
International Journal of Future Generation Communication and Networking

Vol. 10, No. 10 (2017), pp.73-86

http://dx.doi.org/10.14257/ijfgcn.2017.10.10.07

ISSN: 2233-7857 IJFGCN

Copyright © 2017 SERSC Australia

CFCC: A Controller Framework Supporting Component Based

SDN Applications Development
1

Dandan Qi1 and Subin Shen2

1Department of Communication and Information Engineering
2Department of Computer

11011041127@njupt.edu.cn, 2sbshen@njut.edu.cn

Abstract

Software Defined Networking(SDN), especially, OpenFlow based SDN, has been

widely aware that it facilitated creating new services and protocols, due to its

programmable interface, via which programmers can program network control logic only

on the controller instead of all the network devices. However, current controllers provide

very low-level interfaces, leading to the high complexity involved in the process of

programming SDN applications. In this paper, in order to reduce the complexity, we

propose and implement a SDN controller framework, CFCC, which supports component

based SDN applications development, that is, new SDN applications can be created by

composing the existing component, thus reducing the complexity involved in the process

of developing new SDN applications. We treat the SDN applications as a collection of

interdependent components, which are higher-level functions implementations, and

cooperate with each other to implement the whole function of SDN applications. Also, we

demonstrate the feasibility of CFCC through developing and evaluating routing control

applications upon the controller framework.

Keywords: SDN application development, component based approach, SDN Controller

Framework

1. Introduction

Software Defined Networking (SDN) is a new networking paradigm in which the

forwarding hardware is decoupled from control decisions. OpenFlow based SDN moves

the control plane from the data plane into a logically centralized controller which controls

behavior of the data plane and open the programmable interface, via which user can

program or modify the control logic on the controller, such as routing control application

[1, 2].

However, such a programmable interface is low-level, which offers basic features to

developers, resulting in the high complexity involved in developing advanced SDN

software applications. In this scenario, full development and deployment of such

applications in staging and production environments remains a challenge for network

operators [3].

Facing this challenge, this paper proposes component based approach for developing

SDN applications. We choose component based approach for two reasons. First, the

component based approach has the potential advantages in terms of, such as reducing

development time, enhancing application quality [4], in the aspect of developing new

applications, due to that it is reusing and composing the existing components instead of

developing applications from scratch. Second, coincidentally, the component based

approach is very suitable for developing SDN application, because we found that there

existed shared functionalities across different SDN applications belonging to the same

Received (February 17, 2017), Review Result (September 5, 2017), Accepted (September 15, 2017)

International Journal of Future Generation Communication and Networking

Vol. 10, No. 10 (2017)

74 Copyright © 2017 SERSC Australia

class. In this condition, if these shared can be encapsulated by the components to be

reused across different SDN applications development, the effort to developing new

applications will be reduced largely.

In this paper, a component-based controller framework, supporting efficient SDN

application development, is presented. We treat the SDN application as a collection of

interdependent components, which cooperate with each other to realize the whole function

of the SDN application. Especially, we suggest that, for each class of SDN applications,

such as routing control application, a corresponding components function encapsulating

should be conducted, to guarantee a suitable granularity of components.

In order to further minimize the complexity involved in SDN application development,

CFCC provide a ‘drag and drop’ based user-friendly environment for designing SDN

applications, which allows users construct the component composition flow just by

simply dragging and dropping, linking the components icons, and configuring the related

parameters. CFCC converts the graphical workflow into the formal workflow based on

XML, which, finally, are executed by CFCC. Such procedure is analogous to the

automated web service composition, which first converts the user request into the formal

composition workflow and then implements the composite service by executing the

formal workflow [18].

The paper is organized as follows. In Section 2, we introduce the related work, and the

differences and relations between them. In section 3, CFCC is introduced. Accordingly, in

Section 4, a case study about routing control application development is presented, to

demonstrate the feasibility of CFCC. Finally, the conclusion is presented in Section 5.

