
International Journal of Database Theory and Application

Vol.9, No.6 (2016), pp. 21-32

http://dx.doi.org/10.14257/ijdta.2016.9.6.03

ISSN: 2005-4270 IJDTA

Copyright ⓒ 2016 SERSC

Group Rejuvenation: A New Software Rejuvenation Framework

1
Li Su, Pengfei Chen,

2
Yong Qi and

3
Xinyi Li

1,2,3
 School of Electronics and Information Engineering, Xi’an Jiaotong University

Xi’an,China

School of Mathematics and Statistics, Hainan National University

HaiKou, China

suli2007@foxmail.com, qiy@xjtu.edu.cn

Abstract

With cloud computing continues to mature and widely used, the availability guarantee

of cloud system becomes one of the key issues. In the cloud system based on virtualization,

reliability of virtual machine is an important premise to guarantee the quality of service

of cloud computing. Recent research shows, applications deployed inside the virtual

machine will appear performance degradation even failure after long-term operation,

namely "the aging phenomenon". Prediction, diagnosis and rejuvenation of the virtual

machine is a relatively complete technical framework to guarantee reliability of the cloud

computing system. In this paper, we propose a software rejuvenation framework based on

group migration of virtual machine to guarantee reliability of the distributed system. First

construct the dependency relationship of the virtual machines; then diagnosis the

software aging of virtual machine; decide the optimal virtual machine set which need to

migration. Compared with the traditional single computing nodes restart/ recovery mode,

downtime of group rejuvenation can be 61.53% of downtime of traditional mode. In the

cloud computing environment, group rejuvenation method can ensure the availability of

cloud systems more effectively than the conventional rejuvenation method.

Keywords: Software aging, Software rejuvenation, Group rejuvenation, dependency

relationship, NARX

1. Introduction

In order to meet the various needs of human beings or organizations in modern society,

data center should greatly increasing its scale, and provide uninterrupted and high

reliability service. Performance degradation, error rate increased and even a sudden

hung/crash are bound to occur after the Ultra-large-scale data centers’ long time running.

To counteract this problem, Huang et al. [7] proposed a proactive recovery method called

software rejuvenation which involves occasionally stopping the software application,

removing the accrued error conditions and then restarting the application in a clean

environment or intermediate state. Techniques of various rejuvenation methods have been

proposed, including probabilistic model-driven recovery [2], recursive restartability [8],

and recovery-oriented computing [9].

The simplest way is to reboot the VM directly. [2] uses Bayesian estimation and

Markov decision theory to provide controllers that choose good, if not optimal, recovery

actions according to a user-defined optimization criteria. The effect of the recovery

actions, in turn, prove the accuracy of the fault localization. Such an iterative process, and

ultimately accurately find the real root cause of the fault. The system will recover through

some sequence of actions. [12] conducts a comparison between the current state of the

platform and the optimal platform state, then make a choice among three options: Service

Creation, Service Migration and Service Recovery. Its main purpose is optimal resource

allocation. [8] constructing the “optimal” (lowest-MTTR) restart tree. But it focused on

International Journal of Database Theory and Application

Vol.9, No.6 (2016)

22 Copyright ⓒ 2016 SERSC

reactive rather than proactive restarts. Most services in data center are sequential jobs.

Traditional rejuvenation methods don’t consider the dependent relationship of other nodes

and mutual aging effect. They haven’t compare the whole distributed system’s efficiency.

This paper proposed a new rejuvenation strategy called Group rejuvenation. We mainly

concern the applications in VMs. We know that one characteristic of VM is works

without interruption. Our main objective is to guarantee the applications in VMs without

interrupt. Every node in the network is not isolated, they have some relationships with

each other. Any node’s aging may lead to its neighbor nodes’ performance decline;

another case is that a node rejuvenate after its associated nodes’ rejuvenate in a very short

period of time. Then the availability of the sub-network is greatly reduced. The overall

goal of our approach is to diagnose system problems using the output of the monitors and

choose the optimal rejuvenation that are most likely to restore the system to a proper state

at minimum cost. The basic idea is that build the network dependency graph based on

service according to the actual network situation. Each node represents an element (a

physical machine, a virtual machine, or a module, etc.), and the edge and arrow represent

the service relationship between each other. Aging determination is by NARX-SPRT

method. Combined with the dependency graph we can identify which nodes need to be

rejuvenated. This can greatly save the total service disruption time, while reducing some

nodes’ (near the client side) rejuvenation times.

