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Abstract 

Data-driven decision in big data era is becoming ubiquitous in electronic grid. In 

particular, daily collected power consumption records enable workload aware device 

clustering, which is crucial for critical domain applications such as device functionality 

identification. In this paper, we propose a load pattern window aware method for 

clustering power supply devices. Our approach overcomes the drawbacks in existing 

works, such as fuzzy based clustering, K-means based clustering and neutral network 

based clustering. After investigating the large scale records from power supply devices, 

our approach partitions device records into disjoint time intervals with parameterized 

window size, which indicate the load pattern feature for a period of time given a specific 

device. Devices are then decomposed into a mixture of these features, and those devices 

with similar dominating features are grouped together. The experimental results 

demonstrate the effectiveness and efficiency of our solution based on the real data 

collected from power grid in China. 
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1. Introduction 

Data-driven decision in big data era is becoming ubiquitous in power grid. In this 

paper, we focus on the issue of device functionality identification. Although the address 

of each device is registered when the device is installed, the power usage through the 

device is out of control from the power grid company. For example, in a residential 

distinct, power supply device is aimed for daily use. However, some factories may borrow 

power from these residential buildings with no permission from power grid company. To 

force resource-consuming industries to save energy, electronic power is much more 

expensive for factories than houses, following the laws of state grid. To enforce such 

laws, the capability of device functionality identification is the promise. In our example, 

the power grid company should be able to aware that the power for houses is transferred 

to factories. 

Power supply devices clustering is a straightforward and intuitive solution to this issue. 

After devices with similar workloads are grouped together, power supply companies can 

identify the representative workload and thus the functionality of each device is revealed. 

For example, Figure 1 shows the workloads from three power supply devices for a 

factory, a residential building and the case where the factory borrows power from a 

residential building respectively. Although the address associated with the third power 

supply device is a residential building, we can see its workload is more similar to that of 

                                                           
a Corresponding Author: Xiao Zhang, E-mail: zhangxiao@ruc.edu.cn 
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the factory. In this way, if we cluster the first and the third device together, it will be 

revealed to the power supply company that they share the similar functionality. 

Existing device clustering works can be classified into three categories [1-14]. The first 

fuzzy-based clustering methods extract power load patterns and represent them by 

different mathematical models. However, their effectiveness is sensitive to the initial 

manually chosen models. The second are K-means based that are totally unsupervised but 

suffer from random fluctuation in power measurement. The third neutral network based 

methods require plenty of labeled data. Our load pattern window aware clustering 

approach inherits the unsupervised property from the K-means based clustering algorithm 

and overcomes all drawbacks in existing works by computing the average power in a load 

pattern window so that the random fluctuation can be canceled out. 

 

 

Figure 1. Power Supply Measurement for Devices with Different 
Functionalities 

To overcome these drawbacks, in this paper, we investigate the load curves of power 

consumptions for each device and then summarize the concept of load patter window 

(LPW), a daily property for power consumption of each device. LPW enables us to 

propose a load pattern window aware Power Supply Device Clustering approach. In this 

approach, we first partition the device records into disjoint time intervals with the length 

of LPW and then summarize each time interval by the average power consumption for 

each device in each time interval. Finally, we adopt the well-known K-means clustering 

algorithm to mine the similarity from these summarized records of all devices.  

The main contributions of this paper are as follow: 

(1) It first studies the problem of power supply device clustering to facilitate critical 

domain applications such as device functionality identification. 

(2) This paper first introduces load pattern window aware clustering approach to 

overcome all drawbacks, such as human intervention during model selection, clustering 

precision drop under random fluctuation and the requirement for plenty of labeled data. 

Records from every device are regarded as a mixture of different functionalities and the 

functionality dominating the device reveals the device identification. 

(3) The extensive experiments are conducted to evaluate the effectiveness and 

efficiency of our solution. We evaluate our solution using a real data from the actual 

power grid in the very province of China. 

