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Abstract 

Frequent Itemset Mining (FIM) is one of most fundamental techniques in data mining 

with extensive applications to a variety of data mining problems such as association rule 

mining, correlations, clustering and classification. Since the first proposal of frequent 

itemset mining, numerous serial algorithms have been proposed in order to improve 

mining performance, yet most of them cannot scale to massive datasets which are very 

common nowadays. In this paper, we propose a new parallel FIM algorithm named PFIN 

based on Nodeset which is a more efficient data structure for mining frequent itemsets. 

PFIN can intelligently decompose a large-scale FIM problem into a set of tasks, where 

each task can be executed in parallel without unnecessary communication overheads. 

Moreover, a hash-based load balancing strategy has been adopted to optimize resource 

use and maximize throughput. For evaluating the performance of PFIN, we have conduct 

extensive experiments on Spark which is an emerging distributed in-memory processing 

framework to compare it against PFP which is one of state-of-the-art parallel FIM 

algorithms on a range of real datasets. The experimental results demonstrate that our 

proposed PFIN are highly competitive with PFP in scalability performance, 

outperforming PFP in speed performance. 
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1. Introduction 

As an essential data mining task, Frequent Itemset Mining (FIM) aims to discover 

frequently co-occur items in a dataset. Since the problem of frequent itemset mining was 

firstly proposed by Agrawal et al. [1], extensive efforts have been devoted to improving 

the performance of FIM algorithms. However, the extrinsic characteristic of the 

exponential solution search space makes FIM remain a very time-consuming and 

challenging process especially when dealing with big data. Many serial algorithms [2-4] 

work well on small datasets, whereas most of them are not able to finish the mining task 

upon large-scale datasets within an acceptable time due to the limit computation 

capability and memory capacity of a single node. 

On the other hand, parallel computing which were developed to process massive 

datasets offers a potential solution to this problem [5]. Early efforts focused on 

parallelizing the Apriori-like algorithms [6-7]. However, parallel Apriori-like algorithms 

inevitably suffer from repetitive I/O scans and shuffling around intermediate results of the 

mining process across the distributed nodes for a share-nothing environment. In recent 

years, parallel FP-growth algorithms [8-9] which adopt a highly compact representation 

of datasets named FP-tree and employ a divide-and-conquer philosophy to mine frequent 

itemsets without candidate generation has been proven to achieve impressive efficiency. 

However, the parallel FP-growth methods become inefficient when datasets are sparse 

due to the significant cost in constructing and traversing the FP-trees. 
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In addition, recent studies have shown that MapReduce framework [10] is not suitable 

for sophisticated data mining algorithms with intensive iterative computations since it 

needs to write the intermediate results into a specified location for the next iteration to 

read which will involves heavy I/Os and extra job start-up time. 

FIN [11], firstly proposed by Zhihong Deng, is an efficient frequent itemset mining 

algorithm based on a novel data structure called Nodeset. Compared with FP-growth, the 

FIN method do not need to recursively build numerous conditional FP-trees and can 

directly discover frequent itemsets in a set-enumeration tree [12]. Previous studies have 

shown that FIN outperforms many current single-node algorithms. Therefore, it is 

reasonable to parallelize FIN to achieve a better performance for frequent itemset mining. 

To the best of our knowledge, there are no studies on this issue so far. 

In this paper, we propose PFIN, a parallel FIN algorithm based on Nodesets to 

efficiently represent itemsets. PFIN partitions the transaction database with a hash-based 

load balancing strategy and divides the set-enumeration tree in such a way that each 

partition can be executed to discover the frequent itemsets in parallel. Such partitioning 

significantly reduces the unnecessary communication overheads and greatly improves the 

scalability and performance. Apache Spark [13] is an emerging distributed in-memory 

processing framework which has been proved that it is much more suitable for data 

mining algorithms. We have implemented PFIN on Spark and conducted extensive 

experiments to compare it against PFP [9] which is one of state-of-the-art parallel FIM 

algorithms on a range of real datasets for evaluating the performance of PFIN. The 

experimental results show that our proposed PFIN runs much faster than PFP and 

achieves near-linear scalability. 

