
International Journal of Future Generation Communication and Networking

Vol. 10, No. 12 (2017), pp.35-46

http://dx.doi.org/10.14257/ijfgcn.2017.10.12.04

ISSN: 2233-7857 IJFGCN

Copyright © 2017 SERSC Australia

DockFlex: A Docker-based SDN Distributed Control Plane

Architecture
1

Othmane Blial and Mouad Ben Mamoun

ANISSE, Faculty of Sciences, Mohammed V University in Rabat, Avenue des

Nations Unies, Agdal, 10000 Rabat, Morocco

blial.othmane@gmail.com, ben_mamoun@fsr.ac.ma

Abstract

Software Defined Networking is changing entirely the network architecture and

moving it forward to make it more flexible, scalable, fast, and highly available. Recently,

the idea of containerization is becoming more present in the industry as well as in the

academia and has managed to solve many issues linked to virtual machines. SDN has

begun with a centralized architecture with a single controller that is responsible for the

entire underlying network, thereafter, this solution has shown many overall performance

related problems.

After that, the need has raised for distributed SDN networks to obstruct the limitation

of performance, security, and scalability. In this paper, we try to take advantage of both

notions already addressed, the containerization concept, as well as the control plane

distributed SDN networks concept and propose DockFlex, a distributed control plane

Docker-based SDN architecture that inherits all the features of a classic SDN

architecture and, furthermore, enables a highly manageable and orchestrated multi-

controller SDN network that can be established easily via the cloud. Moreover, we

suggest a highly customizable implementation of the DockFlex architecture, which uses

native Docker-based tools and third-party solutions.

Keywords: SDN, distributed control plane architectures, Docker

1. Introduction

Software-defined networking (SDN) [1] is a new concept that aims to make the

network more agile, flexible, and highly adaptable to quickly changing business

requirements. It is based on the idea of separating between the control plane and the

data plane that are joined in traditional networks. It also enables programmability

usage to innovate and automate the control plane entirely.

On the other hand, Network function virtualization (NFV) [2] is an emerging

technology which has a goal of replacing current physical components of the

network like switches, routers, and firewalls, with software that runs on servers that

are usually on the cloud. This means more elasticity, less time-consuming for

service activation, creation and monitoring and more advantages brought by the

cloud.

SDN and NFV highly depend on each other, SDN adds to the network the

smartest device, which is the controller, which needs to be physically dis tributed to

respond to scalability and high availability requirements of today’s networks. While

NFV adds what we can call virtual switches, or virtual firewalls, which can be

purely software installed on many servers for high availability, on the cloud.

Almost all SDN solutions that support multiple controllers, like ONOS [3],

OpenDayLight [4], and Contrail [5], usually install their controllers on Linux-based

Received (August 15, 2017), Review Result (October 31, 2017), Accepted (November 13, 2017)

International Journal of Future Generation Communication and Networking

Vol. 10, No. 12 (2017)

36 Copyright © 2017 SERSC Australia

virtual machines, using local servers or on the cloud. Virtual machines until now are

performing very well and delivering good quality. However, the cloud recently

knows a big revolution by the introduction of emerging new cloud products like

Docker that use the notion of containerization, which has managed to solve many

problems related to VMs.

Before digging deeper in the world of containerization, let's first understand why

we need to abandon virtual machines (VMs), while they are currently the most used

solution in production. VMs have succeeded to provide virtualized operating

systems (OSs), however, each time we create a new VM, we need to go through

installing an OS, making it ready to work with by installing and configuring a bunch

of drivers and licenses then deploying an application that we want to work with on

the top of it. Bottom line, we go through many steps to finally deploy an

application, which is our main goal from the beginning, these repeated steps

represent the main problem with VMs, in addition to the overhead brought by the

VM's OS, by consuming the CPU, the Disk space and the Memory of the physical

machine, where the hypervisor resides. Moreover, VMs needs usually minutes to be

started, migrated or destroyed.