To achieve the proposed objective, we build an automatic, online performance

diagnosis and rejuvenation framework. When the network established, the service

dependency relationship builder subsequently constructs the causality graph automatically

at service level. Monitor on each node collect the real-time data, then send all the data to

Predicter to determine whether aging phenomenon exist. The analysis engin will be

triggered when the Predicter find that node A is aging and may need to rejuvenate.

Analysis engine passes the causality graph iteratively, and determine which nodes need to

be rejuvenate. Finally implement all rejuvenate according to the determination result.

To measure the effectiveness of the method and the framework, we have conducted

several evaluations include theoretical and experimental methods using several widely-

used applications. Availability results show that group rejuvenation significantly

outperforms single node rejuvenation method. It reduces the downtime of the whole

system ranging from 0.6153 to 0.9780. We further show that the performance impact of

group rejuvenation due to complicated relationship generation and aging diagnosis is also

very small compared to the traditional rejuvenation method. Our evaluating results show

that the constant ratio of internal and external causes can reduce 0.36 rejuvenation times

of some nodes during one week experiments.

In summary, the contributions of this paper are:

● We provide a new causality graph building method. Using this causality graph, we

can greatly reduce the judgment of aging and rejuvenation of nodes.

● We define the ratio of internal cause and external cause, P. This helps lower the

frequency of node rejuvenation. While enhance the availability of the entire

network.

● Group rejuvenation can reduce the unavailable time of the network, as it in a sense

merged a number of rejuvenation time.

● The design, implementation and evaluation of the framework confirm the

effectiveness of group rejuvenation.

In Section 2, we describe the framework. Section 3 introduce the framework in detail.

Including the relationship generation, aging detection and diagnosis and group

rejuvenation. Section 4 presents experiments using both theoretical and experimental

methods to evaluate system availability. Section 5, we review the previous work in

software aging diagnosis and rejuvenation.

International Journal of Database Theory and Application

Vol.9, No.6 (2016)

Copyright ⓒ 2016 SERSC 23

Figure 1. The Framework of Group Rejuvenation

2. Framework Overview

The core modules of the framework are a causality graph builder and an analysis

engine. The causality graph builder can automatically construct a directed acyclic

causality graph. The analysis engine is in charge of finding the nodes which most

need to be rejuvenated.

Figure 1 presents an overview of the components interaction. In the target

distributed system, this framework is deployed in each node and works in a

distributed manner. The data collection module collect the node’s resource status

like CPU, Memory, number of threads or number of connections. These metrics are

used by the predictor to detect the software aging phenomenon and estimate the

service time to crash. It is integrated by a Machine Learning model(NARX[4])

trained to estimate the time to crash due to complex software aging phenomenon.

The Analysis engine is triggered when the predictor module detect and predict that

someone(nodes) will hung or crash follow by a window time. We define the causes

of node aging consists of two parts, R I(x), the internal causes of aging on node(x) ,

and RE(x), the external causes of aging

On node(x) . PA is the ratio of RI and RE. , where

T is the threshold determines whether the node should be rejuvenated. If PA(x) is

greater than T, node(x) should be labeled that it need to be rejuvenated. Then

iteratively goes to the back end nodes along the paths in the service dependency

graph. Calculate their PA , and then decide whether they should be rejuvenated. Find

all nodes (Y(y1,y2,...,yn)) that eligible for rejuvenation in this way. It uses breadth-

first search algorithm and the search stops when PA≤T and Y=ϕ. Implement all the

rejuvenation at the end of the algorithm. The simplest rejuvenation here is reboot.

Migration is needed to guarantee that during the rejuvenation, any on-going or new

request to the service is not missing. We assume that all failures were curable

through rejuvenation of either a single node or a group of such node.

3. Framework Design

E

I
A

R

R
P 

International Journal of Database Theory and Application

Vol.9, No.6 (2016)

24 Copyright ⓒ 2016 SERSC

3.1. Aging Detection and Rejuvenation Time Prediction

The data collection module collects the node resource status from all nodes and the

predictor detects the Time To Crash (TTC) of the node. The predictor is conducted by

NARX model and SPRT method [4]. Firstly, use NARX model to training a normal state

model of node based on priori data (all collected metrics of the node resource status).