The rest of this paper is organized as follows. Section 2 briefly introduces the concept 

of frequent itemset mining and Spark. Section 3 discusses related work on frequent 

itemset mining. Section 4 introduces the PFIN algorithm in detail. Section 5 evaluates the 

performance of PFIN. Section 6 summarizes the paper. 

 

2. Background 
 

2.1. Frequent Itemset Mining 

Let   be a set of n distinct items in the transaction database D where  

each transaction T  in D contains a set of items from I called itemset. If an itemset 

contains k items, then it is called a k-itemset. The support of an itemset S is defined as the 

number of   transactions that contain S. And we denote |S| as the number of items in S. 

Formally, , where tid is a transaction identifier. An 

itemset is said to be frequent if it has a support greater than a given threshold σ which is 

called minimum support or minSup in short. Given a database D, FIM algorithms aim to 

discover frequent itemsets meeting the user-specified minimum support. 

 

2.2. Apache Spark Framework 

Apache Spark [13], as an emerging distributed in-memory processing framework 

originally developed in the AMPLab at UC Berkeley, was purposely designed to perform 

real-time data analysis at lightning fast speed. Compared with MapReduce's two-stage 

paradigm, Spark running in-memory on the cluster makes it superior in iterative 

computations and low-latency workloads. Intermediate results will be cached by Spark in 

memory in case of future reuse. Whereas, MapReduce has to persist intermediate results 

to local disk in each iteration, requiring a great deal of extra I/Os and unnecessary 

computations. In consequence, many iterative data mining algorithms implemented in 

MapReduce run significantly slower than they do on distributed in-memory processing 

frameworks. Besides, Spark provides more versatile APIs for Scala, Java and Python than 

MapReduce which is infamous for being difficult to program. 
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3. Related Work 

Since massive real datasets may not fit in a single workstation's memory, how to 

parallelize serial FIM algorithms to address frequent itemset mining becomes extremely 

critical. The choice of memory model determines the way of accessing and storing data, 

which in turn have a significant impact on the performance of a parallel algorithm. Shared 

memory systems offers a global memory space which can be accessed by all processes. A 

major advantage of shared memory system is that memory access becomes much cheaper 

than inter-node communication. However, to our problem of dealing with big data, 

scalability of a shared memory system is limited by available memory. In shared-nothing 

systems or distributed systems, each node of the cluster has its private memory address 

space. Great speedup can be easily obtained for the shared-nothing systems by scaling out 

to hundreds or even thousands of machines. 

Most of the previously proposed parallel FIM algorithms can be classified into two 

categories: the parallel Apriori-like aglortihms and the parallel FP-growth algorithms. The 

parallel Apriori-like algorithms employ the downward closure property which is a sharp 

knife for pruning: the subsets of a frequent itemset must be frequent. Agrawal and Shafer 

[6] proposed a Count Distribution (CD) algorithm to distribute the transaction database 

among processes on a share-nothing system. Each process computes the support of all 

candidate itemsets with respect to its local partition. Based on the CD algorithm, Lin et al. 

[14] introduced three Apriori-like algorithms on MapReduce framework: Single Pass 

Counting (SPC), Fixed Passes Combined-counting (FPC), and Dynamic Passes 

Combined-counting (DPC). Qiu et al. [15] proposed a new implementation of a parallel 

Apriori-like algorithm named YAFIM on Spark. However, these parallel Apriori-like 

algorithms inevitably suffer from repetitive I/O scans and generation of numerous 

candidate itemsets. 

