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Abstract 

For secure transmission of multimedia data into diverse receivers with different types 

of terminals, a compressive sensing (CS) based secure communication model (CS-SCM) is 

proposed. In CS-SCM, the multimedia data and sensing matrix are represented to the 

transcoder in the CS domain to protect the digital content. Meanwhile, the transcoder can 

securely transform sensed multimedia data with a certain number of CS measurements to 

reconstruct the original signal with a higher probability. Extensive experimental results 

have shown that the secure transmission and reconstruction of the multimedia signal over 

the network can be achieved.  

 

Keywords: Compressive sensing, Secure communication model, Multimedia 

transmission 

 

1. Introduction 

With the increasing massive availability of multimedia data over the Internet, secure 

transcoding technique has become as a core for converting various types of the data 

before transmission from a sender to a diversity of multiple receivers equipped with 

different devices, such as smart phones, PDAs, notebooks, PCs, or digital TV [1]. In such 

scenarios, the data needs be transcoded at the sender side once, where the transcoder 

transforms the data to fit a sort of capabilities or requirements according to various 

bandwidths, frame rates, resolutions, bit rates and data formats. For privacy and data 

protection, secure multimedia communication is particularly emphasized where 

encryption is needed to avoid potential risks of interception or eavesdropping in violating 

the copyright of the digital content [2]. To this end, compression and encryption prior to 

transmission is critical for secure communication and transmission of multimedia data.  

To transform the encrypted multimedia signal into other data types, secure transcoding 

techniques are proposed in Apostolopoulos [2] and Thomas et al [3], where the original 

signal cannot be recovered even if the decompressed encrypted signal is leaked out. 

However, most of the existing secure works assume that the encrypted contents are 

publicly available and focus on the security of the encryption pattern, while the data 

privacy of the target multimedia on which the secure signal recovery is performed has 

received little attention. Due to the advancements of its theory [4] and the corresponding 

single-pixel camera architecture [5], the compressive sensing (CS) has become a new data 

acquisition and compression paradigm based on their sparse or compressible properties 

[6-7]. How to apply CS into secure multimedia communication becomes a research 

hotspot. 
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In this paper, we propose a CS based secure communication model (CS-SCM) for 

secure multimedia communication, where CS are employed to obtain a sparse 

representation of the original signal and sense the sparse signal with CS measurement 

matrix controlled by a secure key [8-9]. The great advantage of the CS-SCM is that the 

compression/decompression process undertaken are efficient and generic for a wide range 

of applications, where the CS-based watermarking techniques is more robust and 

tamper-proof as compared to existing encryption approaches [10-11]. The main 

characteristics of the proposed CS-SCM approach can be highlighted as follows: i）Even 

without performing complete decryption and decompression in a secure transform during 

the process of compressive re-sensing, secure transcoding of CS-SCM can be achieved by 

utilizing the inherent security of the CS, and ii) The original signal may be reconstructed 

with a higher quality in CS-SCM when combining the CS measurement matrix. As a 

result, it has provided a generic solution for secure multimedia communications. 

The rest of this paper is organized as follows. Section 2 describes the related work of 

CS theory and introduces the proposed CS-SCM model. Implementation of the proposed 

model are discussed in Section 3. Section 4 presents the related security analysis of the 

CS-SCM model in constructing the original signal in CS domain. Section 5 summarizes 

experimental results for secure multimedia transmission over the Internet. Finally, some 

concluding remarks are drawn in Section 6. 

 

2. The Proposed CS-SCM Framework 

In this Section, background introduction to the CS theory and sparse representation is 

discussed in the first two subsections, followed by the proposed CS-SCM model as 

detailed below. 

 

2.1. Compressive Sensing  

The CS theory [4] and [12] asserts that when a signal can be represented by a small 

number of nonzero coefficients, it can be perfectly recovered after being transformed by a 

limited number of incoherent, non-adaptive linear measurements. For a real value signal 

1 NRx , we assume that an orthonormal basis matrix (or dictionary) can provide a K 

sparse representation for the signal, i.e., x , where  can be well approximated 

using only K<<N non-zero entries ， and x can be highly reconstructed by 

NMKKNKOM  )),/log(( , linear and non-adaptive measurements from the random 

projection as xy  , where
1 MRy is a measurement vector, NMR  is a 

measurement matrix that is incoherent with . More precisely, the M measurement of y 

can be considered as linear combination of the entries of x. Then, we can recover θ（or x）
by the l1-minimization or the convex unconstrained optimization with high probability 

[13]. A measurement matrix controlled by a secret key can be generated randomly from 

some distribution. It has been shown that the CS possess a secure computational notion [8] 

and [14]. In other words, without knowing the secret key for generating , it is very 

difficult to reconstruct θ from y. Therefore, a measurement vector y can also be viewed as 

an encrypted version of the original signal x. Furthermore, an over-complete dictionary D 

learned from training some selected samples can be used as a basis for representing the 

original signal. 