On the bright side, Containers are very lightweight and very fast in comparison to

VMs, because they remove the overhead brought by the OS, which means they use

less memory, CPU and disk space. Containers try to reach the goal directly by

deploying the application wanted without installing or configuring the OS, simply

by bringing the minimal essential dependencies to work with that targeted

application. Another reason why containers are faster than VMs is the fact that they

share the same kernel of the physical machine.

It might occur an interesting question, which is why we need containers, why ce

cannot just install as many applications as we need on the top of the machine we

have. The answer is simply we won't have for each application a separated

networking stack, a shared library stack, or any of the others stacks, which define a

unique Linux environment.

In order to provide each container with its own private stacks, we use kernel

namespaces [6], which allow each container to have an isolated private networking

stack as well as a process stack, a user space stack, etc,. Another great feature that

permits creating containers is the cgroups [6] feature, which permits the physical

machine to fully control resources that are shared among the different containers.

Now that we have an idea about containerization, let's introduce Docker [7], a

cloud based platform, which is a containerization implementation. Docker is an

open source project used to pack, ship and run any Linux application or distribution

as a highly manageable and lightweight container, built using a Docker image.

A Docker container can run any service or program by loading a filesystem that

has everything needed to run. In other words, it is an isolated process working on an

isolated filesystem. This container is very lightweight since it uses less RAM and

CPU because it shares the same system kernel of the machine. Additionally, it is not

tied to any type of infrastructure. A Docker container also has the power to

instantiate, destroy instances immediately, and remove environment inconsistencies.

International Journal of Future Generation Communication and Networking

Vol. 10, No. 12 (2017)

Copyright © 2017 SERSC Australia 37

Figure 1. Comparing a VM Based Environment to A Docker Based
Environment

In the SDN context, we can instantiate an SDN controller as a container. To build

a container, we need to use a Dockerfile or a starting point image, an Ubuntu server

Docker image from the Docker hub for example, and install on it the SDN controller

related files. In the following of this paper, we are going to note a Controller -

Container as a CC.

Using Docker to instantiate a new CC can bring all the benefits of

containerization, like the speed offered to provision, destroy or migrate a CC, as

well as less overhead compared to VMs, smooth backing up, easy maintenance and

optimized automation process.

Few research papers have covered Docker in the SDN context. For example, a

paper [8], highlights the advantages of Docker containers in SDN networks. It

explains why VMs based SDN networks have a lack of speed regarding deployment,

migration, integration, and scalability as well as the complexity of network

management, then it shows the power of Docker over VMs. Moreover, this paper

shows how relying on Docker to build a virtualized SDN network led to rapid

deployability and good extensibility.

Another paper [9] has handled Docker in an SDN context proposed a Docker-

based framework that allows to automatically install and uninstall an application at

the edge switches according to the user needs. Likewise, this framework can

efficiently manage the storage, the computing, and the networking resources of the

switch.

Using Docker within an SDN network can be very beneficial, however, the issue

appears when we instantiate many CCs, there is a lack of a management and

orchestration architecture that allows us to have an up and running distributed

control plane with multiple CCs on the top of a Docker-based cloud environment.

To remediate this problem, we propose, DockFlex, a distributed control plane

architecture for a Docker-based SDN environment. DockFlex enables smart

management and interactive orchestration, which can also provide high scalability

and high performance to ensure an emerging distributed control plane.

The remainder of this paper is organized as follows. In section 2, we give a

background about Docker and Docker Swarm. In section 3, we describe the

DockFlex architecture, then we provide the implementation of DockFlex that we

International Journal of Future Generation Communication and Networking

Vol. 10, No. 12 (2017)

38 Copyright © 2017 SERSC Australia

propose to build the DockFlex distributed control plane. In Section 4, we give some

simulation results. Finally, in Section 5, we give perspectives and conclusions.

2. Docker and Docker Swarm: Background

In this section, we give a general background about Docker, as well as Docker

Swarm, the native Docker clustering solution.