Then the threshold can be defined by SPRT. The predictor estimates the time to crash of

the node based on the monitored run-time data. In [4], it is shown the effectiveness of this

algorithm to estimate the time to crash of a web service under complex and

undeterministic aging scenarios. We note that the predictor could be changed with new

detection/estimation failures methods to maintain the effectiveness of the framework in

new environments.

As we use group rejuvenation to rejuvenate the distribute system, a special window

time should be considered in this framework. Suppose t1 is the time when the detector

find node x aged. Then the analysis engine decides whether x should be rejuvenated

(depend on PA(x)). The analysis engine also finds all nodes (Y(y1,y2,...,yn)) that eligible

for rejuvenation after traversal the service dependency graph. The rejuvenation

implemented after all judgments. We define C(c1,c2,...,cn) is the aged nodes which

detected by the detector, but they don’t eligible for rejuvenation. The performance of node

C(c1,c2,...,cn) will picks up after the rejuvenation. While the window time should

guarantee C(c1,c2,...,cn) will not hung or crash between t1 and the time their performance

picks up.

3.2. Dependency Relationship Based on Service

Our method has the similar assumption and methodology to Orion [5] that is the traffic

delay between dependent services often exhibits “typical” spikes that reflect the

underlying delay for using or providing these services. But the primary differences are: a.

Our method focuses on a limited set of applications which use TCP as their underlying

transport protocol although it can be extended with extra effort. b. Our method relies on

the new properties of the modern operating system such as network statistical tools and

kprobe [6] used to probe the system call. c. We leverage traffic delay to determine the

dependency directions rather than determine the dependency structure in the dependency

graph which reduces the risk of wrong dependent relations and computational complexity

(from O(n
2
) to O(n)). According to our observations, TCP protocol takes a dominated

position in all the protocols leveraged by common applications like Mysql, Tomcat, etc.

and almost all mainstream linux operating systems have integrated with network statistic

tools such as netstat, tcpdump and kprobe. Therefore our method can be used in most of

distributed systems running on linux operating system.

Different from Orion, we use a two-tuple (ip, service name) instead of three-tuple (ip,

port, proto) to denote a service considering that a service may utilize multiple ports. For

example, in a three tiered system, a web server may access the application server through

a random port. So if we set port as an attribute of a unique service, the dependency graph

becomes dramatically huge even though the requests are all issued by the same service. In

a distributed system, ip denotes a unique host and service name denotes a unique service

running in the host. We follow the definition of service dependency in Orion system that

is: if service A requires service B to satisfy certain requests from its clients, A→B. For

instance, a web service need to fetch the content from a database kept by a database

service, so we say the web service depends on the database service. And in this paper, we

are also only concerned with client-server applications which are dominant in modern

applications.

The first step of our method is to use the connection information to construct a skeleton

of the service dependency graph. Executing an off-the-shelf tool, netstat, in a host, we get

International Journal of Database Theory and Application

Vol.9, No.6 (2016)

Copyright ⓒ 2016 SERSC 25

a list of all the connection information including protocol, source, destination and

connection state. We extract the source and destination information which connected by

TCP protocol. Each of the connection is organized in the format source_ip:

port→destination_ip: port, we call it a channel. The channel is very close to the service

dependency pair except one point: it dose not contain a service name but a port. The

following trivial work is to map a service port to a service name. To get the service name

with respect to a local port is easy by querying the port information. But to a remote port,

the Relationship Builder in the local host need to send a query to the Relationship Builder

in the remote host. After the mapping procedure, the skeleton of a service dependency

graph in a local host is established. But one problem stays unresolved. The transportation

between client and server is bidirectional which means we may get an opposite service

dependency when observing in different hosts. For instance, when observing in host

192.168.1.117, we get the service connection (192.168.1.117, httpd)→(192.168.1.115,

tomcat); but in host 192.168.1.115, we get (192.168.1.115, tomcat)→(192.168.1.117,

httpd). To address this issue, we use and improve the traffic delay assumption mentioned

above. In a client-server structure, a common observation is the packets sent by the server

change with the ones sent by the client. Therefore we use the lag correlation of the send

traffic between two services to distinguish the dependency direction. To get the send

traffic of a specific service, we count the number of packets transmitted by a specific

process through probing the function netdev.transmit triggered when the network device

wants to transmit a buffer. Assuming X is the send traffic of service A, Y is the send

traffic of service B, the lag correlation between X and Y is defined as

Where k is the lag value, it can be positive and negative. In our system we set the

absolute value of k at 30 which can capture almost all the traffic delay. Our objective is to

find a best k which maximize ρXY (k) namely

According to the sign of k*, the dependency direction is determined. If k*> 0, A→B;

else B→A. Figure 2 demonstrates the lag correlation between httpd and memcached

applications. The result shows that k*= 4 implies httpd→Memcached confirmed in

reality.

