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Abstract 

In this paper, the energy efficient parallel two-way relay (P-TWR) transmission 

networks with multiple energy harvesting nodes are studied. Relay selection (RS), power 

allocation (PA) and rate policies across multiple time intervals are jointly designed. The 

problem of energy efficiency (EE) maximization under the constraints of the energy 

causality and a pre-defined rate threshold is formulated. Though the optimization 

problem is NP-hard, we are able to convert it into a convex one. Specifically, by applying 

the Lagrange dual decomposition method, we separate PA from RS and rate policy such 

that PA can be solved first. Further, with the obtained optimum PA solution, RS is 

mapped into a maximum weighted bipartite graph matching problem and solved with the 

Kuhn-Munkres algorithm. Finally, the optimum rate policy is obtained with the efficient 

interior point method. The performance comparisons with “Depleted Energy” and 

“Uniform Power” policies demonstrate that our policies can provide notable EE gains. It 

is also shown that a high pre-defined rate threshold costs a significant EE penalty. 

Finally, it is illustrated that the proposed algorithm converges speedily. 

 

Keywords: parallel two-way relay; energy-efficiency; energy harvesting; Lagrange 

dual decomposition; maximum weighted bipartite graph matching 

 

1. Introduction 

In wireless sensor networks, the energy-deficient batteries may not be charged 

immediately due to physical environment constraints. Fortunately, energy harvesting (EH) 

enables the nodes to harvest energy from nature energy sources (e.g., such as solar, wind) 

and wirelessly refill their batteries [1]. However, the energy arrival is highly dependent on 

the specific environment such as the weather and location, which makes the harvested 

energy at an individual node intermittent available. As a consequence, energy 

management among the nodes comes to be a significant and challenging issue and has 

attracted considerable concerns recently [1]-[10]. Energy efficiency (EE), represented as 

the total number of successfully transmitted bits per joule energy, is a crucial metric to 

measure how efficiently the energy is consumed, especially for the EH networks. We 

study the energy efficient EH networks.  

One effective technology to improve the EE is network coding (NC) [5]. Particularly, 

two-way relay (TWR) has been considered as a promising and easy-to-implement NC 

scheme, where one S-D pair exchanges messages via one relay [1]-[3]. Recent works 

focus on maximizing the throughput in energy harvesting TWR networks with infinite [1], 

[2] and finite battery storage [3]. Directional water-filling algorithm [4] was widely 
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applied to obtain the optimal power allocation (PA) policy that maximizes the throughput. 

For the TWR setups without EH, relay strategies including Decode-and-Forward (DF) [3], 

[6]-[7] and Amplify-and-Forward (AF) [8]-[10] and their effects on the EE were studied. 

Although the aforementioned works have made significant contributions in the EH 

TWR techniques, they only studied the scenarios that a single S-D pair assisted by 

one/multiple fixed relays. In the practical scenario, however, it usually happens that 

several S-D pairs intend to exchange messages simultaneously via separate relays. We 

refer to it as parallel TWR (P-TWR) networks. In effect, the parallel setting model is 

classical and general since considerable communication channels can be transformed into 

parallel channels. For example, multiple-input multiple-output (MIMO) relay network 

[11] can be converted into parallel channels via matrix decompositions [12]. Also, TWR 

assisted orthogonal frequency division multiplexing (OFDM) can also be transformed into 

the P-TWR models due to the parallel nature of the sub-carriers [13], [14], [15]. However, 

to the best of our knowledge, EH P-TWR with consecutive transmissions was studied in 

few prior works. For the consecutive transmission scenario, as we will show later in the 

paper, the remaining energy from the prior transmissions affects the PA and relay 

selection (RS) in the later transmissions, thus energy management and RS in the current 

transmission cannot be “shortsighted” and have to take into account the system 

performance in the later transmissions. Hence, PA and RS have to be jointly optimized 

over multiple transmissions, i.e., the time dimension. 

We are motivated to maximize the EE for EH P-TWR transmission networks. PA, RS 

and rate optimization will be jointly performed across consecutive transmissions 

according to the channel states and the amount of the harvested energy. Different from the 

aforementioned EH TWR networks in [1]-[4], our optimization dimension is increased 

with the existence of multiple S-D pairs competing for relays that have advantageous 

channel conditions. Moreover, the differences in channel conditions and harvested energy 

amount at the nodes make the P-TWR optimization problem challenging. We first 

formulate the EH P-TWR EE-maximization problem. With variable relaxation and 

fractional programming theory [14], we convert it into a convex form. Then a fast 

iteration algorithm is proposed based on the Lagrange dual decomposition. The closed-

form solutions for the optimal power at all nodes are obtained. After that, RS and rate 

policies are determined sequentially. 

The rest of the paper is organized as follows. In Section 2, we present the system 

model. Problem formulation is given in Section 3. Then, we convert the optimization into 

a convex one in Section 4. The algorithm and optimal rate, power allocation and relay 

selection policies are given in Section 5. Numerical results are presented in Section 6. 