Many studies have proved parallel FP-growth algorithms run much faster than parallel 

Apriori-like algorithms. Parallel FP-growth algorithms employ a compact data structure 

named FP-tree to compress the transaction database. Frequent itemsets can be discovered 

by recursively constructing and traversing conditional FP-trees. Pramudiono et al. [8] 

parallelized the FP-growth algorithm on a shared-nothing system. Zaiane [16] et al. 

proposed a MLFPT algorithm to distribute workload among processors in a more fairly 

manner on a shared memory system. Liu et al. [17] proposed cache-conscious FP-array 

and lock-free parallelization optimizations to improve the mining performance on a 

shared memory system. Li et al. [9] proposed a parallel FP-growth algorithm named PFP 

on MapReduce framework. However, the major disadvantage of parallel FP-growth 

methods is that FP-tree is expensive to build and traverse. In this paper, we show that our 

proposed PFIN extends the advantages of FIN and can efficiently address large-scale FIM 

problems. 

 

4. PFIN: The Proposed Method 
 

4.1. FIN Algorithm 

The FIN algorithm is composed of the following steps: 

 FIN firstly scans the database once and computes a list of frequent items sorted by 

support in descending order, denoted as ; 

 FIN then scans the database again and constructs a POC-tree which is an extended 

prefix tree structure. Each node of POC-tree consists of four fields: item, support, 

children, preorder; 

 FIN scans the POC-tree by preorder traversal to generate the Nodesets of frequent 

2-itemsets; 
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 FIN constructs a set-enumeration tree and employs a depth-first search strategy to 

directly mine frequent itemsets from it. 

Table 1. A Transaction Database 

 
 

 

Figure 1. POC-Tree Constructed on the Database in Table 1 

Table 1 shows a transaction database which contains five transactions. All items of 

each transaction will be sorted by which is computed by counting the support of each 

item in the database and infrequent items will be removed. For example, in this database, 

suppose minSup = 3, we will get : {(f:4), (c:4), (a:3), (b:3), (m:3), (p:3)} (the number 

after “:” indicates the support). The transaction {f, a, c, d, g, i, m, p} is pruned to {f, c, a, 

m, p}. A POC-tree then is constructed by inserting these pruned transactions with support 

= 1. The root of POC-tree is labeled as null. Pruned transactions with same prefix shares 

the same path of their branches and the support of each node along the same path is 

incremented by 1. Figure 1 shows an example of a POC-tree on database in Table 1. 

The Nodeset of frequent item i is defined as a sequence of tuples in the form of 

{( : ), ( : ), … , ( : )} which 

represents all nodes registering i in the POC-tree. For any two items  and ,    if 

and only if  is ahead of  in . Given two frequent items  and  (   ), the 

Nodeset of 2-itemsets  denoted as Nodeset(  ), is a subset of 's Nodeset, which is 

defined as follows: Nodeset(  ) = {( : ) |  a node, N, registering , 

N is an ancestor of the node corresponding to ( : )}. For example, the 

Nodeset of p is {(5:2), (11:1)} and the Nodeset of fp is {(5:2)}. After the generation of 

Nodesets of 2-itemset, the Nodesets of (k+1)-itemset can be obtained by intersecting two 

Nodesets of k-itemset (k>2). A set-enumeration tree has been adopted by FIN to mine 

frequent k-itemsets (k>2) with a pruning technique called promotion to reduce the search 

space greatly. Promotion relays on the observation that given item i and itemset P (i  P), 

if the support of P is equal to the support of P  {i}, then the support of A  P, where A  

P =   i  A, is equal to the support of A  P  {i}.  

Previous studies have shown that FIN outperforms many current methods. However, it 

is still challenging for FIN to address large-scale FIM problems. One major challenge is 

that today's transaction databases may not fit in a single workstation's memory while FIN 

can only be executed in a stand-alone mode. Even if the transaction database can be 
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loaded in memory, the corresponding set-enumeration tree constructed on the database 

may also be very huge. Hence, it is absolutely essential to parallelize FIN to achieve 

better scalability and performance especially over big data. 