 

2.2 Sparse Representation 

Assume that an over-complete dictionary   PN

ppp Rd 




,...,2,1
D ,

PN

p Rd  ,N＜Ｐ，

contains p prototype atoms. For finding the spare representation of a compressible digital 

signal 1 NRx , the CS can compose linearly these atoms to meet the 
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 
2

Dx ,where 
1 PR is the x sparse representation coefficients and 0 is 

an error tolerance. This process can be defined in [6] as: 

     
0

minarg~ 


 subject to  
2

Dx          (1) 

where 
0

 indicates the number of nonzero coefficients of α. The dimension of x is less 

than that of α (P>N). Nevertheless, α is sparse and usually
0

 <<N. So we can combine 

CS and sparse representation, the signal 
1 NRx  can be simultaneously compressed 

and encrypted as xy  , where y can be further expressed as  ADxy 

with DA  and 
PMRA  . Therefore, the signal x can be reconstructed, and can be 

formulated as a convex optimization problem as: 

  
1

2

22

1
minarg~ 


 Ay                                   (2) 

where ,~~ Dx   
NM R is a measurement matrix and  is a non-negative 

parameter. 

 

2.3 The Proposed CS-SCM Framework 

As shown in the diagram in Figure 1, the proposed CS-SCM framework contains three 

main functional blocks, i.e., sender (SD), transcoder (TC) and receiver (RC). For 

simplicity, we describe the proposed CS-SCM using image signals as an input resource in 

this section. Accordingly, the CS-SCM can also be extended to video or other multimedia 

signals acquired or compressed via the CS techniques.  

Specially, the proposed CS-SCM is designed for CS-based multimedia compression 

paradigm, which it is greatly different from those designed for traditional multimedia 

compression techniques (e.g., JPEG-2000 or H.264/AVC). As shown in Fig.1, the SD 

acquires an image data via CS with a certain number of measurements and transmits the 

measurement vector y (compressed image data) to the TC which will securely transcode 

the received y into L measurement vectors of different number of measurements, finally 

the TC switch these vectors to the L legal RC which reconstruct the original image. 
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Figure 1. The Proposed CS-SCM Framework 
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3. The Implementation of the Proposed CS-SCM Framework 

For SD, the CS uses the measurement matrix 
NR  M

(controlled by the secret key 

S) to compress and encrypt a column vector
1 NRx of a signal, and obtain its 

measurement vector 1 MRy , M<N, which be transmitted to the TC. In order to suit 

different requirement of multiple RC, the number measurement (that is the length of y) 

should be decided by the compressing ratio of vector x. For this reason, a scrambled block 

Hadamard matrix (SBHM) is used as measurement matrix   from our previous work in 

[15] , which takes the partial block Hadamard transform for x, followed by randomly 

permuted columns. 

Assuming in Figure 1 the TC in the proposed CS-SCM can store (L+1) different 

matrices including A and iA , where 𝑖 ∈ [1, 𝐿],
PMRA  and 

PM

i
iRA


 . We have 

DA   and DA ii  , where 
M

i R  is generated using the same secret key S.

PNRD  is an over-complete dictionary for sparsely representing ,Dx  and 

1 PR is the sparse coefficients of x, and M, 
iM <N<P, jiMMMM jii  , . The 

dictionary D is learned by using the K-SVD algorithm with the several selected training 

images in [16]. Actually, it should be noted that the TC of the CS-SCM can know only the 

A and 
iA  without knowing S (or and

i ) and D. That is, the A is hard to be correctly 

decomposed into and D (or decompose 
iA into 

i and D) in the TC which will be 

discussed in Sec.4. 