Section 7 concludes this paper.  

 

2. System Model 

In what follows, we will illustrate the data transmission and energy harvesting 

models, respectively. 

 

2.1. P-TWR Transmission 

We consider a network consisting of M  S-D pairs and N  ( N M ) half-duplex 

relays, as depicted in Figure 1. All S-D pairs conduct communications with the assistance 

of their selected relays simultaneously. Specifically, every S-D pair is only connected 

with one relay; meanwhile, one relay at most assists one S-D pair at one time. The S-D 

pair and its relay constitute a transmission group. It is assumed that the channels for 

different S-R-D groups are independent (e.g., orthogonal in frequency) [12] and thus the 

potential interferences from the other S-R-D groups are avoided. For every group, we 

consider the two-phase protocol which consists of a multiple-access phase followed by a 
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broadcast (MABC) phase [4]. In the following, let 
iS , iD  and 

jR  represent the ith source, 

its paired destination and the jth relay, respectively. 

 

D1S1

D2

R1

S2

R2

R3

R4

SM
RN

DM

Multi-access Phase Broadcasting Phase

S1 R1 D1

S2 R3 D2

SM RN DM

 

Figure 1. An Example of P-TWR Transmission. S1-D1, S2-D2 and SM-DM  

Pair Separately Selects R1, R3 and RN 

In the first phase, all S-D pairs intend to conduct multiple access at the same time. 

Take --
i j i

S R D group as an example. iS  and iD  simultaneously transmit their messages 

( )

,

s

i t
x  and 

( )

,

d

i t
x  to 

jR  at time t . Denote the power of 
iS  and iD as 

s

i t
p( )

,
 and

i t

dp
,

( )
, 

respectively. We assume Rayleigh fading channels with zero-mean additive white 

Gaussian noise. Channel reciprocity is also assumed. At jR , the received signals from 
iS  

and iD  are respectively 

 ( ) ( ) ( ) ( ) ( )

, , , , ,

s s s s s

ij t ij t i t i t ij t
y h p x n                                          (1) 

 ( ) ( ) ( ) ( ) ( )

, , , , ,

d d d d d

ij t ij t i t i t ij t
y h p x n                                         (2) 

where 
s

ij t
h( )

,
and

d

ij t
h( )

,
 are respectively -

i j
S R  and -

j i
R D  channel gains. 

s

ij t
n( )

,
 and 

d

ij t
n ( )

,
 are 

the noise items and their power is normalized to 1.  

In the second phase, all the selected relays in different S-R-D groups simultaneously 

decode their received messages and broadcast new generated messages to their separate 

S-D pairs. Take --
i j i

S R D group as an example. 
jR  first performs successive decoding 

and detects the messages from the -
i i

S D  pair. 
(r)

j,t
y  is generated at relays by XORing the 

decoded messages, i.e., 
(r) (s) (d)

j,t i,t i,t
y = x x . Note that “ ” means the XOR operation. 

Then 
jR broadcasts 

(r)

j,t
y  to the -

i i
S D  pair with the power of 

(r)

j,t
p . Assume the channel 

state information (CSI) is known at the receivers. The S-D pair obtains their desired 

messages by removing the self-interference term. Take 
(d)

i,t
x  as an example. 

(d)

i,t
x  is 

obtained by 
i

S  according to the following operation: 

(d) (s) (r) (s) (s) (d)

i,t i,t j,t i,t i,t i,t
x x y x x x                               (3) 
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2.2. Energy Harvesting Model 

We consider the off-line energy harvesting policy [4], in the sense that the harvested 

energy amount and harvesting time are known (or can be precisely predicted) to all nodes 

in advance. We claim an event occurs when either energy is harvested at any node or any 

channel in the network varies. As illustrated in Figure 2, we record all the event time into 

a time sequence and have 
1 2

0
k K

t t t t      . The time period between 
k
t  

and 
1k

t


 is defined as the kth time interval with the duration of 


  
1k k k

t t . In total, K 

time intervals are considered. Note that our time interval division model ensures that the 

channel gain in each individual time interval keeps constant as shown in Figure 2, which 

will facilitate the designs of PA, RS and rate policies. 

 

Variation of

 one channel gain

Energy arrival t3t1 t4 tKt2

k=K

=0

k=3k=2k=1 ...

...
 

Figure 2. An Illustration of the Combined Energy Harvesting and Channel 
Variation Events. The Bold Arrow Records the Moment When Energy 

Arrives While “×” Means No Harvested Energy 

At the beginning of the kth time interval (i.e., when 
k

t t ), we assume that 
iS , 

iD  and 
jR  harvest 

,i k
Es , 

,j k
Er and 

,i k
Ed  joules of energy, respectively. The energy 

will be collected into an infinite battery [1], [2] before being consumed. Notice that 

the nodes do not necessarily harvest energy at the same time. That is, 
,i k

Es , 
,j k

Er and 

,i k
Ed  can be zero.  