 

2. Related Work 

In this section, we review existing clustering approaches on State Grid dataset. Existing 

methods can be categorized into three classes, Fuzzy based clustering, K-means based 

clustering and neutral-network based clustering. 

Fuzzy based clustering methods [1-6] extract power load patterns, represent them by 

different mathematical models and view each individual load curve as a mixture of 

different models. And the coefficients of a load curve on these models compose the 
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feature space. For example, one may assume the load is a mixture of multiple Gaussian 

distribution and thus the curve can be fit into a weighed linear combination of multiple 

Gaussian distribution and the weights on all distributions compose a vector defined as the 

feature for the device. However, such methods suffer from diversity of load patterns and 

thus are sensitive to the selection of the initial mathematical models. Compared to these 

methods, our approach is totally unsupervised and no human intervention is required. 

K-means based approach is simple and efficient [7-10]. Initially, time series power 

consumption values from the same device become a long vector for the device and K-

means is applied on these vectors to cluster devices. However, such approach suffers from 

1) the number of records is not the same for all devices and their similarity is not well-

defined; 2) the huge number of dimensionality of vectors causes the curse of 

dimensionality and all devices are far from each other.  In this way, recent methods 

represent each record in the vector space by its recorded power consumption. Then, each 

device can be regarded as a set of points in the coordination system. After processed by 

the original K-means algorithm, each point is assigned with its cluster identification. In 

this way, for each device, the most frequent cluster id corresponding to its point set 

determines its cluster assignment. However, these methods suffer from fluctuation in 

power consumption measurement and the most frequent cluster id tends to come from 

outline records. Our approach improves the K-means based approach in two aspects. 

Firstly, we introduce the load pattern window. This parameter replaces the accurate power 

consumption by the average power consumption in a time window. Such replacement 

eliminates the fluctuation brought about by outline records. Secondly, by applying load 

pattern window, our approach is much faster than the compared K-means algorithm. 

For huge volume datasets, there are also efforts to implement K-means algorithm on 

cloud platform. Such distribution and parallel frameworks are not our focus in this paper. 

However, since we do not modify the K-means algorithm, we believe that these 

alternatives can also be applied to our algorithm. 

Neutral-network [11-14] based clustering is a supervised-based clustering; it thus can 

achieve good precision. Some works adopt KOHONEN neutral network to capture the 

dynamic characteristic of load patterns in load curves. However, since it requires huge 

labeled datasets, it is labor-consuming and difficult to apply to the China State Grid 

dataset with huge volume and dynamic load patterns. In addition, neutral network is 

usually time-consuming to tune its parameters in each neutral node and existing methods 

have not yet guaranteed when the algorithm can terminate with stable parameters. 

 

3. Load Pattern Window Aware Clustering 
 

3.1. Overview 

In this section, we first introduce the idea underlying our load pattern window aware 

clustering approach and then present the detailed algorithms. 

The concept of load pattern window is motivated by investigation over the huge 

number of power supply records collected from devices. Each record is in the form of 

(DeviceId, Power, Timestamp)
b
 and Figure 1 plots records from three devices. For 

example, the device near a factory keeps high power consumption in all time intervals, 

which means the factory is producing all the time. In contrast, the power consumption 

curve for residential building exhibits rises and falls, indicating whether TVs or air-

conditioners are in use or not. Similarly, when a residential building lends power to 

factory, its power usage pattern is similar to that of a factory, which keeps high all the 

time. 

In this observation, the choice of time interval in the plotting is critical. Too small time 

interval will yield curves with all falls and rises due to fluctuation and too large time 

                                                           
b We omit other attributes here for brevity. 
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interval will result in all horizontal curves. In fact, the time interval chosen in Figure 1 

matches the load pattern for workloads in factories and residential buildings, which take 6 

hours to transfer from one power usage pattern to another. 

Because different regions own different work behavior, suitable time interval length 

varies from region to region. In order to capture such dynamic property of suitable time 

interval, we introduce a variable called load pattern window parameter LPW to represent 

the length of these time intervals. The definition 1 formalizes this concept. 

