reference standard. Particularly, the overall error -0.02 pixels 

approximates to zeros. 

Table 2. Signed border position differences (mean±SD in pixel) in Dataset 1 

Border 

Segmenter 

Obs.1vs. 

Obs.2 

Alo_Iowa.vs. 

Avg. Obs 

Alo_ SLIC. 

vs.Avg. Obs 

Alo_Proposed. 

vs. Avg.Obs. 

ILM -0.07±0.80 -2.43±1.32 -0.38±0.33 -0.37±0.40 

NFL/GCL -1.65±0.81 0.82±2.19 0.05±0.52 0.06±0.42 

IPL/INL -0.60±0.73 1.40±2.16 0.28±0.62 0.32±0.43 

INL/OPL -0.61±0.76 0.66±1.41 -0.15±0.56 -0.20±0.60 
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OPL/ONL -0.23±0.98 0.25±1.46 0.07±0.50 0.13±0.58 

ELM 0.32±0.79 --- 0.57±0.57 -0.16±1.14 

IS/CL -0.21±0.61 -1.22±0.46 -0.30±0.65 -0.33±0.41 

BM/Choroid -0.91±0.59 -1.56±0.44 0.44±0.30 0.41±0.34 

Overall -0.49±0.13 -0.30±0.71 0.07±0.13 -0.02±0.26 
 

 

Figure 5. Comparison of the Iowa algorithm (Left ) vs. the proposed 
algorithm (Right) segmentation on OCT image 

Hereon, obviously, it is shown as Fig.5 that the detections of the proposed 

algorithm were much better than the detections of the Iowa algorithm around the 

macular fovea, which makes it difficult to detect some boundaries since their contrasts 

are much lower. For seven OCT image with 19 × 496 × 1024 voxels, Fig.6 further 

illustrates that the unsigned border positioning errors of the main boundaries 

corresponding to every column, these errors computed between the proposed algorithm 

and the reference standard were less than those computed between the method of the Iowa 

and the reference standard. Both the Fig.5 and Fig.6 also well demonstrate the reasons 

that the proposed algorithm was much better than the method of Iowa in Tables 1 and 2. 

 

0 200 400 600 800 1000 1200
0

1

2

3

4

5

6

7

ILM

A-scan(Column)

P
o

s
it
io

n
 d

if
fe

re
n

c
e

s
 (

m
e

a
n

 i
n

 p
ix

e
l)

 

 

Algo_Iowa vs Avg.Obs

Algo_Proposed vs Avg.Obs

0 200 400 600 800 1000 1200
0

2

4

6

8

10

12

NFL/GCL

A-scan(Column)

P
o

s
it
io

n
 d

if
fe

re
n

c
e

s
 (

m
e

a
n

 i
n

 p
ix

e
l)

 

 

Algo_Iowa vs Avg.Obs

Algo_Proposed vs Avg.Obs

 

0 200 400 600 800 1000 1200
0

2

4

6

8

10

12

IPL/INL

A-scan(Column)

P
o

s
it
io

n
 d

if
fe

re
n

c
e

s
 (

m
e

a
n

 i
n

 p
ix

e
l)

 

 

Algo_Iowa vs Avg.Obs

Algo_Proposed vs Avg.Obs

0 200 400 600 800 1000 1200
0

2

4

6

8

10

INL/OPL

A-scan(Column)

P
o

s
it
io

n
 d

if
fe

re
n

c
e

s
 (

m
e

a
n

 i
n

 p
ix

e
l)

 

 

Algo_Iowa vs Avg.Obs

Algo_Proposed vs Avg.Obs

 

0 200 400 600 800 1000 1200
0

2

4

6

8

10

OPL/INL

A-scan(Column)

P
o

s
it
io

n
 d

if
fe

re
n

c
e

s
 (

m
e

a
n

 i
n

 p
ix

e
l)

 

 

Algo_Iowa vs Avg.Obs

Algo_Proposed vs Avg.Obs

0 200 400 600 800 1000 1200
0.5

1

1.5

2

IS/CL

A-scan(Column)

P
o

s
it
io

n
 d

if
fe

re
n

c
e

s
 (

m
e

a
n

 i
n

 p
ix

e
l)

 

 

Algo_Iowa vs Avg.Obs

Algo_Proposed vs Avg.Obs

 



International Journal of Future Generation Communication and Networking 

Vol.10, No.6 (2017) 

 

 

92   Copyright ⓒ 2017 SERSC 

0 200 400 600 800 1000 1200
0.5

1

1.5

2

2.5

3

3.5

BM/Choroid

A-scan(Column)