For security reasons, signal reconstruction is unable to be performed followed by 

compressively re-sensing at the TC because a compressively sensed image should be 

decompressed and decrypted simultaneously. Correspondingly, partial signal recovery can 

be achieved in a secure transform domain with target number of measurements by 

re-sensing image in Figure 1. In the following subsection, we will describe three secure 

issues to solve and present corresponding solutions in CS-SCM. 

a) The issue of secure transform at TC: In Eq. (2), the security issue can be 

considered by solving Ay  , which can be formulated as a convex optimization 

problem. In other words, the TC will transform a received measurement vector y into its 

secure coefficient domain α for further processing. The TC can’t reconstruct x through 

Dx  without knowing the dictionary D, and cannot also reconstruct x without 

knowing the measurement matrix . Therefore, the solution ~ can be considered as the 

secure sparse representation of original x. Here, the “sparse reconstruction by separable 

approximation (SpaRSA)” algorithm from [9] will be applied to solve the convex 

optimization problem due to the superior efficient of the algorithm. 

b) The issue of secure re-sensing at TC: this can be formulated as  

  ~ii Ay                                                      (3) 

Eq. (3) can be further expressed as xDAy iiii
~~~   , where ~  is sparse 

coefficient at the TC.From Eq.(3), the compressively re-sensing can the reconstruct signal 

x using i (controlled by key S) with the number iM  of measurements. Similar to the 

first issue, without 
i  the TC is unable to reconstruct x only based on 

iy . Therefore, 

Eq.(3) can be considered as a secure re-sensing process for x. Then, the TC will transmit 

iy  to the i-th legal receiver, i=1,2,...L. 
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c) The issue of reconstruction for the legal RC: This can be translated to solve 

iii By   at the i-th legal RC (
iy  is the solution of the aforementioned second issue) as 

   
1

2

22

1
minarg~

iiiii By
i




                               (4) 

where
iii D , ii PM

i RB


 , and iPN

i RD


 is the dictionary proposed by the i-th 

legal RC itself, and the sparse coefficients of x is  with respect to
iD , and  is a 

non-negative parameter. When the i-th legal RC receives the
NM

i
iRy


 ,then sensing 

matrix 
NM

i
iR


 will
 
be generated

 
using the secret key S, and the dictionary

iD will 

also be offered for sparsely representing the original image x with the corresponding 

coefficients obtained via solving Eq.(4). Finally, original signal x can be approximatively 

reconstructed by iii Dx 
~~  . 

Nevertheless, the i-th receiver may further enhance the reconstructed signal with higher 

quality via some post-processing. In CS-SCM, a recent popular sparse 

representation-based image super-resolution technique [17] is utilized to integrate the 

post-processing with
iy . Assuming that a high-resolution signal is X, a possible operation 

Q uses for projecting X to x, then we have, where Q may be the combination of a blurring 

and a down-sampling operators in [17], D is an over-complete dictionary for sparsely 

representing X by the coefficients. By integrating 
iii By  and, the measurement vector

iy  is alternated as follow:  

iiiiiiiiiiii CQQXxDBy  ˆ                       (5) 

where Z is the sparse coefficients for representing X of the i-th receiver. To solve Eq. (5), 

similar strategy in Eq.(4) can be used with selected Q and D and eventually we have  

   DX                                                      (6) 

where more accurate reconstruction of x can be achieved. 

 

4. Security Analysis 

For security analysis of the proposed CS-SCM in Fig.1, the four attack points around 

the TC will be explored as the possible security problems as follows. 

 The 1st possible attack is the channel attack between the SD and the TC, where the 

measurement vector y may be tampered with some illegals. According to the 

computationally secure property of the CS, If the measurement matrix (generated by the 

secret key S) is unable to correctly obtain, it is difficult to recover the original image x 

from y. 

 The 2nd possible attack is the TC attack, where the matrices A and
iA stored in TC, 

i=1,2,...L, may have been changed. For this point, if attacker cannot know the secret key 

S , correctly decomposing the matrix 
PMRA  into

NMR  and 
PNRD  , or 

decomposing iA into i and D, are impossible, where matrix is the highly sparse 

SBHM controlled by key S and D is learned by the K-SVD algorithm. On the other hand, 

considering the multiplication computer of matrix of SBHM, then exactly recover SBHM 

is impossible when iA  or i can be merely known as it has been showed in [12,13].  

In CS-SCM, the hardness of correctly decomposing the matrix “A” is approximate to 

that of decomposing the matrix “ ”or dictionary “D”. More precisely, we consider more 
