
International Journal of Database Theory and Application

Vol.9, No.6 (2016), pp.219-226

http://dx.doi.org/10.14257/ijdta.2016.9.6.22

ISSN: 2005-4270 IJDTA

Copyright ⓒ 2016 SERSC

Multi Query Optimization Algorithm Using Semantic and

Heuristic Approaches

L. J. Muhammad
1

,

Yahaya Bala Zakariyau

2
, Abdullahi Garba Ali

3
 Ibrahim A.

Mohammed
3

1,2
Mathematics & Computer Science Department, Federal University, Kashere

Computer Science Department, Bayero University, Kano
3
Computer Science

Department, Yobe State University
4

lawan.jibril@fukashere.edu.ng
1
, baladada57@yahoo.com

2
jgewel@yahoo.com

3

ibrahimsallau@gmail.com
4

Abstract

Multi Query Optimization is one of the most important tasks in Relational Database

Management System (RBMS) and it becomes common due to high usage of online

decision support management systems in every industry nowadays. In multi query

optimization, queries are optimized and executed in batches. However, there are many

algorithms use to detect and unified common sub-expressions among multiple queries and

unified them so that the more encompassing sub- expression is executed and the other

sub-expressions are derived from. In this work, multi-query optimization algorithm using

heuristics and semantic approaches was proposed and encoded on SQL Server version

10.0.1600 and three queries were used for the experiment between the proposed

algorithm and most recent basic Multi Query Optimization Algorithm (Volcano RU). The

result of experiment showed that, Proposed Algorithm gave the best plans compared

Volcano RU Algorithm, across all three queries and was best for all queries in terms of

execution time and CPU time.

Keywords: Multi Query Optimization, Semantic, Heuristic, Systematic, inter-query

shareability, common sub-expressions

1. Introduction

In multi-query optimization, queries are not optimizing one by one but rather

optimizing and executing in batches. Complex queries are becoming common, with the

growing use of decision making support systems and other analytical support systems. [3]

The query optimizer therefore is responsible for finding the best execution strategy so that

fewer resources are used to retrieve data [4]. However, there are three main approaches to

query optimization which include the following

1.1 Systematic Query Optimization

In systematic query optimization, the system estimates the cost of every plan and then

chooses the best one [1]. The best cost plan is not always universal since it depends on the

constraints put on data. For example, joining on a primary key may be done more easily

than joining on a foreign key since primary keys are always unique and therefore after

getting a joining partner, there is no other key expected. The system therefore breaks out

of the loop and hence does not scan the whole table. The costs considered in systematic

query optimization include access cost to secondary storage, storage cost, computation

cost for intermediate relations and communication costs [5]. The importance put on these

costs depend on the type of database.

International Journal of Database Theory and Application

Vol.9, No.6 (2016)

220 Copyright ⓒ 2016 SERSC

1.2 Heuristic Query Optimization

In the heuristic approach, the operator ordering is used in a manner that economizes the

resource usage but conserving the form and content of the query output [2]. The principle

aim is to:

(i) Set the size of the intermediate relations to the minimum and increase the rate at which

the intermediate relation size tend towards the final relation so as to optimize memory [2].

(ii) Minimize on the amount of processing that has to be done on the data without

affecting the output [3].

1.3 Semantic Query Optimization

This is a combination of Heuristic and Systematic optimization. The constraints specified

in the database schema can be used to modify the procedures of the heuristic rules making

the optimal plan selection highly creative [7]. This leads to heuristic rules that are locally

valid though cannot be taken as rules of the thumb.

2. Related Works

Most of the multi query optimization algorithms do not take into consideration

possibilities of sub-expressions that may be common and save more in overall costs

except in reuse based optimization sharing possibilities are explored [6]. These algorithms

are Basic Volcano, Volcano SH , and Volcano RU use the same principal though with

different philosophies. These algorithms use DAG to represent the search space. In some

cases however, search space is represented as an AND-OR DAG. [5]. An AND-OR DAG

is a DAG whose nodes are divided into two: the AND nodes and the OR nodes. AND

nodes have only OR nodes as their children and OR nodes have only AND nodes as their

children. The AND node in an AND-OR DAG has algebraic operation like select (σ),

project (π), etc. They are therefore referred to as operational nodes [3]. The OR node of an

AND-OR DAG represents a logical expressions that generates the same result set as when

a child operational node is applied on its children/ child. OR nodes are referred to as

equivalence nodes. These algorithms include the following:-

2.1 Basic Volcano Algorithm

The Basic Volcano Algorithm uses DAG as a representation of the query plans. It has a

problem of extensibility since AND-OR DAGs are easier to extend than the DAGs. The

Basic Volcano algorithm materializes all nodes that appear more than once. This brings in

a problem that not all nodes that appear more than once cause savings when materialized.

As observed in [2], for some nodes, it is cheaper to recompute than to materialize and

reuse them. This is because materialization involves writing and reading to disk which is

costly. This algorithm determines the cost of the nodes by using a depth first traversal of

the DAG. Below is the pseudocode of the algorithm.