 

4.2. PFIN Outline 

The PFIN algorithm consists of six steps as follows: 

 Partitioning: Partitioning refers to dividing a large-scale dataset into distinct 

independent parts on different nodes. In the implementation of PFIN, the dataset is 

represented by a RDD and it has already been partitioned due to the properties of 

RDDs; 

 Parallel Counting: This step counts the support of each items in parallel and 

computes a list of frequent items sorted by support in descending order, denoted as 

; 

 Grouping Items with Load Balancing: All items in  are divided into Q groups 

called G-List and each group is given a unique group id. A hash-based load 

balancing strategy has been adopted to distribute workloads across nodes of the 

cluster more evenly; 

 Generating Conditional Transactions: For minimize the amount of 

communication between nodes of the cluster, a technique called projection is 

adopted which maps each transaction to one or more conditional transactions 

according to group id. This step is described in detail in Section 4.4; 

 Constructing Local POC-trees and Generating the Nodesets of 2-itemset: In 

this step, all conditional transactions with same group id are grouped into one 

partition. A local POC-tree is constructed on each partition. PFIN then scans these 

local POC-trees by preorder traversal to generate Nodeset( ), where 's group 

id equals the group id of current partition; 

 Constructing Local Set-enumeration Trees and Mining Frequent Itemsets: For 

each partition, a task is activated to construct a local set-enumeration tree and mine 

frequent itemsets from it. All outputs of tasks are aggregated by key in one RDD 

and cached for future use. 

 

4.3. Parallel Counting 

For counting the support of each item in parallel, a mapPartitions() function will be 

applied on a RDD which is created by referencing the transaction dataset from HDFS. In 

the mapPartitions() function, each partition of this RDD activates a task to count the 

support of items. The results of mapPartitions() function are aggregated by applying a 

reduceByKey() function which combines the intermediate results at the map side before 

the shuffle process to achieve a better performance than directly using groupByKey() 

function. Another way to finish the parallel counting job is to use map() function in stead. 

However, empirical results show that mapPartitions() function is significantly faster than 

map() function due to map() function needs to initialize more objects than mapPartitions() 

function. Frequent items can be obtained by applying filter() function. After that, this 

RDD will be collected to the driver program and sorted by support in descending order. 

 

 

 

4.4. Grouping Items with Load Balancing 

Load balancing is one of open problems for parallel frequent itemset mining. In our 

proposed PFIN algorithm, how to group items has a remarkable impact on the workload 

of each task. However, researchers had not come up with a good enough way to estimate 



International Journal of Database Theory and Application 

Vol.9, No.6 (2016) 

 

 

86   Copyright ⓒ 2016 SERSC 

the workload of each subtask. A hash-based load balancing strategy has been adopted to 

achieve better performance in this paper. The group id of each item can be computed as 

follows: , where gid is the group id of a item, rank is the 

index of a item in  and numGroups is specified by users. Group id can be used to 

generate conditional transactions which is discussed in detail in next subsection. It is 

supposed that those items with lower ranks generate conditional transactions with longer 

length and take more execution time to discover frequent itemsets. Based on this hash-

based load balancing strategy, PFIN can distribute workloads more fairly across nodes of 

the cluster. 

 

4.5. Generating Conditional Transactions 

This is the key step of our proposed PFIN algorithm. As the G-List is usually small, it 

can be broadcast to each node of the cluster rather than copying it to all tasks. A technique 

called projection is discussed as follows. For each transaction, frequent items are filtered 

out and sorted by support in descending order. These ordered items will be scanned from 

tail to head. If it is the first time the gid of current item appeared in one transaction, then 

PFIN outputs all items in front of it, otherwise, it continues to scan. For example, suppose 

 are divided into three groups and given G-List: {(f:0), (a:0), (c:1), (b:1), (m:2), (p:2)} 

(the number after “:” indicates the gid), the transaction {f, a, c, d, g, i, m, p} is pruned to 

{f, c, a, m, p} with infrequent items removed. Then it is scanned from tail to head and 

outputs three conditional transactions: (0, {f, c, a, m, p}), (1, {f, c, a}), (2, {f, c}), where 

key is a gid and value is a conditional transaction in a key-value pair.  