2. Related Work

Driven by the situation that network operators are facing high complexity involved in

developing advanced SDN software applications, some researchers are trying to create

high level programming language for SDN applications, such as Frenetic [5], Nettle [6],

NetCore [7], Procera [8] and Pyretic [9], the main idea behind these works was raising the

abstract level of the control function in the controller and then formulating abstract

programming language based on these abstraction functions. For example, SDN language

Pyretic [9] abstracted the inner details of the controller functions from the users, the users

can use it express network policies, query network state and reconfigure networks.

Compared with these works, our work enables more suitable function abstraction level,

because for each class of SDN application, we conducted a specialized component

function encapsulating. In addition, CFCC enables intuitively creating SDN application

through dragging and dropping, and linking the components icons in the graphical

composition interface provided by CFCC. In all, the suitable function abstraction level

and the graphical component assembly approach make the SDN application development

easier.

To the best of our knowledge, this paper is the first work for studying SDN controller

supporting the component based SDN application development. However, actually, in the

research community, the component based approach has been gaining popularity and

interest in the form of Mobile Ad-Hoc Networks (MANETs) and sensor networks

architecture for developing network control service. Paper [10] presented a component

based methodology for modeling mobile ad hoc routing protocols. The component based

approach provided two major contributions in protocol design and modeling. First, it

allowed the modularity in protocol design. Compared with routing protocols implemented

as large monolithic software, it was easy to adapt to varying environmental conditions by

adapting component composition. Furthermore, the approach allowed the reuse of

existing components across current and future protocols of the same class. Paper [11]

proposed the component based approach for developing MAC protocols with the purpose

of improving the flexibility of the protocol development and rapid prototyping protocols,

International Journal of Future Generation Communication and Networking

Vol. 10, No. 10 (2017)

Copyright © 2017 SERSC Australia 75

the experiment showed that the component get high reusability across different MAC

protocol implementation. In addition to reusability and flexibility, component based

framework had much potential in such as reaching intelligence by adding some

intelligence plugin into systems. For example, paper [12] proposed the component based

protocol stack design, based on which system can automatically suggest a composition

protocol stack according to the current environment and user inputs, and also could adapt

to environment change by dynamically reconfiguring the components or recomposing the

components. All these works demonstrated the benefit, such as high flexibility, high

reusability, rapid prototyping, brought by the component based approach to the network

control application development, which also provided confidence for us to believe that

employing the approach in developing SDN application is feasible and can bring benefit.

3. Framework

We treat the SDN application as a collection of interdependent components, which

cooperate with each other to realize the whole function of the SDN application. And

different combinations of components can form different SDN applications with various

capabilities. Accordingly, the SDN controller must also be a component composition

platform to support the creation of SDN applications through composing a suitable set of

components deployed in the controller. CFCC consists of a SDN application development

environment and a SDN application execution environment, as shown in Figure 1. We

design that just by simply dragging and linking the component icon on the visual interface

provided by the SDN application development environment, the application developer can

fulfill the process of SDN application creating. CFCC employs the openflow protocol as

the communication protocol between itself and the switches. The overall functioning

workflow is described as following, as shown in Figure 2: the controller need analyze and

validate the correctness of the graphical component composition plan from the application

developers (implemented in the module composition verification), then translate the

abstract plan into a formal composition workflow, and then deploy it on the controller

(implemented in the module formal workflow generation). When SDN applications are

requested to run, the formal workflow will be parsed to coordinate the invocation of the

related components to implement the whole function of the SDN applications.

SDN application development environment

SDN application execution environment

Graphical Composition interface

Composition
verification

Formal workflow
generation

Information
base

Component
Library

Composition Orchestrator

SDN
application

SDN
application

...

SDN
Application
Composition
workflow
Library

Figure 1. CFCC Controller Framework

International Journal of Future Generation Communication and Networking

Vol. 10, No. 10 (2017)

76 Copyright © 2017 SERSC Australia

Graphical
component
composition

workflow

Translation
and

Verification

Formal
component
composition

workflow

Application
deployment

SDN
Application
Developer

Application
execution

Component
library

Information
base

SDN
application

User

Routing
request

Call

Figure 2. The Workflow of the Controller for SDN Application Creation

3.1. SDN Application Development Environment

The development environment provides application developers with useful information

and tools to more easily create new SDN applications. To reach this goal, besides the

suitable granularity of functions that the component encapsulates, we design the

environment with consideration that the developers do not need to deal with much

complex programming details, instead, the development environment automatically

translate the abstract composition workflow into the formal workflow which can be

executed by the running environment. The development environment consists of three

modules: (1) Graphical composition interface, (2) Composition verification, (3) Formal

workflow generation.