Figure 2. The Lag Correlation of Send Traffic Between Httpd and
Memcached

 
















1

0

1

0

22

1

0

)()(

)()(
)(

N

t

N

t

N

t
XY

tYtX

ktXtY
k Zk

]}30,30[),({max(*  kkk XY

International Journal of Database Theory and Application

Vol.9, No.6 (2016)

26 Copyright ⓒ 2016 SERSC

3.3. Group Node Selection

The analysis engine is in charge of traversing and finding “all” nodes that eligible for

rejuvenation according to the service dependency graph generated by the service

dependency graph builder.

Figure 3. The Topological Relationship

Figure 4. Dependency Relationship

Figure 4 is a service dependency relationship diagram of the net shows in Figure 3.

Simple it is, it contains all the essential relationship, e.g., A→B is father-child

relationship, while A→B and A→C is And-Or relationship. ServiceTimeA is the total

time spend on the request start from A till it end on A. LocalTimeA is the time spend on

the request just on node A. Assumes that the network transmission delay can be ignored.

The following relations are obtained：

ServiceTimeA = LocalTimeA + max(ServiceTimeB, ServiceTimeC) (3)

 (4)

We propose a new metric to measure the impact that internal and external causes of

aging on the node: Tcp Request Latency (abbreviated as TRL). TRL is obtained by

measuring the latency between the last inbound packet (i.e. request) and the first outbound

packet (i.e. response) passing through a specific port. We substitute TRLA for

ServiceTimeA. According to the formula 3 and dependencies between nodes, we can get

the LocalTime of any node. Although this metric is simple, it works well in our

framework. According to our observations, most of applications use TCP protocol as their

fundamental transport protocol like Mysql, Httpd, etc. Hence TRL can be adopted to

represent the impact of aging on nodes.

We assume that any rejuvenation time is fixed in a network, and its value is tm.

Consider this situation, node A and B have the relationship A→B. If the analysis engine

decides that A is aging but need not to rejuvenate, while B need to rejuvenate. We define

t' is the time from B’s rejuvenation end to A’s performance returns to a normal state.

t = Φ(d1,d2,...,dn) (5)

d is the aging degree of each node resource metric collected by data collection module,

while t is the time from now till x hung or crash. Φ is the relation function. The predictor

models this relation function by NARX model.

AA

A
A

LocalTimeeServiceTim

LocalTime
P




International Journal of Database Theory and Application

Vol.9, No.6 (2016)

Copyright ⓒ 2016 SERSC 27

When the predictor finds that node x aging at time t1, the predictor subsequently

calculate the time t through d, PA and formula 4. Here, t means the node x will hung or

crash at t+t1 just because its internal causes of aging. If t< tm + t', it indicates that node x

need to be rejuvenated. Otherwise we find the children of x, and use the same method to

decide whether they should to be rejuvenated. The policy also keeps track of past restarts

to prevent infinite restarts (two adjacent restart time is shorter than a certain time window)

of “hard” failures.

The purpose is to achieve optimum rejuvenation of the entire network. We don’t

consider the upper bound of the number of nodes in the rejuvenation. This involves the

infrastructure, the bandwidth, etc. Users can set the upper bound of the framework

according to different situations. This paper uses a threshold value of the maximum

number of nodes to determine the cluster regeneration according to the hardware

conditions. According to the different environment, we will use appropriate optimization

algorithm to calculate the number of nodes to achieve optimal regeneration in future

work.

4. Experimental Evaluation

In this section we present the results obtained after evaluating the models proposed. To

collect the process and operating system performance metrics, we use some off-the-shelf

tools such as collectl; to collect other metrics, we develop several tools from the scratch,

such as tcpdep to generate the service dependency relationship. In the following, we will

give the details of our experimental methodology and evaluation results in TPC-W

benchmark.

4.1. Evaluation Methodology and Effectiveness

We use both theoretical and experimental methods to evaluate system availability.

Here, the effectiveness of the group rejuvenation is represented by the ratio of downtime

of the whole system whether to use group rejuvenation.