Definition 1. Given a power supply device, the period time where its recording power 

consumption is dominated by a mixture of sources with stable coefficient is called load 

pattern window. We use LPW to denote the length of this period of time.  

Specifically, in the example above, in the load pattern window [6:00, 12:00], the power 

consumption recorded in the power supply device is dominated by a mixture of sources 

with stable coefficient where the source representing the chemical factory takes the most 

weight in the mixture. 

Given the parameter LPW, our Load Pattern Window aware Clustering approach 

consists of three phases: 

At first, we partition the device records into disjoint time intervals with length of LPW 

and then summarize each interval by the average power consumption for each device in 

that interval.  

Next, we adopt the well-known K-means clustering algorithm to mine the similarity 

from these summarized records of all devices. 

Finally, the K-means clustering provides the probability for each device to be assigned 

with each cluster identification. Thus, the most probable cluster identification is chosen to 

be the actual cluster ID for the device. 

 

3.2. Algorithm 

This section presents three algorithms to describe the three phases of load pattern 

window aware clustering (LPWAC) respectively.  

To eliminate fluctuation caused by outline records, we calculate the average power 

consumption in each time interval. Before the calculation, we first produce these time 

intervals by the load pattern window parameter. Algorithm 1 illustrates the partitioning of 

records into disjoint time intervals and the average power consumption computation. We 

first initialize an empty set L to store the representative power consumption of load curves 

(line 1). To get the representative power consumption, there are several tricks (line 2-15). 

LPWAC normalizes each load curve Z in dataset D to discard the impact of 

heterogeneous data attributes (line 3). Each load curve Z is partitioned into segments with 

fixed length LPW (line 4-7). LPWAC gets the records in each time interval and computes 

the average value of records as the representative power consumption E (line8-12). Then 

entry E is added into L (line 14). The set L of all the representative power consumption 

entries is returned (line 16). 
For example, Table 1 illustrates records of three devices sampled every 2 hours and the 

outline records are in bold and italic. After we set LPW to 6 hours, since there are 24 hours 

per day, these records are partitioned into 24/6/2=2 disjoint time intervals. Values in plain in 

Table 2 shows the partition result and we can see that the outline records are canceled in each 

time interval and the bold values show the result after the normalization (Line 3). 

Table 1. An Example for Power Consumption for Three Devices Sampled 
Every 2 Hours 

Power 

consumption 

(W) 

00:00 2:00 4:00 6:00 8:00 12:00 14:00 16:00 18:00 20:00 22:00 24:00 

Device1 6687 5297 3124 5126 5364 5146 5467 4986 5678 3147 6124 5234 

Device2 20 20 20 50 40 20 20 20 20 50 80 20 

Device3 354 312 368 347 396 345 328 371 363 316 348 375 
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Table 2. An Example for the Average Value in Each Time Interval 

Power 

consumption(W) 
00:00-6:00 6:00-12:00 12:00-18:00 18:00-24:00 

Device1 5036/0.93 5212/0.97 5377/1 4835/0.90 

Device2 20/0.4 36.7/0.734 20/0.4 50/1 

Device3 344.7/0.95 362.7/1 354/0.98 346.3/0.955 

 

Algorithm 1 GetRepresentativePowerConsumption 

Input: D:load curves of devices, LPW: load pattern window size 

Output: L: set of representative power consumption   

1: L;  

2: for each load curve Z  D do 

3: Z  Normalized(Z); 

4: LeggetTotalLength(Z); 
5: Intervals Leg/LPW; 
6: for i=0:(Intervals-1) do 

7: Records  GetRecordsInInterval(Z,i*LPW,(i+1) *LPW); 

8: Enew RepresentativePowerConsumption(); 
9: for each record R  Records do   

10: for each attribute a  R do 
11: E.a = E.a+R.a/m; 

12:         end for 

13:       end for 
14:       L.add(E); 

15: end for 

16: return L; 

 