The fractions of the kth interval allocated to the first phase and the second phase are 

denoted as 
1,k

  and 
2,k

 , respectively. We have    
1, 2,

1
k k

,    
1, 2,

0 , 1
k k

. Then 

the consumed energies at 
iS , iD  and 

jR  are respectively  
( )

, 1,

s

i k k k
p ，  

( )

, 1,

d

i k k k
p  and 

 
( )

, 2,

r

j k k k
p  (Joules). Let 

,

ava

i k
Es ，

,

ava

i k
Ed  and 

,

ava

j k
Er  denote the available energy at the 

beginning of the kth time interval, which include the accumulated energy during the 

1k  intervals, i.e., prior to the kth time interval and the newly harvested energy at 

k
t . In the following, we take 

iS  as an example to derive the energy evolution 

equations. When  1k , the available energy at 
iS  is 

   
,1 ,1 ,0

, , 1ava

i i i
Es Es Es i k                             (4) 

where 
,0i

Es  denotes the initial storage energy, which is set as 0. 

For  2k , the available energy at 
iS  evolves as  

 
     

( )

, 1 , , 1, , 1
, 2ava ava s

i k i k i k k k i k
Es Es p Es k                        (5) 
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where   
( )

, , 1,
( )ava s

i k i k k k
Es p  is the accumulated energy prior to the (k+1)th time interval, 

and 
, 1i k

Es  is the newly harvested energy at 
1k

t . 

 

3. Problem Formulation 

By definition, EE can be formulated as  

 tot

EE

tot

L
U

E
                                                  (6) 

where 
tot

L  is the total number of successfully transmitted bits . Let 
( )

,

s

i k
R  and 

( )

,

d

i k
R  

respectively denote the transmitting rate of Si and Di in the kth time interval. Then 

( ) ( )

, ,
1 1

( )
K M

s d

tot i k i k k
k i

L R R
 

                                             (7) 

tot
E  in (6) is the total consumed energy, which can be given as  

( ) ( ) ( )

, , 1, , 1, , 2,
1 1 1

( )
K M N

s d r

tot ij k k i k k i k k j k k
k i j

E u p p p
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                       (8) 

Our objective is to maximize the objective function across K intervals by jointly 

optimizing the power, rates and RS according to the CSI and the harvested energy 

amount.  

The optimization problem is formulated as 

, ,
: max

EE
UP1

R P U
 

s.t.   R F P F U F, ,
R E M

                                  (9) 

where R , P  and U  are the set for all the rate, power and RS variables, respectively. 

F
R

,  F
E

 and 
M

F  are the constraint set on rates, PA and RS. The constraint sets are 

formulated in what follows.  

First, for RS, we introduce a binary variable 
,ij k

u  as below 

if is matched with

otherwise





,

1 -

0
ji i

ij k

RS D
u                         (10) 

The RS policy requires that every S-D pair be connected to only one relay, which 

is represented as 


 ,1
1

N

ij kj
u . Moreover, since one relay at most assists one S-D 

pair in any time interval, we have 
꼧

,1
0 1

M

ij ki
u . These yield the constraint set 

M
F  on RS, i.e.,  

11, 12, ,
{( , , , ), , , :

M k k MN k
u u u i j k   F  

      
 

  , , ,
1 1

{0,1}, 0 1, 1}
M N

ij k ij k ij k
i j

u u u꼧                   (11) 

As for the energy constraints, since the energy not arriving yet cannot be 

consumed ahead of time due to the energy causality, it is required that the consumed 

energy cannot exceed the available amount. Correspondingly, the power constraint 

set 
E

F   can be given as below 
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( ) ( ) ( )

, , ,
{( , , ), , , :s r d
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M
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k k j k
u p Er                          (14) 

We set the lower threshold on the transmission rate as 
( ) ( )

, ,min

s s

i k i
R R , 

( ) ( )

, ,min

d d

i k i
R R . 

Combining with the achievable rate region for TWR MABC system [4], we have the 

constraint set of rate and transmission power as below 

 F ( ) ( ) ( ) ( ) ( ) ( )

1, 2, , 1, 2, ,
),{( , , , , , , , , :s s s d d d

R k k M k k k M k
R R R iR R kR  



 꼧 C( ) ( ) ( ) 2 ( )

,min , , 1, , , 1,
1

/| | )(
N

s s s s

i i k ij k k ij k i k k
j
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
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1

/| | )(
N

s s d r
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j
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
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
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d d s r
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


 


„ C

( ) 2 ( ) ( ) 2 ( )

, , , ,( ) ( )

, , , 1,
1 1,

| | | |
( )}

s s d d
N

ij k i k ij k i ks d

i k i k ij k k
j k

h p h p
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where ( ) log(1 )p p C . 

Due to the existence of binary variable 
,ij k

u , P1 is a mixed integer programming 

problem. Moreover, the non-concave/convex fractional structure of the objective 

function makes P1  non-concave/convex. To obtain the solution with a reduced 

complexity, we reformulate P1 and convert it into a convex problem. 