Graphical composition interface: The aim of the graphical composition interface is to

enable developers to intuitively design the composition workflow, abstract the SDN

application developers away from programming language concepts like variables or data

types, just by dragging and dropping, linking the components icons, and configuring the

related parameters. The interface will be presented in section 4.

Composition verification: Composition verification is to analyze and verify the

correctness of the composition workflow from the SDN application developers, before it

is put into execution, to avoid the irreversible loss due to the execution of the wrong

workflow. As far as we know, formal analysis and verification techniques are widely

applied for the component composition verification (especially the web service

composition verification), and there are many mature tools for formally modeling

component and verification, among which we use CPN TOOLs [13] for verifying the

correctness of the composition workflow from the SDN application developers. The CPN

TOOLs is a colored petri net based modeling and verification tool, which can verify the

reachability, boundedness and liveness of the component composition workflow. In order

to realize automated verification in CFCC, the component composition verification need

translate the graphical composition workflow, into XML-based petri net compatible with

the CPN TOOLs, which then automatically analyze and verify whether the petri net is

correct.

Formal workflow generation: We design that CFCC can automatically generate the

SDN application composition workflow based on XML by parsing the graphical

component composition workflow, then deploy it into the SDN application composition

workflow library.

International Journal of Future Generation Communication and Networking

Vol. 10, No. 10 (2017)

Copyright © 2017 SERSC Australia 77

3.2. SDN Application Execution Environment

The SDN application execution environment, as its name implies, is the place where

the applications are executed. The implementation is based on the J2EE (Java 2 Platform

Enterprise Edition) platform and EJB (Enterprise JavaBeans) component model. It

consists of a component library, an information base and a SDN application coordinator.

Component library: The component library stores and manages all the components and

their description files for developing SDN applications, and we design that the component

library can be extended for supporting more network control functions. The components

are loosely coupled, can fulfill a basic task. Through composing such components, a more

value-added service function can be implemented. It’s important to note that a very coarse

component function encapsulation restricts their reusability due to the increased inner

complexity. For example, suppose the multipath routing protocol ECMP (Equal-cost

Multi-Path) is implemented by only one component, called ECMP component. This

certainly limits the possibility of sharing the ECMP component between different routing

applications. On the contrary, very fine grained component function encapsulation leads

to complex component interdependencies that result in complex composing process.

Therefore, in order to make the component granularity suitable, for each class of SDN

application, they should have their own component function encapsulation, rather than

share the same one with other class of applications. For that, we first analyze a wide range

of SDN application instances belonging to the same class, then identify and encapsulate

their shared constituent functionalities and their own distinct functionalities using

components, finally deploy the components into the component library for being invoked

to implement the SDN application function. When new functionalities are needed for a

new routing application, the corresponding new components are created and added into

the component library, rather than start from scratch for the new routing applications.

Take SDN routing application in SDN network for example, Routing, generally consists

in three basic tasks or functions. The first one is to collect the state information (include

the network and application flow) and keep it up to date. The second task is to find a

(multiple) feasible path (paths) for a new connection based on the collected information.

The third one is to configure the routing path into the switches. Accordingly, the

generated components are summarized as four major categories, and some typical

components are listed in Table 1.

Table 1. Routing Related Component

Component

catergary
component Component function

Network state

information monitor

GetTop Get network topology

MonlinkBW Monitor bandwidth of network link

MonlinkDelay Monitor delay of network link

… …

Application state

information monitor

MonflowBW Monitor bandwidth of application flow

MonflowDelay Monitor delay of application flow

MonflowJitter Monitor jitter rate of application flow

MonQoEVideo Monitor QoE of video application

… …

Calculating path

CalSinglePath_DCLC
Calculate a Single path employing the

DCLC algorithm

CalMultiPath_ECMP Calculate equal cost multiple paths

CalMultiPath_UCMP Calculate unequal cost multiple paths

… …

Configuring flow

table

ConfFlowPath
Configure forwarding behavior of

switches.