PROCEDURE: Volcano(eq)

Input: Root node of Expanded DAG

Output: Optimized plan

Read (op ∈ child (eq))

Read (InpEq ∈ child (op))

For (every non-calculated op ∈ child (eq)

For (every inpEq ∈ child (op))

Volcano(inpEq)

 If inpEq∈ leaf node

International Journal of Database Theory and Application

Vol.9, No.6 (2016)

Copyright ⓒ 2016 SERSC 221

 cost(inpEq)= 0

 If (eq ∉ M)

cost(op) = cost of executing (op) +ΣCost(inpEq)

cost(eq) = min{cost(op)|op ∈ children(eq)}

 else

 If (eq ∈ M)

 cost(eq) = min{cost(eq),reusecost(eq)}

 mark op as calculated

endfor

endfor

 endif

 endif

 endif

2.2 Volcano SH Algorithm

The Volcano-SH is an extension of the Basic Volcano algorithm in that it uses the Basic

Volcano optimal plans as an input. The volcano SH computes the cost of each node and

decides whether or not it is cost effective to materialize it [2]. This is done by considering

a scenario of materialization and reuse against re computation. . Below is the pseudocode

of the algorithm.

Procedure VOLCANO-SH

Input: Consolidated Volcano best plan P for virtual root of DAG

Output: Set of nodes to materialize M, and the corresponding best plan P

Global variable: M, the set of nodes chosen to be materialized

Consolidated Volcano best plan P for virtual root of DAG

M = { }

Perform prepass on P to introduce subsumption derivations

Let Croot = COMPUTEMATSET(root)

Set Croot = Croot ∑+d∈M(cost(d) + matcost(d))

Undo all subsumption derivations on P where the subsumption node is not chosen to be

materialized.

return (M,P)

Procedure COMPUTEMATSET(e)

If cost(e) is already memoized, return cost(e)

Let operator oe be the child of e in P

For each input equivalence node ei of oe

Let Ci= COMPUTEMATSET(ei) // returns computation cost of ei

If ei is materialized, let Ci = reusecost(ei)

Compute cost(e) = cost of operation oe + ∑i Ci

If (matcost(e)/(numuses−(e) − 1) + reusecost(e) < cost(e))

If e is not introduced by a subsumption derivation

add e to M // Decide to materialize e

else if cost(e) + matcost(e) + reusecost(e) ∗ (numuses−(e) − 1) is less than

savings to parents of e due to introducing materialized e

add e to M // Decide to materialize e

 Memoize and return cost(e)

International Journal of Database Theory and Application

Vol.9, No.6 (2016)

222 Copyright ⓒ 2016 SERSC

2.3 Volcano-RU Algorithm

 The Volcano-RU exploits sharing well beyond the optimal plans of the individual queries

but it aims at reusing and sharing sub-expressions which are not necessarily in the

individual query optimal plans [5]. Volcano-RU is sequential, considering possibilities of

reusing expressions of previously optimized queries in subsequent queries. For a set of

queries in the same pseudo root, after optimizing Qi, the nodes in the plans of Qi are

identified. Since at that moment the algorithm has no idea of the structure of the

subsequent queries, it checks whether it would be optimal if a certain node was

materialized for reuse one extra time. While optimizing the next query, costs saving

expressions are considered to be present [3]. The Volcano- SH is then applied to further

detect and exploit more sharing opportunities. In such a case, a query is able to share sub-

expressions within itself and materializable plans are all identified [6]. Below is the

pseudocode of the algorithm.

Procedure VOLCANO-RU

Input: Expanded DAG on queries Q1, . . . ,Qk (including subsumption derivations)

Output: Set of nodes to materialize M, and the corresponding best plan P

N = Ф // Set of potentially materialized nodes

For each equivalence node e, Set count[e] = 0

For i = 1 to k

Compute Pi, the best plan for Qi, using Volcano, assuming nodes in N are

materialized

For every equivalence node in Pi

set count[e] = count[e] + 1

If (cost(e) + matcost(e) + count[e] ∗ reusecost(e) < (count[e] + 1)

∗ cost(e))

// Worth materializing if used once more

 add e to set N

Combine P1, . . . , Pk to get a single DAG-structured plan P

(M,P) = VOLCANO-SH(P) // Volcano-SH makes final materialization decision

3. Result and Discussion

3.1 Multi Query Optimization Algorithms Using Heuristic Approach

In this proposed improved algorithm, two query plans are compared for each pair of node

so to establish whether or not they are sharable. If they are sharable, the appropriate entry

in the multi query sharing matrix will incremented. For example, for a batch of n queries

Q1, Q2,…… Qn. For any query Qx, a set of nodes in the Volcano optimal plan as a set of

volcano best plans and Let Sx be the set of equivalence nodes in the plan of Qx.

Therefore, the algorithm checks nodes pairwise and establishes whether sharing can be

possible. If it is possible for any queries Qx and Qy , the query popularities and M[x,y] are

incremented and it continues until the all they are exhausted. Considering a general query

sharing matrix M below:

{

}

The entry M [x, y]= mxy is an integer that shows how many sub-expressions

(equivalence nodes in AND-OR DAGs) that are sharable between queries Qx and Qy .