 

4. Problem Reformulation 

The Dinkelbach’s method [14] is first applied to transform the objective function 

into its subtractive form. Then by relaxing 
,ij k

u  into a continuous variable, we 

formulate a dual problem. 

 

4.1. Nonlinear Fractional Problem Transformation 

We have the following Lemma for P1 [14]. 

Lemma 1. The resource allocation policy can achieve the maximum energy 

efficiency 
* max

EE
q U                                          (20) 

if and only if 

   P R U* * * * *( ) ( , , , ) max( ) 0
tot tot

V q V q L qE              (21) 
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In Lemma 1, 
*q  is the maximum EE to be determined. 

According to Lemma 1, we reformulate P1 as P2. 

 
R P U, ,

: max ( )
tot tot

V q L qEP2                                    (22) 

In Dinkelbach’s method, q  is iteratively updated. In every iteration, with a 

given q , we only need to focus on searching R
*

, P
*
 and U

*
 that makes ( )V q  

converge to a given tolerance. If not, q  is updated and we repeat the maximization 

problem until ( )V q  converges or the iteration reaches the maximal iterations.  

In the following subsection, we further reformulate P2  and convert it into a 

convex problem such that R
*
, P

*
 and U

*
 can be found efficiently. 

 

4.2. Dual Problem Reformulation 

We relax 
,ij k

u  into a continuous variable, i.e., 
,

0 1
ij k

u  .
,ij k

u  can be 

interpreted as a time-sharing factor in assigning the jth relay to the ith S-D pair in 

the kth interval. In addition, we introduce three new variables which represent  the 

transmission power on -
i j

S R , -
j i

R D  and -
i j

S R  (or -
i j

D R ) links under the time-

sharing condition, i.e.,  
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, , , , ,, , ,,
, ,
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r r s s d d
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By substituting (23) into P2, we obtain 

  ， ，P; U R: max ( )
tot tot

V L qEP3                        (24) 

           s.t.     R F P F
,

, ,0 1, , ,
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where P;={   ( ) ( )

, , ,
, , ,, ,s d r

ij k ij k ij k
p p p i j k }. It can be verified that P3  is jointly convex 

with respect to ，P; U  and R . For proof, see Appendix A. 

The Lagrange dual function of P3 is 
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where λ
( ) ( ) ( )

, , ,
, ,={( ), , , }s d r

i k i k j k
i j kl l l " ,      δ 

( )

,

( ) ( ) ( ) ( ) ( )

, , , , , ,
ˆ={( ˆ, , , , , , ) , },s d d s d

i k i k i k

s

i k ii k k i k
i kd d d dd d d , 

θ
( ) ( )

, ,
{( , ), , }r s

j k j k
j kq q= " are the Lagrange multipliers for energy causality, rate constraints 

and RS, respectively. All the multipliers are all nonnegative. 

Finally, the dual problem can be formulated as 

λ δ θ

λ δ θ
… R P U

L R P UP4
, , 0 , ,

: min max ( , , , , , )                                (26) 

Since P3  is convex, the duality gap between P3  and P4  is zero. That is, P3  

can be equivalently solved if the optimum solution for P4  is determined. The 

solution of P4 can be obtained by Lagrange dual decomposition. Specifically, we 

separate P4 into two levels. The lower level aims at solving the inner maximization, 

i.e., λ δ θ
R P U

L R P U
, ,

max ( , , , , , )  with fixed λ , δ  and θ . The higher level focuses on 

solving the outer minimization, i.e., 
λ δ θ

λ δ θ
…

L R P U
, , 0
min ( , , , , , )  with obtained R , P  and 

U . The two levels proceed iteratively. Outer minimization can be easily solved with 

the efficient and well-known gradient method [16]. In this paper, we put emphasis 

on the inner maximization, which is depicted in Section 5. 

 

5. Optimal PA, RS and Rate Policies 
 

5.1. Suboptimal Power Allocation 

For large x , we have log(1 ) log( )x x  . Then in the high SNR region, we have 

( ) ( ) ( ) ( )

, , , , , , , ,(| ) log( )| | |/ /   
 C 2 2

1 1ij k ij k k ij k ij k ij k k ij kh p u h p u ,  where { , }s d . Since P3  is 

convex, strong duality holds and KKT conditions can be employed to solve the inner 

maximization in P4. The KKT conditions specify that the partial derivatives of (25) 

with respect to 
( )

,

s
ij kp  and 

( )

,

d
ij kp  should be zero, we have 

( ) ( ) 2

, , 1, , , , 1,( )

,( ) ( ) ( ) 2 ( ) ( ) 2 ( )

, , , , , ,

| |
0

| | | |

s s

i k ij k k i k ij k ij k ks

i ks s s s d d

ij k ij k ij k ij k ij k ij k

u h u
z

p p h p h p

d dD D
    

 

L
               (27) 