P
o

s
it
io

n
 d

if
fe

r
e

n
c
e

s
 (

m
e

a
n

 i
n

 p
ix

e
l)

 

 

Algo_Iowa vs Avg.Obs

Algo_Proposed vs Avg.Obs

0 200 400 600 800 1000 1200
0

1

2

3

4

5

6

7

Overall

A-scan(Column)

P
o

s
it
io

n
 
d

if
f
e

r
e

n
c
e

s
 
(
m

e
a

n
 
in

 
p

ix
e

l)

 

 

Algo_Iowa vs Avg.Obs

Algo_Proposed vs Avg.Obs

 

Figure 6. The Error Result Plots Show the Border Position Differences of 
the Main Seven Boundaries between the proposed Algorithm vs. the Iowa 

Algorithm in Dataset 1 

  

Figure 7. The Error Result Plots Show the Border Position Differences of 
the Main Eight Boundaries between the proposed Algorithm and the 

Reference Standard in the dataset 2, when the degree N of the Polynomial 
Curve Fitting is set from 6 to 32 or 14 to 40. Left: the Signed Border Position 

Differences. Right: the Unsigned Border Position Differences 

For the degree N of the polynomial curve fitting, respectively, we computed the signed 

and unsigned border position errors of the main eight boundaries between the proposed 

algorithm and the reference standard as shown in Figure 7. The result plot shows that the 

signed and unsigned border positioning errors of the overall and most fitting boundaries 

are only small fluctuations when the degree N of the polynomial curve fitting is set from 6 

to 32 or 14 to 40. Therefore, the result plots suggest that the edge superpixels of the most 

boundaries are always continuously and perfectly extracted by our proposed algorithm. 

Certainly, for the relative larger errors fluctuations of the boundaries 2 and 4, it is possible 

that low contrast in local region results in the discontinuous edge superpixels, such as the 

edge superpixels of the boundaries 2 in Figure 3i, or personal errors between the proposed 

algorithm and the reference standard. The Tabels 1, 2 and Figure 7 sufficiently 

demonstrate that the proposed algorithm can not only effectively detect main boundaries, 

but also take on a good robustness around the macular fovea. 
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Figure 8. Comparison of Automatic (yellow) versus the Reference Standard 
(red) segmentation on images with blood vessel artifacts. (column a) 
Original image.( column b) Detected the edge superpixels with our 

proposed automatic method. (column c) Final segmentation with our 
proposed automatic method after smoothing. (column d) Comparison of 

automatic (yellow) versus the reference standard (red) 

It is possible presence of organic texture artifacts in OCT image, for example, in the 

upper left or upper right corner in Figure 8a, which easily joint with ILM boundary, and 

caused inaccuracy in the detection of ILM boundary. Besides, the blood vessels generally 

result in discontinuities in macular OCT images, and it is inevitable challenge for 

automated segmentation thickness map generation [25]. The Figure 8 demonstrates that 

the proposed algorithm could effectively overcome organic texture artifacts and the blood 

vessel discontinuity problem, and improve the accuracy of the detection of boundaries. 

Because the proposed algorithm designed a simple adaptive filter, and an affinity matrix 

was incorporated neighboring information based on the edge superpixels of the graph. 

For the macula 3D OCT images with CSR, which seriously affect the boundary 

detection, and become challenging due to the degradation of image quality and some 

additional structures [4, 12]. Tabel 3 and 4 show that the mean unsigned border 

positioning differences and the mean signed border position differences in the dataset 2 

between the two independent observers vs. the reference standard, and the proposed 

algorithm vs. the reference standard. For the mean unsigned border positioning 

differences, Tabel 3 illustrates that all the mean errors between the proposed algorithm vs. 

the reference standard were less than 1 pixel, and were closed to the two independent 

observers. In Tabel 4, for the mean signed border positioning differences, all the errors 

computed between the proposed algorithm vs. the reference standard all so much better 

than ±0.34 pixels, and were closed to those errors between the two independent observers 

vs. the reference standard. Particularly, though the boundaries NFL/GCL and 

BM/Choroid are affected, the errors of the proposed algorithm also suggest that the 

proposed algorithm can also effectively detect main boundaries of macula 3D OCT 

images with CSR.  

Table 3. Unsigned Border Position Differences (mean±SD in pixel) in 
Dataset2 

Border 

Segmenter 

Obs.1vs. 

Obs.2 

Alo_Proposed.

vs. Obs.1 

Alo_Proposed.

vs. Obs.2 

Alo_Proposed. 

vs. Avg.Obs. 