2.1. Docker Background

Docker [7] is a fast-emerging cloud-based technology solution and platform,

which can be considered as the most recognized and used containerization

implementation currently. Docker resides on three essential components, the Docker

engine, which is the agent that must be installed on the machine we are working on,

to take advantage of Docker. The Docker engine also called the Docker runtime. It

provides us with a Docker-based environment that permits accessing all the Docker

services. By developing and deploying an application on the Docker runtime grants

having a portable application that can run smoothly, on a laptop, on a data -center, a

cloud-based server, etc. The second component is the Docker images, which are

used to lunch a Docker container. They are built usually using the Dockerfile which

is a list of commands and instructions to pull all the minimal dependencies and

make the essential configurations to build a certain application. The third

component is the Docker container, which is the most important component of the

Docker environment. It is launched based on an image that we have locally, or that

we can pull down from the Docker official web store.

2.2. Docker Swarm Background

Docker can be integrated with many native solutions and third-party solutions.

Docker swarm [10] is one of the most useful Docker-based solutions to make

clustering very smooth. It is considered as a clustering solution used to control

different containers in a Docker-enabled environment. Docker swarm needs two

major components to work. First, the discovery service, which is a key-value store

that is responsible for maintaining the state of the cluster and its configuration.

Second, the swarm manager, which controls the entire cluster by receiving Docker

commands and sending commands to a particular node in the cluster. Both of these

services should be duplicated for high availability purposes.

The discovery services that Docker Swarm supports are :

- Zookeeper [11], which is a centralized service used to maintain configuration,

provide information and synchronize data.

- The etcd tool [12], which is a shared configuration solution for distributed

environments using key-value stores.

- Consul [13], which is a service discovery and configuration solution also based

on value-key stores, which is more adaptable and easy to configure. It supports

failure detection and datacenter-awareness.

Instantiating new containers within a Docker swarm based network can be

managed manually or automatically. In order to instantiate a new container

manually, Docker swarm offers the possibility to choose the node we want based on

its different attributes, like the location, the Linux distribution, the available

resources or even using custom attribute added by the administrator. While in order

to instantiate new containers automatically, we can choose among three options, the

Random, the Spread and the Binpack option.

International Journal of Future Generation Communication and Networking

Vol. 10, No. 12 (2017)

Copyright © 2017 SERSC Australia 39

- The Random option is the less intelligent option. It distributes containers

randomly on the nodes, it doesn’t care about any attribute, it may seem have less

overhead, we don’t need to compare between the nodes current resources, but it is

not efficient in a working environment.

- The Spread option, which is the most reasonable option, which inspects the

node that has the least number of containers to add a new one, this option helps to

balance between nodes, and it is very useful in a productive environment.

- The Binpack option, which is based on releasing the most of the infrastructure

we can, which means, we add new containers to the same node until it is full, then

we can go to the next node. This method is also very useful and efficient for real -

world environments.

3. The DockFlex Proposition: Architecture and Implementation

In this section, we describe the architecture of the DockFlex proposition, then we

suggest an implementation for this architecture.

3.1. The Dockflex Architecture

The DockFlex architecture that we propose aims to take advantage of a

containerization based environment, to enhance a distributed control plane SDN

network overall performance.

It is composed of three layers since it inherits the characteristics of the classic

SDN architecture, an infrastructure layer, a distributed control layer and a

management layer.

 In the first place, we have the infrastructure layer, which has the different

network devices that are connected to the control layer via an SDN southbound API.

While the distributed control layer or plane is where we have a cluster of nodes,

and on each node, we have one or more SDN controllers as containers, each one is

connected to the infrastructure layer using an SDN southbound API and to the

management layer using an SDN northbound API.

Finally, the management layer, which has many components that we propose,

which characterize the DockFlex architecture, in addition to all applications that can

reside within this layer:

The discovery service node: this component maintains the state of the cluster

and its configuration, assuring its smooth functionality.

The cluster manager node: this component that controls and manage the entire

cluster, by sending or receiving the command to any particular node in the cluster.

The cluster logs collector store node: this component gathers different types of

logs from all the nodes in the cluster using logs forwarders engines installed within

each node, then saves them inside. These logs can be used to retrieve all types of

information about each CC within each node.