( ) ( ) 2

, , 1, , , , 1,( )

,( ) ( ) ( ) 2 ( ) ( ) 2 ( )

, , , , , ,

| |
0

| | | |

d d

i k ij k k i k ij k ij k kd

i kd d s s d d

ij k ij k ij k ij k ij k ij k

u h u
z

p p h p h p

d d 
    

 

L
               (28) 

In (27) and (28), 
( )

,

s
i kz  and 

( )

,

d
i kz   are 

1,( ) ( ) ( )

, 1, , ,
1 1, ,

( )ln(2) 0
K

k ks s s

i k k k i k i l
l k l i l

z q  
 

 
     

 
                   (29) 

1,( ) ( ) ( )

, 1, , ,
1 1, ,

( )ln(2) 0
K

k kd d d

i k k k i k i l
l k l i l

z q  
 

 
     

 
                  (30) 

Note that 
( )

,

s
i kz  and 

( )

,

d
i kz  are positive, which is due to the fact that  

1,
0

k k
q  and all the 

Lagrange multipliers are all nonnegative. 

Let 
( *)

,

s
i kp ， ( *)

,

d
i kp  and 

( *)

,

r
j kp  respectively denote the optimum power at 

iS , iD  and 
jR . 

We have the following proposition. 

Proposition 1. In the high SNR region, there is only one optimal nonnegative solution 

respectively for 
( *)

,

s
i kp ，

( *)

,

d
i kp  and 

( *)

,

r
j kp .  Specifically,  
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2 2 3 1
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3 2 3 1

( *) 1, ,
,

22
3 2 3 1
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0,

,

,

,
2

0,

4 0

ava
i k

d k i k
i k

f f f f
f

f

Ed
f f f f

p
f

f f f f
f

f
f

f



















  


  
 


 









                                    (31) 

where  

       
d d s

ij k i k ij k
f h z b= ( ) 2 ( ) ( )

3 , , ,
| |                                       (32) 

( ) 2 ( ) ( ) ( ) 2 ( ) ( ) ( ) ( ) 2 ( ) ( ) 2 ( )

2 , , , , , , , 1, , , , 1, , ,
| | | | | | | |d d s d s s d d s d s

ij k i k ij k ij k i k ij k i k k ij k ij k i k k ij k ij k
f h z c h z a h b h bd d= + - D - D         (33) 

           
s d s d

ij k k ij k i k i k i k
f c h d d d= - D + +( ) ( ) 2 ( ) ( )

1 , 1, , , , ,
| | ( )                         (34) 

( ) ( ) ( ) 2

, , 1, ,
| | 0 s s d

ij k i k k ij k
a hd= D ? ; 

( ) ( ) ( ) 2

, , 1, ,
| | 0 s d s

ij k i k k ij k
c hd= D ?              (35) 

( ) ( ) 2 ( ) ( ) 2 ( )

, , , , ,
| | | |s d s s d

ij k ij k i k ij k i k
b h z h z= -                                   (36) 

( *)

,

s
i kp  is paired with 

( *)

,

d
i kp  and can be directly obtained by exchanging “d” in (31) 

with “s”. 
( *)

,

r
j kp  can be obtained by solving 






L
( )

,

0
r

ij k
p

. We ignore their explicit closed-

form expressions here. 

Proof. The proof can be found in Appendix B. 

Remark 1. We observe that 
( *)

,

d
i kp  is related with 

( )

,

s
i kz  and 

( )

,

d
i kz . Interestingly, as 

shown in (29) and (30), 
( )

,

s
i kz  and 

( )

,

d
i kz  are not only associated with the Lagrange 

multipliers of the current time interval, i.e., 
( )

,

s

i k
 , 

( )

,

d

i k
  but also with those of (k+1)th, 

(k+2)th, ···, Kth intervals. Similar conclusions can be obtained for 
( *)

,

r
j kp . It can be 

further noticed that the Lagrange multipliers are corresponding to the energy causality 

constraints and affected by the transmitting power. In this sense, PA policies in 

different time intervals are interrelated via the multipliers. 

Remark 2. The transmitting power decreases with the channel gains. That is, 
( *)

,

( ) 2

,

0
| |

s

i k

s

ij k

p

h





, 

( *)

,

( ) 2

,

0
| |

d

i k

d

ij k

p

h





, 

( *)

,

( ) 2

,

0
| |

r

j k

s

ij k

p

h





 and 

( *)

,

( ) 2

,

0
| |

r

j k

d

ij k

p

h





. 

It is intuitively reasonable, since less power is needed to transmit messages on the 

channels of larger channel gains. For strict proof, see Appendix C. 

 

5.2. Suboptimal Relay Selection 

We introduce a parameter, 
ij k

w
,

, given below: 
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   (37) 

which is called the marginal benefit provided to the system by assigning 
jR  to the -

i i
S D  

pair in the kth time interval. Interestingly, 
ij k

w
,

 is related with 
*P  and independent from 

the rate variables, which facilitates RS though the rate policy has not been determined yet. 