 

4.6. Constructing Local POC-trees and Generating the Nodesets of 2-itemset 

All conditional transactions with same group id are grouped into one partition in the 

form of <key = group id, value = conditional transactions>. A local POC-tree is 

constructed on each partition in the same way as the FIN method and no further 

communication overheads required during the process of mining frequent itemsets. Note 

that these grouped conditional transactions are ended with items whose group id equals 

the group id of current partition, Compared with FIN method, PFIN scans the local POC-

tree by preorder traversal to only generate the Nodesets( ), where 's group id equals 

the group id of current partition. For example, suppose  is divided into 3 groups, m and 

p are both in the same group 2. The conditional transactions of group 2 are <key = 2, 

value = {f, c, a, m, p}, {f, c, a, b, m}, {c, b, p}, {f, c, a, m, p}>. Then a local POC-tree is 

constructed on these conditional transactions. The Nodesets of 2-itemset in group 2 

generated from this local POC-tree are shown in Figure  

 

Figure 2. Constructing Local POC-Tree and Generating the Nodesets of 2-
Itemset 
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Figure 3. Constructing a Local Set-Enumeration Tree of Group 2 

 

4.7. Constructing Local Set-enumeration Trees and Mining Frequent Itemsets 

Different from the FIN method, PFIN divides the set-enumeration tree as follows. 

PFIN constructs a local set-enumeration tree on each partition to mine frequent itemsets in 

parallel. The local set-enumeration tree is considered as a subtree of a set-enumeration 

tree. The root of a local set-enumeration tree is labeled as null and the child nodes of the 

root only consists of items of current group. During the construction of local set-

enumeration trees, all frequent itemsets can be discovered and aggregated from different 

partitions. Figure 3 presents the local set-enumeration tree generated from the conditional 

transactions of group 2. 

 

5. Experiments 
 

5.1. Experiment Setup 

In this section, we evaluate the performance of our proposed PFIN algorithm in terms 

of runtime and scalability by comparing it against PFP and FIN on a range of real datasets. 

PFP is an implementation of the parallel FP-growth algorithm on a distributed system and 

it is one of state-of-the-art parallel FIM algorithms. PFIN, PFP and FIN are all 

implemented in Scala. All the experiments of PFIN and PFP were performed on a Spark 

1.3.0 cluster of 7 nodes including one master and six workers, where each node has 32 

Intel Xeon E5-2660 CPUs running at 2.2GHz, 192GB memory and 1TB disk. FIN was 

performed on a single node of the cluster. Note that the runtime here includes input time 

and execution time. We persist the output of PFIN and PFP in memory and hold the 

output of FIN in a StringBuffer. 

Four real datasets with various characteristics and domains were used in our 

experiments. These datasets are available from the FIMI repository 

({http://fimi.ua.ac.be}). The chess and connect datasets are generated from different game 

steps. The mushroom dataset describes the characteristics of poisonous and edible 

mushrooms. The webdocs dataset was built from a spidered collection of web html 

documents. Table 2 summaries the properties of these datasets including the average 

transaction length(#Avg.Length), the number of items (#Items), the number of 

transactions (#Trans) and the type of each dataset. 

Table 2. The Summary of the Used Datasets 



International Journal of Database Theory and Application 

Vol.9, No.6 (2016) 

 

 

88   Copyright ⓒ 2016 SERSC 

 
 