The cluster monitor node: this component is responsible for real-time

monitoring of resources consumption as well as overall performance.

The following illustration shows the DockFlex architecture.

International Journal of Future Generation Communication and Networking

Vol. 10, No. 12 (2017)

40 Copyright © 2017 SERSC Australia

Figure 2. The Architecture of DockFlex

The DockFlex architecture can be easily extended, by adding new components or

also, removing existing components, as well as changing the role of a component

within the architecture.

3.2. The Dockflex Implementation

The DockFlex architecture that we have presented previously, can be

implemented using any containerization solution and using all types of solutions,

concerning clustering discovery, clustering management, logging collection, logging

storing and monitoring.

Figure 3. The Proposed Implementation of DockFlex

Our DockFlex implementation, like we see the above figure, uses Docker, as

containerization solution, because it is the most used containerization solution, not

International Journal of Future Generation Communication and Networking

Vol. 10, No. 12 (2017)

Copyright © 2017 SERSC Australia 41

to mention, it has a very large community supporting it. Our implementation tries to

orchestrate and manage a cluster of CCs, for this reason, we choose the Docker

Swarm, a native clustering solution to Docker.

In order to make an up and running cluster of CCs, we need a swarm manager,

which is a node that is responsible for executing different commands ins ide each

node within the cluster. This manager can be used to provision a new CC, migrate,

shutdown or destroy an existing CC, as well as many other things.

Additionally, we need a discovery service, which responsible for maintaining the

state of the cluster and its configuration. We choose Consul as a discovery service,

which is used in production environments by many companies.

 Each CC inside each node in the cluster, will generate events and different type

of outputs, that can all be regarded as logs, these logs need to be stored in a

centralized store, likewise, any other CC, can reach them, and take advantage of

them. For this reason, we use Logjam [18], is a log forwarder, which is designed to

listen on the docker0 interface within each node in the cluster, and receive over

UDP, all the log entries, received from the different CCs inside that particular node,

and then send them to a centralized log collection store node.

Concerning this last mentioned, we use Logstash [19], which is an open source

tool that collects, parse, and store logs for future use.

To enable active monitoring within our DockFlex implementation, we use

cAdvisor [20], which will analyze in real-time, the different characteristics and

resources consumptions for all the CCs, within each node in the control plane.

Our implementation suggests the use of high availability, which means each node

in the orchestration layer should be duplicated. Additionally, we can use all the

different components we talked about as containers.

Each CC inside each node is an SDN ONOS controller instance as a container.

ONOS is The Open Network Operating System, an OS designed for SDN networks,

which has high scalability, high performance and designed for Data Center based

networks, as well as service provider networks.

We suggest for this implementation the use of OVS (OpenVSwitch), in the

infrastructure layer, because they have the particularity of being full software

switches, and they support OpenFlow, which is the Southbound API (SB-API) used

for communication between the OVS witches and a particular CC. OpenFlow is the

most used and recognized SB-API, which happens to be always linked to SDN.

The DockFlex implementation is directly connected to the Packet.Net, which is a

cloud service that permits to provision full Bare Metal servers on the cloud. In case

we are running out of node inside the cluster, we can easily provision a new node

(server), and install the different dependencies we need while provisioning, thanks

to the optional user data, offered by this cloud service.

This proposed implementation can be extended to use all sort of open source tools,

which can be integrated to enhance the overall functionality of DockFlex.

4. A Simulation of the DockFlex Core

As we have seen, the implementation of DockFlex, requires the combination of

many Docker native tools as well as third-party solutions, and since this is a work in

progress, we haven't been able yet to simulate the DockFlex implementation, for this

reason, we will present a simulation of the core of DockFlex, which is Docker, and

at the same time, show the superiority of a Docker-based SDN network in

comparison with to a VM-based SDN network.