… …

International Journal of Future Generation Communication and Networking

Vol. 10, No. 10 (2017)

78 Copyright © 2017 SERSC Australia

Information base: The information base is to store and manage information about

network, users, applications and other information, serves as the information provider and

storage for the running of SDN application.

SDN application composition workflow library: The library stores the workflows

generated from the SDN application development environment for provisioning to SDN

application coordinator to execute the SDN applications.

SDN application coordinator: When SDN applications are requested to be run, SDN

application coordinator parses the corresponding component composition workflows

stored in the SDN application composition workflow library to control the invocation of

the related components. The interaction between the components is centrally controlled

by the coordinator, which employs event-driven scheduling mechanism.

We design the interaction mechanism as follows:

1) As showed in Figure 3, there are the data channel, used to transmit the data about

input and output, and control channel, used to control the component running by the

coordinator, between each component and the coordinator.

2) For each SDN application, the member components pass the running result to the

coordinator via the data channel.

3) The coordinator needs to register the trigger event of the member component

operation for SDN applications to be run. When the trigger event arrives, or the running

condition is met, the coordinator starts the corresponding component to run via the control

channel.

For example, the best effort routing service can be realized by combining the following

three components:

GetTop: the function is to get network topology.

CalSinglePath_SPF: the function is to calculate a routing path between the source node

and the destination node employing the Dijkstra algorithm.

ConfFlowPath: the function is to configure the routing path into the corresponding

switchs.

The invocation procedure by the coordinator through the control channel is as follows:

the component GetTop, CalSinglePath_SPF, ConfFlowPath respectively registers the

trigger event “Routing request arrived”, “Network topology was got” and “Routing path

was got” into the coordinator. When the event “Routing request arrived” arrives from the

data plane, the coordinator invokes the component GetTop, which then generates the

event “Network topology was got” to trigger the invocation of the component

CalSinglePath_SPF. Finally, the event “Routing path was got” is generated by the

component CalSinglePath_SPF, which triggers the invocation of the component

ConfFlowPath to configure the routing path into switches. In the above procedure, the

component GetTop generates and passes the network topology to the coordinator through

the data channel, which in turn passes the network topology to the component

CalSinglePath_SPF. In the same way, the component CalSinglePath_SPF generates and

passes the routing path to the component ConfFlowPath indirectly through the

coordinator.

4. Case Study

As we know, the current internet has carried a diversified of applications with different

QoS requirements, which, in conjunction with the customized requirement from end users

and network owners, forces the arising of various routing control functions. Take for

example the videoconferencing application, videoconferencing is an interactive

multimedia application which requires a strict end-to-end delay and packets loss ratio [14],

International Journal of Future Generation Communication and Networking

Vol. 10, No. 10 (2017)

Copyright © 2017 SERSC Australia 79

or if the video is SVC encoded, it demands that the video in the base layer should be

streamed without any packet loss or minimized delay variation, regarded as level-1 QoS

flows, and the video in the enhancement layer can be regarded as either level-2 QoS flows

(if capacity is available) or best-effort flows [15]. Therefore, single-path QoS routing is

required for the first case, multi-path QoS routing for the second case is considered,

which calculates QoS guaranteed path for transferring the base layer flow of the video,

best-effort path for the enhance layer flow of the video, thereby guaranteeing a high level

of video quality and reasonable cost at the same time.

There are more different routing functionalities, to solve the specific problems

occurring in different situations. We have implemented a prototype of CFCC and

deployed several components related to routing control function on it, and chose two

routing control applications that are suitable for the above mentioned application scenario,

named RCA1 and RCA2, as the case study to demonstrate the feasibility of CFCC.

In the following sections, we demonstrate the feasibility of CFCC by implementing and

evaluating RCA1 and RCA2 based on CFCC.

First, we have implemented RCA1 and RCA2 based on CFCC exploiting graphical

component composition interface. Second, we put them into running over an openflow

network which is emulated using mininet [17], in order to validate the correctness of

CFCC based RCA1 and RCA2, at the same time, to evaluate their performance by

comparing with that of the Non-CFCC based RCA1 and RCA2.