Node A and B are two sequential nodes in a service, as in Figure 4. Suppose both of

their aging curves are conform to the weibull distribution, which is the theoretical basis of

reliability analysis and life test. Then we define the function of aging degree of any nodes

as follows:

(6)

where k > 0 is the shape parameter and λ > 0 is the scale

parameter of the

distribution.

(7)

(8)

(9)

TD’ is the total downtime of group rejuvenation (both A and B are aging in a small

window of time) in a fixed period of time Ts. TD’A is the total downtime of node A in Ts

eliminate the times it rejuvenated in group rejuvenation. TDA is the total downtime of node

A in Ts. TABD is the average downtime of both A and B rejuvenate. TAD is the average

downtime of node A. DA and DB are aging threshold of A and B respectively. TAB is the

kxexA)/(1)(

 
t

ABABBBBAAAABDD xxTDxADxATT
0

'))](())(())(([

]))(())(([
0

'  
t

ABABAAAADAD TxxDxATT

 
t

AAADDA DtATT
0

))((

International Journal of Database Theory and Application

Vol.9, No.6 (2016)

28 Copyright ⓒ 2016 SERSC

node rejuvenation interval threshold. Φ is a piecewise function. Pr, the ratio of downtime

of the whole system whether to use group rejuvenation is defined as follows:

 (10)

A change in the scale parameter λ has no effect

on the ratio. When it increases to a certain degree, the ratio P became NaN. As a result,

we change the time unit in the test five and six in Table 1. The ratio P has the same trend

with shape parameter k. The result shows that group rejuvenation do reduce the total

downtime of the system. Its effectiveness is mainly depends on the aging model.

Table 1. Different Weibull Parameters and the Ratio Results

 λA kA λB kB P

1 1 1 1 5 0.3577

2 1 0.5 1 5 0.1955

3 1 0.2 1 5 0.0220

4 3 0.2 1 5 0.0220

5 10 1 15 1.5 0.9992

6 100 1 1000 1.5 0.9989

The sample interval in all the data collection tools is 1 second in the experimental

method. The framework is only evaluated in a controlled distributed system. But we

believe it works well in a real system without exceptions. The controlled system contains

five physical server machines hosting the benchmarks and four client machines generating

the workload. Each physical server machine has a 8-core Xeon 2.1 GHZ CPU and 16GB

memory and is virtualized into five VM instances including domain 0 by KVM. Each VM

has two vcpu and 2GB memory and runs a 64-bit CentOS 6.2. TPC-W is a transaction

processing benchmark which is used to emulate online book shopping. In our controlled

environment, we employ Apache Httpd, Apache Tomcat and Mysql as the web, servlet

application and database service respectively and these services run in dedicated VM

instances. We adopt Siege [1] to generate the HTTP requests randomly. To mimic the real

performance problems, we inject faults in the benchmark. For the software aging, we

inject MemLeak: a memory-bound application continually consumes memory of the

application server. The fault mentioned above will be repeated for more than 20 times and

last 5 minutes. To get the ground truth, we will log the fault injection time. We adopt

collectl to collect data from client side. We can see the general trend of the service by

these data. Figure 5 shows the context switch of the client for one hour with group

rejuvenation. To get more precise downtime ratio, we adopt Jmeter to access to the client

all the time. Collect service parameters such as response time to monitor the whole

downtime of the system during a week. The ratio of downtime of the whole system

whether to use group rejuvenation is 0.8322 for one day. The ratio up to 0.6153 at best in

our experiment.

We record the restart time of each node for one week experiments with group

rejuvenation and without group rejuvenation. We inject the same faults. The results shows

that single node rejuvenation times has no much change in the first two days. Some

nodes’ rejuvenation times reduce 36 percent in a week time at best.

BDAD

BDADDregroup

TT

TTT

T

T






 '''Pr

International Journal of Database Theory and Application

Vol.9, No.6 (2016)

Copyright ⓒ 2016 SERSC 29

Figure 5. Context Switch of the Client

4.2. Discussion

The simplest decision of the rejuvenation group is to rejuvenate all the possible node

once they were found aging. This method also improves availability of the system

compared to the normal rejuvenation(e.g. just reboot any node once they are aging). And

its diagnosis cost reduced. The ratio of the internal and external causes is mainly used to

reduce some node’s rejuvenation times. Especially when the rejuvenation time of some

subsystems is too long. In the experiment, we use probability analysis of the data to

generate the threshold of the ratio of the internal and external causes. The rate of aging

greatly affects the ration PA. We assume PA is constant in the experiments.