After the records of each device are partitioned into disjoint time intervals and the 

fluctuation in power measurement is eliminated by the average value, similar values are 

grouped together by the classic K-means algorithm. In this way, each time interval of the 

device is assigned with a workload pattern, which can be interpreted as factory pattern or 

residential building pattern. Algorithm 2 illustrates the clustering process for all the 

representative power consumption entries in L. First, K-means randomly selects k initial 

cluster centers (line 1). For each element E in L, K-means measures the distances from E 

to each of the cluster centers and tags E as belonging to the cluster which is the nearest to 

E (line 4-13). K-means computes the average value in each cluster as new cluster center 

(line 16). Loop the above two steps until the difference between new cluster center and 

the last cluster center is less than threshold (line 17-22). 

As the example in Table 2, the three rows for the three devices form three vectors and 

we can easily see that the first vector is more similar to the third vector after 

normalization. In fact, when we indicate that there are two clusters to K-means, the first 

record is assigned with the same cluster identifier as the third record. 

 

Algorithm 2 KmeansClustering 

Input: L: set of representative power consumption, k: cluster number 

Output: Clusters: k clusters set  

1: CC SelectClusterCenter(L,k);  
2: Clusters ; 

3: while true  

4: for each element E L do  
5: min = distance(E,CC[1]);  C=1; 

6:   for i=2:k do 
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7: dist  distance(E,CC[i]); 

8: if (dist < min)  then 

9: min =dist;  C=i; 

10:      end if 

11: end for 

12: Cluster[C].add(E); 

13: end for 
14: flagtrue; 

15:   for i=1:k do 

16: NCC[i] ComputeClusterCenter(Cluster[i]); 

17: if (NCC[i] – CC[i] >θ)  then 

18: flag false; 

19: end if 

20: if  flag  then 

21: break; 

22: end if  

23: CC[i] = NCC[i]; 

24: end for 

25: end while 

26: return Clusters; 

 

With the help of clustering results in Algorithm 2, each device consists of different 

workload patterns. Algorithm 3 aims to find the dominating pattern for each device as its 

cluster identification. In particular, Algorithm 3 counts the entries belonging to each 

device in each cluster (line 2-7).  The device is assigned to the cluster in which the 

occurrence probability of this device is the largest (line 9-16).The final result is returned 

(line 17).  

 

Algorithm 3 ClusteringAssign 

Input: Clusters: k clusters set, N: total devices number 

Output: Result: n clusters set  

1: i 0; Counts new int[N][k]; 
2: for each cluster CL  Clusters do 

3: for each element E  CL do 

4: j E.id; 
5: Counts[j][i] = Counts[j][i]+1; 

6:  end for 

7: end for 

8: for i=1:N do 

9: max0, C0; 
10: for j=1:k do 

11: if (Counts[i[j] > max) then   

12: max= Counts[j][i]; C=j; 

13: end if 
14: end for 

15:     Results[C].add(i); 

16: end for 

17: return Clusters; 

 

LPWAC improves the clustering quality by adjusting the LPW. The paper evaluates 

the precision and recall while varying LPW in section Experimental evaluation. The 

results demonstrate that our solution is effective.  
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4. Experimental Evaluation 

In this section, we first describe our experiment settings and then demonstrate that our 

approach can achieve accurate clustering with reasonable execution time. 

 

4.1. Setting 

The experiments are conducted on a PC with Intel 2.33 GHz quad-core CPU and 4GB 

of RAM, and the disk size is 500G. The K-means algorithm is implemented by Java and 

the JDK 1.6 is adopted.  

We use a real-world dataset. The dataset is collected from the real-time power 

consumption of 24 power supply devices belonging to China State Gird Company. We 

sample each device per 15 minutes and thus obtain a one-year dataset with 840960 

records in the form of (DeviceId, Power Consumption, and Timestamp). 

The ground truth of the clustering result is provided by the China State Grid Company. 

To measure the accuracy of our clustering algorithm, we adopt the precision (denoted by 

P) and recall (denoted by R) measurement for clustering in [15]. They are shown in 

formula 1 and 2. The symbols and notations are listed in Table 3. 