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restrictions for “ DA  ” by letting A be orthogonal,  be invertible ,and D be 

symmetric , that is . Where is the inverse of  . In fact, the matrix 
NMR  is usually 

used to reduce signal dimension, and M<N. Then, the matrix may be square (that is 

M=N) and invertible for the special case. In addition, and D are incoherent enough 

CS-based theory, and A can be very approximate to be orthogonal. 

According to [12], we have been known , that D or Ф are impossible to exactly be 

recovered when A can only be known. Even if A is intercepted by some attackers,   

and D are impossible to exactly be recovered. This description is also valid for 

“ DA ii  .” At this point, even if the sparse representation  (with respect to D) is 

intercepted, the reconstruction x is also very hard. 

 The 3rd possible attack is from channel attack between TC and RC when the TC 

transfers the measurement 
iy , i=1,2,...,L to the i-th legal RC, which may be intercepted. 

Similar to the first possible attack, it is difficult to reconstruct x from 
iy  without 

knowing the 
i  (generated by the secret key S). 

 The 4th possible attack can be occurred only from the i-th legal RC, i=1,2,..,L, where 

the secret key S may have been disclosed maliciously and this may destroy the proposed 

CS-SCM. Some possible solutions include: i) more frequently changing the secret key S 

and matrices A and
iA stored in the TC; and ii) digital fingerprinting techniques used in 

traitor. 

 

5. Simulation Results 

We applied our CS-SCM for transmissions of image and video signal compressed by 

the compressive image sensing [12] and our previous compressive video sensing system 

techniques [15], respectively. Each image or video frame is decomposed into several 8×8 

non-overlapping blocks, and each block is individually and compressively sensed by 

block matrix of measurement matrix 
i . In this way, 

i  has a block-diagonal 

structure as given in Eq. (7).  

  ,

000

00

00



























B

B

B

i






 B=8× 8, i=1,2,…L                          (7) 

Considering a communication scenario that the SD transmits each image or video 

frame to the TC, each block is compressively sensed with M (M=N/2) measurements. In 

this case, the TC securely converts the received data into the various types of 

measurement vectors
iy  by ~ii Ay   with 

iM measurements, i= 1, 2, …,L, (M1/N 

=10%, M2/N= 20%, …, ML/N= 80%), respectively. Next, the TC transmits them to the 

multiple different legal receivers (L=10, 100,…,1000). Finally, the i-th receiver receives 

iy  using the secret key S to generate the measurement matrix i  and provides its own 

dictionary iD  to reconstruct the received data via Eq. (4) and Eq. (7) block by block.  

For image signal recovery, the K-SVD algorithm [16] was applied to learn the 

dictionaries depending on 10,240 randomly selected training samples (image blocks) from 

10 training images database. For video signal reconstruction including 

intra-encoded/decoded frame by using our work [15], the dictionary iD  of a key frame 

was learned in a similar way as that used for still images. Note that the proposed CS-SCM 
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is unsuitable for comparisons with existing approaches for traditional compression 

techniques (e.g., JPEG-2000 or H.264/AVC), the CS-SCM is only designed just for 

CS-based compression techniques. 

In our still image based experiment, the normalized correlation (NC) is used for 

calculating the difference between the reconstructed signal at the RC side and the original 

signal at the SD side as defined below  

  


1 2

1 1
),(ˆ),(

N

i

N

j
jiXjiXNC                                       (8) 

where 
1N  and 

2N  denote the height and width of the image, respectively. 

For video signal, the reconstruction quality is determined in terms of Peak 

Signal-to-Noise ratio (PSNR) between the original signal and the received signal. This 

process is repeated 1000 times with different key seeds S for the CS sensing matrix 

pattern and the average PSNR is determined for comparison. The PSNR can clearly 

indicate the quality of every received frame by comparing the degree of diversity between 

the received signal and the original signal. The PSNR and mean square error (MSE) are 

expressed as 

MSE

H
PSNR

2
maxlog10                                              (9) 

 
2

1 1
21

1 2
),(ˆ),(

1
  





N

i

N

j
jiXjiX

NN
MSE                          (10) 

where maxH  is 255 gray value for a gray-level image, 
1N and

2N denote the height and 

width of the video frames, respectively. 

 

5.1. Results for Image Communication in CS domain 

We evaluate the image reconstruction performance in the proposed CS-SCM with 

different bit rates (BR), e.g., BR=2Mbps, 1.5Mbps, 0.5Mbps, respectively. Both the 

image signals and noise signals are transformed to transcoder in the CS domain. 

In our experiments, the original images are obtained from a real gray level Lena with a 

size 512×512 and a fingerprint image with a size 160×160 from the FVC2004 database 