Considering the hardware of the system, the rejuvenation time should be different

every time, especially after the machine work for a long time. Figure 6 shows one node’s

rejuvenation times in 25 minutes. We assume the rejuvenation time of each node is

constant in the experiments. We select the mean value of the time after the node

rejuvenates 50 times.

Figure 6. Rejuvenation Time

5. Related Work

The objective of aging rejuvenation or system recovery is to improve the

availability of the system. The work is mainly divided into two parts, the first is the

aging diagnosis, followed by regeneration choice. Software aging has been studied

in the UNIX operating system [3] and the Apache Web server [11]. [3] design and

implement an SNMP based, distributed monitoring tool used to collect operating

system resource usage and system activity data at regular intervals, then apply

statistical trend detection techniques to this data to detect/validate the existence of

aging. The metric “Estimated time to exhaustion” they proposed is similar to t in

formulator (4) in 3.3. [11] collect and log data on several system resource usage and

International Journal of Database Theory and Application

Vol.9, No.6 (2016)

30 Copyright ⓒ 2016 SERSC

activity parameters on a web server while subjecting it to an artificial workload.

Time-series ARMA models are then constructed from the data to detect aging and

estimate resource exhaustion times. Recently, server consolidation using virtual

machines (VMs) is being widely carried out. Many VMs are running on top of a

VMM. Since a VMM is long-running software and is not rebooted frequently, the

influences due to software aging accumulate more easily than the other components.

[10] just uses time-based rejuvenation. [12] is conducted by M5P Machine Learning

Algorithm. In this framework, we use NARX and SPRT method to diagnosis aging,

which presents promising results in terms of accuracy prediction in software aging

scenarios [4].

[10] proposed a technique for fast rejuvenation of VMMs called the warm-VM

reboot. It enables only a VMM to be rebooted by using the on-memory

suspend/resume mechanism and the quick reload mechanism. To achieve transparent

software rejuvenation, [12] presented a self-reconfigurable framework which

contains three conducts, Service Creation, Service Migration and Service Recovery.

The approach is based on a mathematical programming model plus a machine

learning module. This paper proposed a new rejuvenation decision based on

dependency relationship and the parameter PA. It conducted using reboot or live -

migration. The differences is that the number of VM rejuvenation is different each

time. We call this group rejuvenation which can significantly improve the system

availability and reduce the number of the VM rejuvenation in a very long time

running.

A recursively restartable system [8] also uses restart groups(subtrees in a restart

tree). In this reactive restarts, its restart tree is a hierarchy of restartable

components, in which nodes are highly fault-isolated and a restart at a node will

restart the entire corresponding subtree. This method has the same assumption with

[9] that each component is failure-isolated.

Bug are everywhere. So bug diagnosis techniques are needed. Fault localization is

a key component of bug diagnosis. Casual relationship is often used to find casual

paths or root causes. [13] suggests the failure inducing chain (FIC) should ideally be

computed by comparing the failing run with the run of the corrected program with

the same input. While for practical debugging, corrected versions are not always

available. [2] combines diagnosis and recovery actions into an iterative process that

can accurately locate faults. Meanwhile recover a system through some sequence of

actions. If the faults hypothesis and the recovery are invalid, some iteration steps

will greatly increase the system downtime. This paper uses traffic delay and the lag

correlation of the send traffic to construct the service dependency graph. Integrated

with the ratio of internal causes of aging and external causes of aging, a coarse -

grained root cause might be found in future work.

6. Conclusion

This paper mainly proposed a new rejuvenation decision based on service

relationship, group rejuvenation. Construct the service dependency relationship is

important in this method. As the aging estimation and group decision are mainly

depend on the relationship. Using a machine learning method and SPRT to detect

aging. Then combine the ratio of internal and external causes and the service

dependency relationship to decide the rejuvenation group.

We observed in our experiments that group rejuvenation do reduce the total

downtime of the system. The downtime in group rejuvenation account for only 2.2

percent of normal rejuvenation sometimes. It can also reduce the rejuvenation times

International Journal of Database Theory and Application

Vol.9, No.6 (2016)

Copyright ⓒ 2016 SERSC 31

of some node based on the ratio of internal and external causes during long time

experiments.