5.2. Speed Performance Analysis 

In this subsection, we compare PFIN against PFP and FIN in terms of runtime with 

various values of minimum support. Figure 4 shows the runtime of all algorithms on 

dataset chess. For high minimum support, the performance of PFIN and PFP are very 

close. In situations with lower minimum support, the solution search space can be so 

enormous that both PFIN and PFP run much more slowly. However, we observe that the 

runtime of PFP increases much faster than that of PFIN. For all experiments on dataset 

chess, FIN performs worse than PFIN and PFP due to the limit computation capability 

and memory capacity of a single node. Figure 5 shows the runtime of all algorithms on 

dataset mushroom. The results demonstrate that PFIN nearly outperforms PFP by a factor 

of 2 or 3 for all values of minimum support. FIN performs well with the high minimum 

support. However, the performance difference between FIN and other parallel algorithms 

was enlarged significantly with lower minimum support. Figure 6 shows that PFIN runs 

much faster than PFP and FIN on dataset connect. Figure 7 shows the runtime of all 

algorithms on dataset webdocs. PFIN still performs best for each minimum support. FIN 

performs worst and is much slower than other parallel algorithms. 

 

 

Figure 4. Runtime on Dataset Chess 
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Figure 5. Runtime on Dataset Mushroom 

 

Figure 6. Runtime on Dataset Connect 

 

Figure 7. Runtime on Dataset Webdocs 

The above results have shown that our proposed PFIN extends all advantages of the 

FIN method and achieves a significant performance improvement on different real 

transaction datasets. Compared with FIN, the performance difference between PFIN and 

FIN is close with high minimum support and is enlarged rapidly with lower minimum 

support. PFIN employs a technique called projection to partition the transaction dataset so 

that PFIN is able to handle large-scale datasets which may not fit into a single workstation. 

Moreover, PFIN distributes the computation to many tasks by dividing the set-

enumeration tree into local set-enumeration trees which can be executed to mine frequent 

itemsets in parallel. Our experimental results show that this dividing strategy achieves 

ideal performance and near-linear scalability. Compared with PFP, PFIN adopts a more 

efficient data structure called Nodeset to efficiently represent itemsets. Based on Nodeset, 

PFIN avoids the time consuming process of constructing and traversing numerous 

conditional FP-trees by simply Nodeset intersection. In addition, PFIN adopts a pruning 

strategy called promotion to greatly reduce the search space and extremely improve the 

mining performance. 

 

5.3. Scalability Performance Analysis 

In this subsection, we compare PFIN against PFP with respect to sizeup. To measure 

the performance of sizeup, we hold the number of cores to 224 and grow the size of the 

datasets by replicating original datasets to different times in size. Figure 8, Figure 9, 

Figure 10, Figure 11 show the sizeup performance for difference datasets. We can see that 
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as the size of transaction dataset increases, the execution time costs for PFP and PFIN 

both go near-linear. However, our proposed PFIN still performs better than PFP on all 

transaction datasets. The experimental results indicate that PFIN can achieve virtually 

linear scalability in performance. 

 

 

Figure 8. Sizeup Performance Evaluation on Dataset Chess (minSupp = 
20%) 

 

Figure 9. Sizeup Performance Evaluation on Dataset Mushroom (minSupp = 
0.4%) 

 

Figure 10. Sizeup Performance Evaluation on Dataset Connect (minSupp = 
40%) 
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Figure 11. Sizeup Performance Evaluation on Dataset Webdocs (minSupp = 
15%) 

 

6. Conclusion 

In this paper, we propose PFIN, a new parallel frequent itemset mining algorithm based 

on a novel data structure called Nodeset to efficiently represent itemsets. This algorithm 

employs a strategy called projection to partition the transaction database which virtually 

eliminates further communication overheads across nodes of the cluster and divides the 

set-enumeration tree in such a way that each partition can be executed to discover the 

frequent itemsets in parallel. During the construction of local set-enumeration trees, PFIN 

employs a pruning strategy called promotion to greatly reduce the search space. Moreover, 

a hash-based load balancing strategy has been adopted to optimize resource use and 

maximize throughput. We have conducted extensive experiments in terms of runtime and 

scalability to compare our proposed algorithm against PFP which is one of state-of-the-art 

parallel FIM algorithms. Empirical results show that PFIN achieve outstanding efficiency 

and we believe PFIN can be used to address large-scale FIM problems in the context of 

big data. 
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