Remark 3. Having revealed that PA policies in different time intervals mutually 

affect and that RS depends on PA, we obtain the insight that RS in different time 

intervals also interacts via the Lagrange multipliers. 

Then optimizing RS for all the S-D pairs is equivalent to maximizing the sum 

marginal benefits, which is formulated in P5. 

, ,: max ij k ij k

k j i

u wP5  

s.t. (7)  

For P5, we have the following proposition. 

Proposition 2. Given 
*P , P5  can be transformed into a maximum weighted 

bipartite graph matching (MWBGM) problem. 

Proof. See Appendix D. 

 

5.3. Suboptimal Rate Policy 

Once the optimum PA and RS policies are determined, P4  is reduced into a 

standard convex rate optimization problem. Suboptimal rates can be obtained with 

the classical interior point method [16]. 

 

6. Numerical Results 

Assume that there are two S-D pairs and 4 relays. 10 time intervals with a time span of 

4.534 seconds are considered. The durations of each individual time interval are non-

uniform, which will be shown in the horizontal axis of the following figures. Additionally, 

we assume that 
( ) ( )

,min ,min

s d

i iR R =
minR . The below results are obtained on Matlab. 

 

6.1. Performance Analyses 

In Figure 3, the exhaustive search and suboptimal results are first obtained for the 

scenarios when Rmin=9, 9.5, 10(bps). It is shown that the suboptimal results closely match 

with the exhaustive search results, which verifies our algorithm. 

Additionally, we depict the EE obtained by another two transmission strategies. In the 

“Depleted Energy” scheme, the harvested energy is used up within every time interval. In 

the “Uniform Power” policy, all the nodes transmit with uniform power obtained by 

averaging all the harvested energy in 10 time intervals among all the nodes.  In the above 
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two strategies, RS is optimized with the Kuhn-Munkres algorithm. As can be seen clearly, 

our suboptimal policy outperforms the other two strategies. 

Moreover, as can be seen, the increase in the rate threshold comes at the expense of a 

reduction in the EE. Specifically, compared with the scenarios where Rmin=9, the EE 

respectively falls by 47% and 74% when Rmin increases to 9.5 and 10 bps. This is due to 

the fact that to achieve higher rate threshold, more energy is enforced to be consumed on 

the channels of lower gains, thus decreasing the overall EE. 
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Figure 3. EE Comparison among Different Transmission Strategies 

6.2. Optimal Policy Illustration 

The cumulative harvested energy and the optimal PA policy are depicted in Figure 4 

~Figure 7.  We set Rmin as 10bps. For the cumulative harvested energy curves, the rising 

height at the beginning of every time interval represents the newly harvested energy 

amount. Zero-rising height implies that no energy is harvested. Meanwhile, for the 

optimal PA curve, the ordinate values represent the amount of total consumed energy at 

one specific node. Correspondingly, the slope of one line segment represents the data 

transmission power in the corresponding time interval.  

From Figure 4~Figure 7, we observe that the optimal power policy curves are not 

higher than the available energy curves due to the energy causality constraint. Moreover, 

in some transmission periods, the optimal consumed energy amount is not necessarily 

equal to that of the cumulative harvested. In other words, some energy in the prior time 

intervals is saved and consumed in the later intervals for the sake of maximizing the 

energy efficiency. Take D2 in Figure 5 as an example, the available energies are not used 

up till the 8th time interval.  
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Figure 4. Optimal policy for S1 − D1 pair 
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S2: Optimal policy
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Figure 5. Optimal policy for S2 – D2 pair 

In Figure 6 and Figure 7, a zero-slope of an optimal policy curve indicates that one 

relay is not selected in the corresponding time interval. Note that for any time interval, 

only two out of four line segments are zero-slope, which means only two relays are 

selected in each individual time interval. The detailed RS results are shown in Table 1. It 

can be found that our RS policy provides S-R-D groups with larger channel gains. Take 

RS in the 2nd and 3rd time intervals as examples. Our algorithm results show that S1-D1 

pair keeps selecting R1, while S2-D2 selects R2 in the 2nd time interval and R4 in the 3rd 

time interval. Coherently, we see from Figure 8 that S1-D1 and R1-D1 channel gains in 

both time intervals are the largest compared with the other possible RS choices for 

the S1-D1 pair. Meanwhile, the inter-channels of the S2-R2 -D2 group in the 2nd time 

interval and the S2-R4 -D2 group in the 3rd time interval also have larger gains.  
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Figure 6. Optimal policy for R1, R2  
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Figure 7. Optimal Policy for R3, R4 
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Table 1. RS Results 

R1

R2

R3

R4

† † †


Relays 1 2 3 4 5 6 7 8 9 10

Relay is matched with 

S1-D1        

† †

†† †

†

†

† †††

† †

† † † † † †

† †

† † † †

† † † †

†

Relay is matched with 

S2-D2         
 

Moreover, for the optimal policy curve of R1 shown in Figure 6, the slope of the 

line segment in the 2nd time interval is smaller than that in the 3rd time interval. It 

indicates that the transmitting power of R1 in the 2nd time interval is smaller than 

that in the 3rd time interval. This is reasonable, since S1-D1 and R1-D1 channel gains 