Acknowledgements

This work was partially supported by the Hainan Province Natural Science Fund:

No. 20156233, and 20151003.

References

[1] “Siege”, [Online]. Available: http://www.joedog.org/siege-home/

[2] K. Joshi, M. Hiltunen, W. Sanders and R. Schlichting, “Probabilistic model-driven recovery in

distributed systems”, IEEE Transactions on Dependable and Secure Computing, (2010).

[3] S. Garg, A. van Moorsel, K. Vaidyanathan, and K. Trivedi, “A Methodology for Detection and

Estimation of Software Aging”, Proceeding Ninth Int’l Symp. Software Reliability Eng., (1998), pp.

283-292.

[4] S. Li and Q. Yong, “Software aging detection based on NARX model”, Web Information Systems and

Applications Conference. Los Alamitos, CA: IEEE Computer Society, vol. 11, (2012), pp. 105-110.

[5] X. Chen, M. Zhang, Z. M. Mao and P. Bahl, “Automating network application dependency discovery:

Experiences, limitations, and new solutions”, In USENIX Symposium on Operating Systems Design and

Implementations (OSDI), vol. 8, (2008), pp. 117-130.

[6] R. Krishnakumar, “Kernel korner: kprobes-a kernel debugger”, Linux Journal, vol. 2005, no. 133,

(2005), pp. 11.

[7] Y. Huang, C. Kintala, N. Kolettis, and N. Fulton, “Software Rejuvenation: Analysis, Module and

Applications”, Proceeding 25th Int’l Symp. Fault-Tolerant Computing, (1995), pp. 381-391.

[8] G. Candea, J. Cutler, A. Fox, R. Doshi, P. Gang, and R. Gowda, “Reducing recovery time in a small

recursively restartable system”, in Proceeding The International Conference on Dependable Systems and

Networks(DSN), (2002), pp. 605-614.

[9] D. Oppenheimer, A. Brown, J. Beck, D. Hettena, J. Kuroda, N. Treuhaft, D. Patterson, and K. Yelick,

“Roc-1: Hardware support for recovery-oriented computing”, IEEE Trans. on Computers, vol. 51, no. 2,

(2002), pp. 100-107.

[10] K. Kourai and S. Chiba, “A Fast Rejuvenation Technique for Server Consolidation with Virtual

Machines”, Proceeding 37th Ann. IEEE/IFIP Int’l Conf. Dependable Systems and Networks, (2007), pp.

245-254.

[11] L. Li, K. Vaidyanathan, and K. Trivedi, “An Approach for Estimation of Software Aging in a Web

Server”, Proceeding Int’l Symp. Empirical Software Eng., (2002), pp. 91-100.

[12] J. Alonso, I. Goiri, J. Guitart, R. Gavalda and J. Torres, “Optimal resource allocation in a virtualized

software aging platform with software rejuvenation”, In Proceeding of the 22nd Int'l Symp. on Software

Reliability Engineering (ISSRE 2011), (2011), pp. 250-259.

[13] W. N. Sumner and X. Zhang, “Automatic failure inducing chain computation through aligned execution

comparison”, In Technical Report 08-023, Purdue University, (2008).

Authors

LiSu, received the B.S. degrees in Electrical Engineering from

North China institute of technology and M.S. degrees in Electrical

Engineering from China University of Geosciences in 2004 and 2007,

respectively. She now studying for a doctor's degree in Electronic and

Information Engineering from Xi’an JiaoTong University.

International Journal of Database Theory and Application

Vol.9, No.6 (2016)

32 Copyright ⓒ 2016 SERSC

YongQi, received the Ph.D. degree in computer science and

technology from Xi’an Jiaotong University, Xi’an, China, in 2001.

He is a full professor in the Department of Computer Science and

Technology, Xi’an Jiaotong University. His research interests include

sensor networks, operating system, distributed middleware, and

services computing.

PengfeiChen, received the B.S. degree in computer science and

engineering from Xi’an Jiaotong University, Xi’an, China, and is

currently pursuing the Ph.D. degree in Xi’an Jiaotong University. His

research interests include software availability, fault diagnosis and

maintenance scheduling.

XinyiLi, received the B.S. degree in computer science and

engineering from Xi’an Jiaotong University, Xi’an, China, and is

currently pursuing the Ph.D. degree in Xi’an Jiaotong University. Her

research interests include software availability, fault diagnosis and

maintenance scheduling.