4.1. The Creation of Two Kinds of SDN Routing Control Application

GetTop

CalSinglePat
h_SPF

ConfFlowPath

Data Channel

Control
Channel

Coordinator

Component name Trigger event

GetTop Routing request arrived

CalSinglePath_SPF Network Topology was got

ConfFlowPath Routing Path was got

Component trigger event
 registration table

invoke

invoke

invoke

Figure 3. Interaction between Components

As showed in Figure 3, the graphical component composition workflow of RCA1 and

RCA2 are constructed on the graphical interface of CFCC by dragging and dropping,

linking the components icons, and configuring the related parameters. Obviously, our

approach can largely reduce the burden for programmers than the traditional monolithic

implementation approach. According to the graphical component composition workflow

showed in Figure 4(a), the corresponding formal workflow of RCA1 are generated and

showed in Figure 5.

International Journal of Future Generation Communication and Networking

Vol. 10, No. 10 (2017)

80 Copyright © 2017 SERSC Australia

(a) RCA1 Workflow Construction

(B) RCA2 Workflow Construction

Figure 4. Graphical SDN Applications Workflow Construction

International Journal of Future Generation Communication and Networking

Vol. 10, No. 10 (2017)

Copyright © 2017 SERSC Australia 81

<sequence seqM>
<!-- Async invoke of the GetTop component and
wait for the callback-->

<invoke partnerComponent="GetTop"
portType="rt:GetTopPT"
operation="GetTop"/>
<receive partnerComponent="GetTop"
portType="rt:GetTopCallbackPT"
operation="TopCallback"

variable="Top" />

<!-- Async invoke of the CalSinglePath_DCLC component and
wait for the callback-->
<invoke partnerLink="CalSinglePath_DCLC"
portType="rt:CalSinglePath_DCLCPT"

operation="CalSinglePath_DCLC"

inputvariable top="Top"
inputvariable s="SourceNode"
inputvariable d="DesNode"
/>
<receive partnerLink="CalSinglePath_DCLC"
portType="rt:CalSinglePath_DCLCCallbackPT"
operation="SinglePathCallback"

outputvariable="SinglePath" />

<invoke partnerLink="ConFlowPath"
portType="rt:CalSinglePaConFlowPathPT"
operation="ConFlowPath"

inputvariable="SinglePath"/>

<!--loop invocation of the MonPacketLossRate and
MonDelay component-->

<while>
<sequence seqCP>
 <invoke partnerLink="MonPacketLossRate"
 portType="rt:MonPacketLossRatePT"
 operation="MonPacketLossRate"
 inputVariable="SinglePath"
 inputVariable="FlowID" />
 <receive partnerLink="MonPacketLossRate"
 portType="rt:PacketLossRateCallbackPT"
 operation="MonPacketLossRate"
 variable PLR="PacketLossRate" />
<sequence seqCM>
 <invoke partnerLink="MonDelay"
 portType="rt:MonDelayPT"
 operation="MonDelay"
 inputVariable="SinglePath"
 inputVariable="FlowID" />
 <receive partnerLink="MonDelay"
 portType="rt:DelayCallbackPT"
 operation="MonDelay"
 variable de="Delay" />
<if condition="plr > 0.04 & de > 180"
<!--break of of the monitoring loop, recalculate
routing path-->

 <GoTo gotoNode="seqM">
 </GoTo>
</if>
</while>
/sequence>

Figure 5. Formal Composition Workflow of RCA1

RCA1: it is to choose a single path with guaranteed delay and packet loss rate for

videoconferencing application, which can be implemented by assembling the following

component:

GetTopWithNetStat gets the network topology with information about the bandwidth

and packet loss rate.

CalSinglePath_DCLC uses the algorithm Delay-Constrained Least-Cost (DCLC) to

select a path with the least cost and the delay less than a specified value.

ConfFlowPath configures the forwarding behavior of the switches.

MonPacketLossRate monitors the packet loss rate of the flow.

MonDelay monitors the delay of the flow.