International Journal of Future Generation Communication and Networking

Vol. 10, No. 12 (2017)

42 Copyright © 2017 SERSC Australia

4.1. Testbed Description

In this testbed, we are going to use a physical machine from the packet.net [14]

Bare Metal service, of type 0 (1 x Intel® Atom™ C2550, 4 cores, 2.4 GHz and 8GB

of DDR3 RAM).

Within this machine, we are going to install VirtualBox [15], which will allow us

to deploy VMs as well as Docker, which will permit us to create containers.

We are going to use ONOS [3], an emerging and rapidly growing SDN controller,

by building it as a container, as well as a VM. Then we are going to connect a first

ONOS controller to a simulated Mininet [16] network, which is a fat tree topology,

which has one OVS [17] switch, connected to three other OVS switches, where each

one of those three is connected to three simulated Mininet hosts. We also connect

the same topology to a second ONOS controller.

The following figure summarizes the previously explained testbed:

Figure 4. The Testbed Description

4.2. Performances Indices

To measure the performance of this use-case implementation, we measure two

different performance indices. First, the CPU consumption, which is an important

index to see how much the controller and its underlying networks are consuming the

processor resources. Second, we measure the memory consumption, which also

relevant for the overall resources available. These two indexes are very significant

for the cloud environment to show us how much our implementation handle the

available resources.

5. Simulation Description, Results and Analysis

Within this experiment, we measure the CPU and memory consumption, by

building up the underlying network, which will construct the switches, the hosts as

well as the links between switches and hosts. After that , we assure the command

PingaAll, within the Mininet simulated network, so the simulated hosts can discover

each other.

International Journal of Future Generation Communication and Networking

Vol. 10, No. 12 (2017)

Copyright © 2017 SERSC Australia 43

Figure 5. CPU Usage for a VM based versus a Docker Based

Figure 5 shows that the CPU consumption goes up to about 79%, for a Docker-

based SDN network, and up to about 95% for a VM based SDN network, within the

switch building phase. In this phase, many switch events are exchanged at the same

time, it consumes a lot of CPU resources.

While, within the phase when the Mininet hosts ping each other, the CPU

decreases for the VM-based, but still higher than the Docker-based SDN network.

 The difference of CPU usage, it simply due to the fact that when using a VM,

we are bringing the overhead brought by the guest OS, which is Ubuntu in this use

case. In contrast, when using Docker, we are using the ONOS instance as a

container directly, which means lower overhead, likewise, lower CPU usage.

 Another thing to point out is the fact that when we issue the command

PingaAll on Mininet, it takes about 20 more seconds to finish pinging all the

Mininet hosts. Which means, that the Docker-based environment is faster.

Figure 6. Memory Usage for a VM based Versus a Docker Based

Figure 6 shows the memory usage for both, a VM-based and Docker-based

topologies. For the VM-based environment, we consume a significantly high

International Journal of Future Generation Communication and Networking

Vol. 10, No. 12 (2017)

44 Copyright © 2017 SERSC Australia

memory, up to 69% of the global memory. By comparison, the Docker-based

environment is consuming much less memory, which is about 16%.

In other words, we can say that the Docker environment has managed to save up

to 53% of the available memory.

Figure 7. Disk Usage for a VM based Versus A Docker Based

Figure 7 shows that the disk space consumed was 16% when using a VM-based

topology, then it decreases down to just 3%, using the Docker-based environment.

All the resources measurements that we have observed during the lunching of the

Mininet based topology, have demonstrated the superiority of the Docker -based

environment in comparison to the VM-based environment.

5. Conclusion and Perspectives

In this paper, we take advantage of the concept that has become very popular in

the recent years, which is containerization, which came to solve many problems

related to virtual machines, in the context of SDN networks. More precisely, we use

containerization for distributed SDN networks, since distribution has become a must

to remove many limitations in terms of performance. Based on these two concepts,

which are SDN distributed networks and containerization, we propose DockFlex,

which is an orchestrated container-based SDN distributed architecture, which

resides in the cloud.

We have presented and described this architecture, then we have suggested an

implementation based on this architecture, which uses Docker as a containerization

environment while combining many native Docker tools and other third-party

solutions, to enable many important operations within modern networks, like

communication, logging, and monitoring.