(DB3) [18]. Figures 2-4 show CS-based reconstruction performance as measured in NC 

averaged over 1000 independent RCs. As seen, no matter how BR changes, the NC values 

of the image recovered from our proposed CS-SCM can still exceed 0.89. However, it is 

almost impossible to reconstruct the images with the wrong CS matrix or without a 

knowing key.  
 

       
(a)                             (b)                               (c) 
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(d)                             (e)                               (f) 

Figure 2. The Reconstruction Performance for Lina Image over BR=2Mbps 
Channel 

(a) Original image; (b) Image in 8 × 8 DCT block domain; (c) DCT coefficients after 

CS transformation; (d) Image reconstruction with the wrong CS matrix, NC=0.08; (e) 

Image reconstruction with the CS matrix controlled by key, NC=0.91 and CS rate is 

0.5; (f) Image reconstruction with the CS matrix controlled by key, NC=0.95 and CS 

rate is 0.8. 

 

       
(a)               (b)               (c)               (d) 

Figure 3. The Reconstruction Performance for Fingerprint Image over 
BR=1.5Mbps Channel 

(a) Original image; (b) Image reconstruction with the wrong CS matrix, NC=0.06; (c) 

Image reconstruction with the CS matrix controlled by key, NC=0.89 and CS rate 0.5 

is chosen; (d) Image reconstruction with the CS matrix controlled by key, NC=0.916 

and CS rate 0.8 is chosen. 

 

       
           (a)                 (b)               (c)              (d) 

Figure 4. The Reconstruction Performance for Fingerprint Image over 
BR=0.5Mbps Channel 

(a) Image reconstruction with the wrong CS matrix, NC=0.03; (b) Image 

reconstruction with the CS matrix controlled by key, NC=0.672 and CS rate 0.4 is 

chosen; (c) Image reconstruction with the CS matrix controlled by key, NC=0.736 and 

CS rate 0.5 is chosen. (d) Image reconstruction with the CS matrix controlled by key, 

NC=0.908 and CS rate 1.0 is chosen. 

 

5.2. Results for Video Communication in the CS Domain 

Herein we examine the performance of CS-SCM reconstruction for CS reconstruction 

of video signal. We use the common video sequences “Coastguard” (296 frames), 

“Football” (120 frames), “Hall Monitor” (88 frames), “Mobile” (296 frames), “Mother 

and Daughter” (296 frames), and “Stefan” (296 frames). These sequences have grayscale 

CIF frames of size 352 ×  240 or 352 ×  288. All the video sequences are subject to 

block-based random projection applied frame by frame; i.e., by partitioning each frame 
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into B ×  B =16×16 blocks and applying to each block an orthonormalized SBHM matrix. 

Here the relative performance is measured using the PSNR averaged over 1000 

independent RCs at different bit rates (BR), i.e., 3Mbps, 2.0Mbps, and 1.0Mbps, 

respectively. Figures 5-7 show the results under different BR and various CS subrates. 

Obviously, the six video signals can almost be reconstructed for legal 1000 RCs even 

though the bit rate is as low as 1.0Mbps by using the proposed CS-SCM approach. 

Basically, Figures 5-7 exhibit very similar reconstruction performances. Thanks to a 

higher bandwidth in Fig.5, it helps to receive more measurements (60%) than those (50%) 

sent from the SD. However, for lower CS subrates the proposed CS-SCM approaches 

cannot satisfy some RCs because the performances have been bounded by the TC only 

receiving 50% (M/N =50%) of measurements from the SD. 

 

 

Figure 5. The Reconstruction Performance in PSNR averaged over 1000 
Independent RCs for Six Sequences with BR=3.0Mbps, Respectively 

 

Figure 6. The Reconstruction Performance in PSNR averaged over 1000 
Independent RCs for Six Sequences with BR=2.0Mbps, Respectively 
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Figure 7. The Reconstruction Performance in PSNR Averaged over 1000 
Independent RCs for Six Sequences with BR=1.0Mbps, Respectively 

6. Conclusions 

In this paper, we have proposed a CS based secure communication model (CS-SCM) 

with compressive-sensed multimedia data in the CS domain. We have verified the 

feasibility of the proposed CS-SCM with extensive simulation results and security 

analysis over different bit rate (BR) channels. We have demonstrated the advantages of 

the proposed CS-SCM framework in terms of improved quality of the reconstructed 

signal and enhanced security due to the CS mechanism used.  

Future work will be in several ways. One is video analysis before transcoding and 

transmission, including video segmentation and content extraction [19-21] as well as 

denoising and decomposition [22-24]. In addition, object-based analysis with most 

state-of-the-art machine learning approaches will be highlighted as well, using deep 

learning and weakly-supervised learning [25-27]. Improved sparse representation with 

adaptive spatial support and hierarchical structuring for extra security will also be 

investigated [28-30]. 
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