The implementation process of the CFCC based RCA1 is: when receiving the event

“Routing request arrived”from the data plane, the Coordinator executes the component

GetTopWithNetStat to get the network topology with delay and packet loss rate

information. Then the component CalSinglePath_DCLC is called to calculate a suitable

path, according to which, the component ConfFlowPath will configure forwarding

behavior into the corresponding switches. The component MonPacketLossRate and

MonDelay are then executed constantly to obtain the delay and packet loss rate value of

the flow, when the value of the metrics do not meet the requirement of users, the

Coordinator re-start the above invocation process to rerouting the flow to a suitable path.

RCA2: It can calculate multi-paths for transferring the SVC encoded video flow.

Compared with that of RCA1, the component composition workflow of RCA2 is

relatively complex. The main difference lies in the task of routing path calculation, which

need respectively calculate paths with guaranteed delay and packet loss rate for the base

layer flow, and best-effort path for the enhancement layer flow.

International Journal of Future Generation Communication and Networking

Vol. 10, No. 10 (2017)

82 Copyright © 2017 SERSC Australia

4.2. Feasiblity Test

We take 2 groups of experiments over the same simulated openflow network,

respectively for validating the behavior of CFCC based RCA1 and RCA2, at the same

time, comparing the performance result of the CFCC based RCA1 and RCA2 and Non-

CFCC2 based RCA1 and RCA2.

1

2

3

4

5

6

7

9

8

10

11

12

13

14

15

1M

1M

1M

1M
1M

1M

1M

1M

1M

3M
2M

2M

3M

2M

3M

3M

1M

1M

2M

3M

1M

3M

2M

3M

1M

Figure 6. MIRA Topology

The experiment environment: In simulations we used MIRA topology, adopted from

the literature dealing with the correlated routing problem [16], as showed in Figure 6, we

set the simulation time 330s.

（4 3 6 11 12 ）

（4 3 7 10 13 12）

（4 3 2 5 12 ）

Add TCP flow from
 3 to 6

Add TCP flow from
 3 to 7

（4 9 10 13 12 ）

（4 3 6 11 12）

（4 3 7 10 13 12 ）

Add TCP flow
from 9 to 10

Add TCP flow
from 3 to 6

In the first group experiment, the transmission path when running
CFCC based and Non-CFCC based RCA1:

（4 1 2 5 12 ）

（4 1 2 5 12）

（4 1 2 5 12 ）

Add TCP flow from
 1 to 2

Add TCP flow
from 2 to 5

The base layer flow
The enhancement layer flow

In the second group experiment, the transmission path when running
CFCC based and Non-CFCC based RCA2:

Figure 7. The Transmission Path of Videoconference Flow in the Two
Group Experiment

 The first group of experiment running the CFCC and Non-CFCC based RCA1

In the first group of experiment, we respectively run the CFCC and Non-CFCC based

RCA1 according to the following experiment procedure:

1) Node 4 and 12 generated the udp flow to represent the videoconference flow. At the

beginning of the experiment, there is no background flow taking up the bandwidth

resource on the link that the videoconferencing flow goes through.

2 Non-CFCC means the application are implemented in traditional approach.

International Journal of Future Generation Communication and Networking

Vol. 10, No. 10 (2017)

Copyright © 2017 SERSC Australia 83

2) While after 100s, we manipulated that the tcp flow was generated to make

congestion for the videoconference flow.

3) Again, at the time 200s, we manipulated that the tcp flow was generated to make

congestion for the videoconference flow.

We have observed the same transmission path of the videoconference flow, when

applying CFCC and Non-CFCC based RCA1, and summarized that in Figure 7. First,

before the TCP flow occurs between the node 3 and 6, the videoconference flow passes

through the path (4->3->6->11->12), while, when the TCP flow is generated to make the

link (3->6) congested, the path of the videoconference flow is changed to the

unobstructed path(4->3->7->10->13-12), again, in the same way, the path the

videoconference flow is turned into the path (4->3->2->5->12) when the TCP flow is

added from the node 3 to 7.

 The second group of experiment running the CFCC and Non-CFCC based RCA2

Similarly, we respectively run CFCC and Non-CFCC based RCA2 following the below

experiment procedure for the second group experiment:

1) We generate two kinds of udp flow between Node 4 and 12, respectively

representing the base layer flow and enhancement layer flow. At the beginning of the

experiment, there is no background flow taking up the bandwidth resource on the link that

the videoconferencing flow goes through.