(i.e., 
( )

11| |sh  and 
( )

11| |dh ) in the 2rd time interval are both larger than those in the 3rd 

time interval as shown in Figure 8, and less power is needed. It is also in accordance 

with Remark 2 and hereby verifies our conclusion. 
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Figure 8. Channel Gains in the 2nd and 3rd Time Intervals 

6.3. Convergence Process of the Proposed Algorithm 

Thanks to the convergence properties of Lagrange dual decomposition and Kuhn-

Munkres method, our proposed algorithm converges speedily. As a comparison, the 

computational complexity of the exhaustive search is 
8 4)( O , where  , 

8  and 
4  are the iteration times of  PA at one node, PA for all nodes and rate search for 

all S-D pairs, respectively. Obviously, the complexity of the exhaustive search will 
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grow exponentially with the size of the network scale, which is unacceptable when 

the network is large.  

 

7. Conclusions 

We investigate the energy efficient energy harvesting P-TWR networks. With the 

fractional programming and variable relaxation, we convert the optimization into a 

convex one. Lagrange dual decomposition and Kuhn-Munkres algorithm is employed to 

obtain the optimal power allocation, relay selection and rate policies across multiple time 

intervals. It is shown that the harvested energy is not necessarily depleted and part of the 

energy is saved and consumed in later time intervals. EE comparison among different 

transmission strategies shows that our algorithm can provide a higher EE and has a lower 

computation complexity. It is also shown that a high pre-defined rate threshold can cost 

significant EE penalty. Since our algorithm updates the rate and power once new energy 

arrives or channel gain varies, it can adapt to any changes in the channels and energy 

arrivals and thus is considerably flexible.  

 

Appendix 
 

A. Prove that P3 is convex 

First, the objective function is clearly convex with respect to all the variables. 

For the constraints, it is also easy to find that 
E

F  and 
M

F  are convex sets. In 

what follows, we focus on proving the convexity of the region 
R

F . Take (15) as an 

example. The proofs for (16)~(19) follow the same approach. 

It is obvious that 
( ) 2 ( )

, , 1,
log(1 | | / )s s

ij k ij k k
h p+ D  is concave. Since taking the 

perspective transformation for concave term will preserve the concavity, then 
( ) 2 (s)

, ,

,

, 1,

| |
log(1 )

s

ij k ij k

ij k

ij k k

h p
u

u
+

D
, as the perspective transformation, is also concave. 

Further, the sum of concave functions preserves concavity. Then the convexity of 
( ) 2 ( )

,(s)

, ,
1 ,

,

1,

| |
log(1 )

ij

s sN
ij k

i k ij k
j ij k k

k
h p

R u
u=

- +
D

å  is proved. 

 

B. Proof of Proposition 1 

From (27) and (28), we obtain that  
( ) ( )

, , ,( )

, ( ) ( ) ( )

, , , ,

s d

ij k ij k ij ks

ij k s d s

ij k ij k ij k ij k

u a p
p

b p u c



                                 (38) 

By substituting (38) into (28), we have 
d d

ij k ij k ij k ij k
f p u f p u f+ + =( ) 2 ( ) 2

3 , , 2 , , 1
* ( ) * ( ) 0                      (39) 

( )

,

d

ij k
p *

can be obtained by solving (39) according to the signs of 
3
f , 

2
f , 

1
f  and f f f-

12

2

3
4 . 

Note that the convexity of P3  indicates the uniqueness of 
( )

,

d

ij k
p *

. Nevertheless, it can be 

found that 
( )

,

d

ij k
p *

 is in the form of 
 ( ) ( *)

, , ,

d d

ij k ij k i k
p u p ; meanwhile, we have 

 ( ) ( *)

, , ,

d d

ij k ij k i k
pp u  

according to (23).  Hence, ( *) ( *)

, ,

d d

i k i k
p p .  Note 

( *)

,

d

i k
p  is a function of 

3
f , 

2
f , 

1
f  and not 

related with 
,ij k

u .  This indicates that 
( *)

,

d

i k
p   is also independent of 

,ij k
u . 
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In the following, we take the case when 
3

0f   as an example to illustrate the 

calculation for 
( )

,

d

ij k
p *

.  It can be obtained from (34) that 
1

0f £ , thus we claim that 

32

2

1
4 0f ff - ? . Further, we have  

 





2

2 2 3 1( )

, ,

3

4
0

2

d

ij k ij k

f f f f
p u

f
                              (40) 

and 

  
 p

2

2 2 3 1

3

( *) ( *)

, ,

4
0

2

d d

i k i k

f f f f

f
p                             (41) 

The calculations for 
( )

,

d

ij k
p *

 in the other cases follow the same approach and we 

skip their details. 