Concerning the next steps of this research paper, we plan to build the DockFlex

implementation and deploy it within a real testbed on the cloud to show its

performance in production environments. We suggest the use of multiple WAN

network topologies for the underlying networks, to be able to watch the behavior of

the DockFlex based network, within different topologies, each one with a different

number of underlying nodes.

Furthermore, we look forward to discussing and analyzing the scalability

opportunities within a DockFlex implementation, as well as cohabitation between

DockFlex with other types of containerization environments.

International Journal of Future Generation Communication and Networking

Vol. 10, No. 12 (2017)

Copyright © 2017 SERSC Australia 45

References

[1] D. Kreutz, F. M. V. Ramos, P. E. Verissimo, C. E. Rothenberg, S. Azodolmolky and S. Uhlig,

“Software-defined networking: a comprehensive survey”, Proceedings of the IEEE, vol. 103, no. 1,

(2015), pp. 14–76.

[2] J. Gil Herrera and J. Botero Vega, “Network Functions Virtualization: A Survey”, IEEE Latin America

Transactions, vol. 14, no. 2, (2016), pp.983-997.

[3] ONOS, “Open Network Operating System”, [online] Available at: http://onosproject.org/, (2017).

[4] “The OpenDaylight Platform | OpenDaylight”, Opendaylight.org, 2016. [Online]. Available:

https://www.opendaylight.org/.

[5] Juniper.net, “Contrail SD-WAN and Open SDN NFV Solutions - Juniper Networks”, [online] Available

at: http://www.juniper.net/us/en/products-services/sdn/contrail/, (2017).

[6] R. Rosen, [online] Available at: http://Resource management: Linux kernel Namespaces and cgroups –

Haifux, (2017).

[7] Docker, Docker. [online] Available at: https://www.docker.com/, (2017).

[8] L. Xingtao, G. Yantao, W. Wei, Z. Sanyou and L. Jiliang, “Network virtualization by using software-

defined networking controller based Docker”, 2016 IEEE Information Technology, Networking,

Electronic and Automation Control Conference, Chongqing, (2016), pp. 1112-1115.

[9] Y. Xu, V. Mahendran and S. Radhakrishnan, “SDN docker: Enabling application auto-

docking/undocking in edge switch”, 2016 IEEE Conference on Computer Communications Workshops

(INFOCOM WKSHPS), San Francisco, CA, (2016), pp. 864-869.

[10] GitHub, docker/swarm. [online] Available at: https://github.com/docker/swarm, (2017).

[11] Zookeeper.apache.org. (2017). Apache ZooKeeper - Home. [online] Available at:

https://zookeeper.apache.org/.

[12] GitHub. coreos/etcd. [online] Available at: https://github.com/coreos/etcd, (2017).

[13] Consul by HashiCorp. Consul by HashiCorp. [online] Available at: https://www.consul.io/, (2017).

[14] Premium Bare Metal Servers and Container Hosting – Packet, Premium Bare Metal Servers and

Container Hosting - Packet. [online] Available at: http://packet.net, (2017).

[15] Virtualbox.org. Oracle VM VirtualBox. [online] Available at: https://www.virtualbox.org, (2017).

[16] M. Team, Mininet: An Instant Virtual Network on your Laptop (or other PC) - Mininet. [online]

Mininet.org. Available at: http://mininet.org/, (2017).

[17] Openvswitch.org. Open vSwitch. [online] Available at: http://openvswitch.org/, (2017).

[18] GitHub. gocardless/logjam. [online] Available at: https://github.com/gocardless/logjam, (2017).

[19] Elastic.co., Logstash: Collect, Parse, Transform Logs | Elastic. [online] Available at:

https://www.elastic.co/products/logstash, (2017).

[20] GitHub. google/cadvisor. [online] Available at: https://github.com/google/cadvisor, (2017).

https://www.docker.com/

International Journal of Future Generation Communication and Networking

Vol. 10, No. 12 (2017)

46 Copyright © 2017 SERSC Australia