 (TP FP)P TP                                                          (1) 

 (TP F )R TP N                                                           (2) 

Table 3. The Symbols and Notations Measuring Precision (P) and Recall (R) 

symbol Description 

N record size 

N(N-1)/2 record  pairs involved in the clustering 

TP the number of record pairs that are similar and assigned with the same 

cluster identification (True Positive) 

TN  the number of record pairs that are dissimilar and assigned with the same 

cluster identification(True negative) 

FN  the number of record pairs that are dissimilar and assigned with the 

different cluster identification(False Negative) 

FP  the number of record pairs that are dissimilar and assigned with the same 

cluster identification(False Positive) 

 

4.2. Experimental Analysis 

In this section, we first show that our approach is efficient and effective in real world 

dataset. Then, we change the size of the data set to show that the effect of our approach is 

robust in terms of the data volume.  

First, we compare the precision and recall with two promising and representative 

approaches, neutral network based clustering (NNC) [11] and fuzzy based Gaussian 

mixture model based clustering (GDC) [1]. Figure 2 shows that under the whole dataset, 

when we set the LPW of our LPW approach to 4 hours, our approach outperforms other 

competitors significantly. Figure 3 further shows that our approach consumes the least 

execution time.  
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Figure 2. Clustering Effect Comparison 

 

Figure 3. Clustering Performance Comparison 

In the next experiment, we show the effect of the Load Pattern Window LPW on 

precision and recall. As Figure 4 and Figure 5 illustrate, when the window is set to about 

4 hours, the precision and recall is the highest. This is because when the LPW is too 

small, random fluctuation in the power supply may influence the clustering effect. On the 

other hand, when the LPW is too large, interesting patterns hidden in the power supply are 

missing because the average value is computed over a long period. When the LPW is set 

to 4 hours, it matches the normal working hours for daily life. That is, people usually 

work from 8:00 to 12:00 in the morning and 14:00 to 18:00 in the afternoon and so do 

machines. 

 

 

Figure 4. Effect of LPW on Precision 
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Figure 5. Effect of LPW on Recall 

In the following, we show that our approach is much faster than the trivial K-means 

method when windows LPW is set to 15 minutes. As illustrated in Figure 6, when LPW is 

set to 1 hour, the execution time is reduced to 10% of the trivial K-means. This result 

comes from two parts: (1) the K-means algorithm essentially takes the time complexity 

O(KN) in each iteration and after we partition the records by window parameter, the time 

complexity in each iteration is reduced to O(KN/LPW); and (2) when the number of 

records is huge, the K-means algorithm takes much more iterations to converge and when 

the window LPW increases, the number of records actually reduces significantly and the 

K-means algorithm thus converges efficiently. 

 

 

Figure 6. Effect of LPW on Execution Time 

Both experiments above illustrate the effectiveness and efficiency of our approach. The 

third experiment below shows that the effectiveness of our approach is robust regardless 

of the data size. As shown in Figure 7 and 8, though the data volume decreases, the 

precision and recall of our approach do not deteriorate. The reason is that the core concept 

introduced in our approach, the load pattern window, is a daily property of power 

consumption and lasts for only a few hours. In this way, reducing the data size to one or 

two seasons will not influence the precision and recall of our approach. 
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Figure 7. The Precision with LPW Influence Under Different Data Volume 

 

Figure 8. The Recall with LPW Influence Under Different Data Volume 

 

5. Conclusions 

To utilize the automatically collected power consumption records in big data era, this 

paper proposes a new load pattern window aware clustering to mine devices with similar 

load pattern in power system. The model partitions device records into disjoint time 

interval with tunable window size. Then K-means is applied to cluster power supply 

devices. The clustering quality is improved by setting the optimal window size compared 

with the baseline. The experimental results, which are based on real data set of power grid 

in China, demonstrate the high precision and recall of our approach. The robustness of our 

approach is also validated. 
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