ILM 0.54±0.15 0.51±0.11 0.52±0.15 0.49±0.08 

NFL/GCL 0.59±0.21 0.82±0.20 0.84±0.24 0.80±0.18 

IPL/INL 0.64±0.24 '0.73±0.24 0.73±0.21 0.69±0.20 

INL/OPL 0.57±0.20 0.64±0.18 0.70±0.19 0.64±0.15 
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OPL/ONL 0.59±0.21 0.63±0.16 0.61±0.15 0.59±0.12 

ELM 0.56±0.20 '0.62±0.20 0.70±0.20 0.64±0.15 

IS/CL 0.52±0.17 0.47±0.12 0.47±0.17 0.45±0.10 

BM/Choroid 0.66±0.24 0.91±0.31 '0.93±0.37 0.88±0.33 

Overall 0.58±0.03 0.67±0.06 '0.69±0.07 0.65±0.08 

Table 4. Signed Border Position Differences (mean±SD in pixel) in Dataset 2 

Border 

Segmenter 

Obs.1vs. 

Obs.2 

Alo_Proposed.

vs. Obs.1 

Alo_Proposed.

vs. Obs.2 

Alo_Proposed. 

vs. Avg.Obs. 

ILM -0.03±0.34 0.27±0.21 '0.24±0.25 0.26±0.15 

NFL/GCL 0.03±0.35 -0.01±0.39 0.02±0.38 0.01±0.34 

IPL/INL 0.22±0.34 -0.34±0.25 -0.12±0.34 -0.23±0.24 

INL/OPL 0.17±0.30 0.01±0.32 0.18±0.30 0.09±0.27 

OPL/ONL -0.00±0.40 -0.21±0.26 -0.21±0.30 -0.21±0.20 

ELM 0.18±0.37 0.06±0.54 0.25±0.59 0.15±0.53 

IS/CL 0.08±0.33 -0.18±0.23 -0.10±0.22 -0.14±0.16 

BM/Choroid 0.11±0.49 -0.16±0.54 -0.05±0.63 -0.11±0.53 

Overall '0.09±0.06 -0.07±0.13 0.03±0.15 -0.02±0.15 

 

Figure 9 also shows a typical segmentation results for a three-dimensional volume of a 

CSR eye from dataset2, and illustrates the corresponding segmented 3D surfaces for the 

ILM, NFL/GCL, IPL/INL, IS/CL and BM/Choroid, and the corresponding 2D thickness 

maps for the NFL, ganglion cell complex (GCC: from 2nd to 4th boundary), OPL, 

CL+OS and the total retina. 
 

50th

N T N T

54th

N T

58th

N T

62nd

N T

66th

 
ILM NFL/GCL IPL/INL IS/CL BM/Choroid

 

NFL

m

N

S I

m
N

S I

GCC

m
N

S I

OPL

m
N

S I

CL+OS

m
N

S I

Total

 

Figrue 9. Results of a CSR 3D vertical scan volume. (row a) five B-scans 
(the 50th, 54th, 58th, 62nd, 66th and 70th images) of this volume. (row b) 

The segmented surfaces of 3D OCT image (surface 1 ILM, surface 2 
NFL/GCL, surface 4 IPL/INL, surface 8 IS/CL, and surface 11 BM/Choroid). 
(row c) NFL, GCC, OPL, CL+OS, and total retinal thickness maps covered 

6x6 mm2 area 
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4. Conclusion 

Inspired by superpixels, this paper well defined the edge superpixels, designed an 

adaptive filter, and proposed a graph-based manifold ranking method to segment macular 

retinal layers in 3D OCT images. It made the edge superpixel to substitute for single 

pixel, and considered the edge superpixels as nodes, which incorporated gradient cues and 

spatial priors of the edge superpixels. Based on the gradient sum and spatial distance of 

the edge superpixels, we utilized graph-based manifold ranking approach to extract 

corresponding boundaries. By testing a normal macular 3D OCT dataset and a macular 

3D OCT dataset with CSR, We evaluated the proposed algorithm on main boundaries 

error. The experiments demonstrated promising results with comparisons to the manual 

tracings of two independent observers and the method of the [11, 17]. The proposed 

algorithm can not only overcome the organic texture artifacts and speckle noise, but also 

be computationally efficient, and be not relatively susceptible to the low contrast of 

macular fovea and the bad structure of the CSR. Therefore, the proposed algorithm is a 

fast, effective and robust layer segmentation method of macular OCT images. The future 

work will focus on the segmentation and thickness analysis of retinal layers in OCT 

images with ocular disease problems. 
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