2) While after 100s, we respectively manipulated that the tcp flows were generated to

make congestion for the videoconference base and enhance layer flow.

3) Again, at the time 200s, we respectively manipulated that the tcp flows were

generated to make congestion for the videoconference base and enhancement layer flow.

Also, from Figure 7, we can see the same transmission path of the videoconference

flow when applying CFCC and Non-CFCC based RCA2. The base layer flow first passes

through the path (4->9->10->13->12) , then turns its path into the path (4->3->6->11->12)

when the background flow is generated to interferer its QoS, and in the same way, the

path (4->3->6->11->12) is changed into (4->3->7->10->13->12). On the contrary, the

enhancement layer flow is always unchanged regardless of whether the background flow

is generated to interferer it.

(A) The Dealy Result of CFCC
Based and Non-CFCC Based RCA1

(B)The Packet Loss Rate Result Of
CFCC Based and Non-CFCC Based

RCA1

International Journal of Future Generation Communication and Networking

Vol. 10, No. 10 (2017), pp.73-86

http://dx.doi.org/10.14257/ijfgcn.2017.10.10.07

ISSN: 2233-7857 IJFGCN

Copyright © 2017 SERSC Australia

(c)The Delay Result of CFCC based
and Non-CFCC based RCA2

(d)The Packet Loss Rate Result of
CFCC based and Non-CFCC based

RCA2

Figure 8. The Performance Comparison Result of CFCC based and Non-
CFCC based Routing Control Applications

We have also observed that the performance characteristics of CFCC based routing

application closely resemble to their Non-CFCC counterparts in terms of the delay and

packet loss rate of the videoconference flow in all the cases. Figure 8 shows the delay and

packet loss rate comparison for CFCC based routing application and their Non-CFCC

counterparts at different network traffic. From Figure 8(a), we can obtain that the delay of

the videoconference flow increases sharply at the time 110s and 210s, and then fall back

at the time 140s and 240s, it may be caused by the transformation of the flow path at these

times in the case of RCA1 is applied, which also incurs the increase and decrease of the

packet loss ratio, indicated in Figure 8(b). For RCA2, Figure 8(d) and (c) indicate that the

delay and packet loss rate of the base layer flow increase and decrease in the same way as

that of the videoconference flow in RCA1(see Figure 8(a) and (b)), while the delay and

pack loss rate of the enhancement layer flow always increase from the time 110s, the

reason for that is it applies the best-effort routing which does not adopt any remedial

methods when the QoS performance decrease.

In all, the experiments demonstrate that same behavior and performance of the CFCC

and Non-CFCC based routing applications, which indicates the correctness of CFCC.

4.3. Evaluating Overhead

We compare the flow setup time when using the CFCC based routing application and

their Non-CFCC counterparts. To measure this, we capture packets between the CFCC

controller and the OpenFlow switches, and measure the round trip required to submit

routing request of the flow and receive a corresponding flow routing configuration. We

observe that the component based routing applications require additional setup time in the

range of 0.4 milliseconds to 9.8 milliseconds, which is negligible compared to the benefit

generated by the component based routing application development.

5. Conclusion

Facing with the challenge involved in the process of SDN applications development

based on the low-level programmable interfaces provided by the current controllers, the

paper proposed a controller framework CFCC to support the component based SDN

application development with the features that the components provide more suitable

functions abstraction level than the programmable interfaces of the current controllers,

meanwhile, have high reusability across different SDN applications belonging to the same

class, thus can support efficient SDN application development. We have verified the

International Journal of Future Generation Communication and Networking

Vol. 10, No. 10 (2017)

Copyright © 2017 SERSC Australia 85

validity of CFCC by creating the routing control applications in the section 4, and our

evaluation demonstrate that CFCC introduces negligible overhead on the flow setup time

and that it enables rapid creation of the popular routing control applications. As the future

work, we will add more components into the component library to create more other SDN

applications, to further evaluate and improve the performance of CFCC.

Acknowledgments

This research was supported by Future Network Foresight Research Program of

Jiangsu Province under Grant No. BY2013095-1-08; the College Graduate Research and

Innovation Projects of Jiangsu Province under Grant No. CXLX12_0487; the Project of

BUPT National Key Laboratory (SKLNST-2008-1-13).