 

C. Proof of Remark 2 

Assume that Rj is matched with the ith S-D pair, i.e., 
, 1ij ku  . Suppose another 

scenario, where the 
i jS R  channel gain 

( ) 2

,
ˆ| |d

ij kh  is larger than 
( ) 2

,| |d

ij kh . Denote the 

optimal power at 
iS  and 

jR  in the assumed scenario as 
( )

,
ˆ s

i kp  and 
( )

,
ˆ d

i kp , respectively. To 

prove Remark 2, we only need to illustrate that 
( ) ( *)

, ,
ˆ d d

i k i kp p  if 
( ) 2 ( ) 2

, ,
ˆ| | | |d d

ij k ij kh h .  In what 

follows, we prove it by contradiction. That is, we assume that 
( ) ( *)

, ,
ˆ d d

i k i kp p  if 

( ) 2 ( ) 2

, ,
ˆ| | | |d d

ij k ij kh h . Then based on the hypothesis, some contradictive conclusions are 

obtained. 

when 
, 1ij ku  , (38) can be rewritten as 

( ) ( )

, ,( )

, ( ) ( ) ( )

, , ,

s d

ij k i ks

i k s d s

ij k i k ij k

a p
p

b p c



                                   (42) 

As shown in (35),  
( )

, 0s

ij ka   and 
( )

, 0s

ij kc  . Then if 
( ) ( *)

, ,
ˆ d d

i k i kp p , we have 

               

( ) ( ) ( ) ( ) (42)
, , , ,( ) ( *)

, ,( ) ( ) ( )

 (42)

( ) ( ) ( )

, , , , , ,

ˆ
ˆ

ˆ

s d s d

ij k i k ij k i ks s

i k i ks d s s d s

ij k i k ij k ij k i k ij k

a p a p
p p

b p c b p c
  

 
                  (43) 

Further, we have  
( ) 2 ( *) 2( ) ( *)

, , 1, , , 1,, 1, , 1, ( )

,( ) ( ) ( ) 2 ( *) ( ) 2 ( *)( ) 2 ( ) ( ) 2 ( )
, , , , , ,, , , ,

(27)| | | |

ˆˆ | | | |ˆ ˆ| | | |

s ss s

i k ij k k i k ij k ki k k i k k s

i ks s s s d ds s d d
i k i k ij k i k i k i kij k i k i k i k

h h
z

p p h p h ph p h p

    
   


 (44)      

Finally, we have  

( ) 2( )

, , 1,, 1, ( )

,( ) ( ) ( ) 2 ( ) ( ) 2 ( )
, , , , , ,

| |

ˆˆ ˆ ˆ ˆ| | | |
0

ss

i k ij k ki k k s

i ks s s s d d
i k i k ij k i k i k i k

h
z

p p h p h p

 
  




L
                 (45) 

It can be found that 
( )

,

0
ˆ s

i kp




L
 from (45), which indicates that 

( )

,
ˆ s

i kp  and 
( )

,
ˆ d

i kp  cannot be the  

optimal power, and that the primal hypothesis is invalid. Following the same way, we can 

prove that 

( *)

,

( ) 2

,

0
| |

s

i k

s

ij k

p

h





, 

( *)

,

( ) 2

,

0
| |

r

j k

s

ij k

p

h





 and 

( *)

,

( ) 2

,

0
| |

r

j k

d

ij k

p

h





. 

http://dict.youdao.com/w/hypothesis/#keyfrom=E2Ctranslation
http://dict.youdao.com/w/hypothesis/#keyfrom=E2Ctranslation
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D. Proof of Proposition 2 

We first abstract -
i i

S D  pair into node ( , )
i i

S D  and 
j

R  into node ( )
j

R . Then we 

have two sets {( , ) | 1,2, , }
i i

S D i Mx= =  and {( ) | 1,2, , }
j

R j NV= = , which 

represent the set for all S-D pair nodes and all relay nodes, respectively. If an edge 

connects node ( , )
i i

S D  with node ( )
j

R  in the kth time interval, we claim that 
j

R  is 

selected for ( , )
i i

S D . All edges connecting a node in x  with another node in V 

constitute an edge set Ek. In this way, we obtain a bipartite graph ( , )
k k

G Ex V= ? . 

If we take 
ij k

w
,

 as the weight of an edge, then RS in the kth time interval is 

equivalent to the MWBGM problem of 
k

G  due to the  following facts: (i) x  and V 

are two independent sets and do not have any common element; (ii) Any two edges 

do not share a common vertex, which is in accordance with constraint in (11). Kuhn-

Munkres algorithm [17] can be applied to solve the optimization problem of 

, ,
max{ }

ij k ij k

j i

u w .  

Since 
, , , ,

max max{ }
ij k ij k ij k ij k

k j i j ik

u w u w  , P5 can solved by carrying 

out Kuhn-Munkres algorithm for each individual 
k

G  (k=1,2,…K). 
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