References

[1] B. Astuto, A. Nunes, M. Mendonca, X.N. Nguyen, K. Obraczka and T. urletti, “A Survey of Software-

Defined Networking: Past,Present, and Future of Programmable Networks”, IEEE Communications

Surveys & Tutorials, vol. 16, (2014), pp. 1617-1634.

[2] N. McKeown and T. Anderson, “OpenFlow: enabling innovation in campus networks”, ACM

SIGCOMM, USA, vol. 38, (2008), pp. 69–74.

[3] F.A. Lopes, M. Santos, R. Fidalgo, S. Fernandes and S. Member, “A Software Engineering Perspective

on SDN Programmability”, IEEE Communications Surveys & Tutorials, vol. 18, (2015), pp. 1255-1272.

[4] S. Mahmood, R. Lai and Y.S. Kim. “Survey of component-based software development”, IET Software,

vol. 1, (2007), pp. 57–66.

[5] N. Foster, R. Harrison, M. J. Freedman, C. Monsanto, J. Rexford, A. Story and D. Walker, “Frenetic: a

network programming language”, SIGPLAN Not, USA, vol. 46, (2011), pp. 279-291.

[6] A. Voellmy and P. Hudak, “Nettle: taking the sting out of programming network routers”, in

Proceedings of the 13th international conference on Practical aspects of declarative languages, USA,

(2011), pp. 235–249.

[7] C. Monsanto, N. Foster, R. Harrison and D. Walker, “A compiler and run-time system for network

programming languages”, SIGPLAN Not., vol. 47, (2012), pp. 217–230.

[8] A. Voellmy, H. Kim and N. Feamster, “Procera: a language for highlevel reactive network control”, in

Proceedings of the first workshop on Hot topics in software defined networks, ser. HotSDN. USA,

(2012), pp. 43–48.

[9] J. Reich, C. Monsanto, N. Foster, J. Rexford and D. Walker, “Modular SDN Programming with Pyretic”,

USENIX ;login, vol. 38, (2013), pp. 40-47.

[10] E. Paraskevas and J. S. Baras, “Component Based Modeling of Routing Protocols for Mobile Ad Hoc

Networks”, CISS, MD, (2015), pp. 1-6.

[11] J. Ansari, X. Zhang, O. Salikeen and P. M. Onen, “Enabling Flexible Medium Access Design for

Wireless Sensor Networks”, 2011 Eighth International Conference on Wireless On-Demand Network

Systems and Services. Bardonecchia, (2011), pp. 158-163.

[12] J. Ansari , E. Meshkova, W. Masood, A. Muslim , J. Riihij?rvi and Petri M?h?nen, “CONFab: Ontology

and component based optimization of WSN protocol stacks with deployment feedback”, Computer

Networks, vol. 74, (2014), pp. 89–108.

[13] K. Jensen, “Coloured Petri Nets: basic concepts analysis methods and practical use. Springer”, (1997).

[14] D.E. henni, A. Ghomari and Y. Hadjadj-Aoul, “Videoconferencing over Openflow Networks: an

Optimization Framework for Qos Routing”, 2015 IEEE International Conference on Computer and

Information Technology; Ubiquitous Computing and Communications; Dependable, Autonomic and

Secure Computing; Pervasive Intelligence and Computing, (2015).

[15] Z. Bai, S. Li, Y. Wu, W. Zhou and Z. Zhu, ‘Experimental Demonstration of SVC Video Streaming using

QoS-Aware Multi-Path Routing over Integrated Services Routers”, IEEE ICC 2013 - Next-Generation

Networking Symposium, (2013).

[16] S. Tomovic, I. Radusinovic and N. Prasad, Performance comparison of QoS routing algorithms

applicable to large-scale SDN networks.

[17] http://mininet.org/

[18] D. Berardi, G. D. Giacomo and M. Mecella, “Basis for automatic service composition, in: Tutorial at the

14th International World Wide Web Conference (WWW’05)”, (2015).

International Journal of Future Generation Communication and Networking

Vol. 10, No. 10 (2017)

86 Copyright © 2017 SERSC Australia