This is the same as the value of M [y, x]. The sum up of the entries in a column (or a

row), will result the total number of instances in which nodes in the plan have sharable

International Journal of Database Theory and Application

Vol.9, No.6 (2016)

Copyright ⓒ 2016 SERSC 223

partners. This is called query popularity. All nodes that have partners are marked so that

the optimizer can identify which nodes necessitate checking other plans while searching

for common sub-expressions and which nodes do not. This helps in eliminating null

searches hence a more efficient strategy. After identifying the extent of sharing among the

queries, we can be able to tell which pair or pairs of queries have nothing in common.

When start searching for common sub-expressions, it starts with one query and search for

the sharable sub-expressions with other queries in the DAG. The Query plan, which is at

the center of the searching process, is called the focal node. Since the plans are already

traversed at the searching stage, the nodes will be marked (those with sharable sub-

expressions elsewhere) and those node that will not be marked. It is only on marked

nodes that the search for other plans for sharable nodes will be done. It should be noted

that a node being marked does not mean that its partners will be searched for in all plans.

Since the query sharing matrix has the summary of what query shares with what, only

those with non-zero entries in the sharing matrix are searched for a column/ row

representing the extent of sharing between the focal plan and such a plan are checked. The

algorithm therefore searches only in optimistic cases. Below is the pseudocode of the

algorithm.

Procedure Heuristics (shareability Search Algorithm)

Input: Expanded DAG on queries Q1, . . .

Output: Set of plans in decreasing order of their popularity

for x =1; x<=n; i++

 for y =1; y<=n; j++

 Order of Each Query = 0

 repeat

NextOrder = 0;

Sx = Set of nodes in Query x

k = First node in SX

Sy = Set of nodes in Query y

z = First node in Sy

while(Sx still has nodes)

 while(Sy still has nodes)

if(k = = z)

nextOrder = 1

 if(ORDER = 0)

 break out of the two while loops

 else

increment M[x,y] and M[y,x] and mark z and k

endif

 endif

 endwhile

 endwhile

 ORDER = next(ORDER)

 until(nextOrder= 0 or orders are exhausted)

 endfor

endfor

3.2 Multi Query Optimization Algorithm Using Semantic Approach

This algorithm identifies the plan with the highest popularity and establishing its details

(node costs and frequency). The common sub-expressions are searched for in the rest of

the queries following the stable marriage preference list of the focal plan. If according to

International Journal of Database Theory and Application

Vol.9, No.6 (2016)

224 Copyright ⓒ 2016 SERSC

the sharing matrix M, a certain plan is not having any node to share with the focal plan, it

does not search it. When a focal plan is identified, the costs and number of times a node is

used in the plan, count are established. If a node is marked, then it means that it has

sharable partners in other plans. The sharable nodes are searched for in the plans that

share at least a node with the focal plan. Each time a sharable node is found, the count is

incremented by one and it’s assured to be of the same cost as the node in the focal plans.

The test for materialization used in the Volcano SH is then applied using the new

estimated cost and the node count in the pseudo rooted plan. In this algorithm, nodes were

chosen to materialize from the high order nodes downwards. This is used in such a way

that if say two nodes are sharable and two have to be removed, this reduces the sample

space of subsequent searches and saves the cost of computing already catered for nodes.

Procedure Proposed Multi Query Optimization Algorithm Using Semantic Approach

Input: Set of plans in decreasing order of their popularity (Proposed Multi Query

Optimization Algorithm Using Heuristic Approach)

Output: Set of best plans

S = Set of plans in decreasing order of their popularity

X = first plan in S

repeat

Calculate the cost of each node

Calculate the numuses of each node

S* = subset of S which share atleast a node with x

XOrder = highest order of x

repeat

n = node in XOrder

e = equivalent node

if (e is marked)

repeat

traverse S* for e of the same order with and sharable with e

increment numuses(e) whenever a sharable node is met

until(S* is exhausted)

if(sharable condition(e))

select the node to be materialized and add it to the

materializable node

remove the rest of the node

update the DAG for the materialized node to cater for the removed

node’s parents

unmark the chosen node

 endif

endif

until(nodes in XOrder are exhausted)

X = next(X)

until(plans on non-zero popularity are exhausted)

4. Performance Study

To study the benefits of multi-query optimization algorithm on a real database, both the

proposed improved and Volcano RU algorithms were encoded on Microsoft SQL Server

version 10.0.1600.22 running on Windows 7 64 bits operating system, with AMD A4

3320M APU With Radeon ™ HD Graphic Processor, 2.00 GHz and 4GB of RAM and

three queries were executed to test their effects. Thus, we measured the total elapsed time

for executing all these three queries and the results are shown in Figure 1.1, Figure 1.2

International Journal of Database Theory and Application

Vol.9, No.6 (2016)

Copyright ⓒ 2016 SERSC 225

and Figure 1.3. The results indicate that the proposed multi-query optimization gives

significant time improvements on a real system compared to Volcano RU Algorithm.

Query One: The time RU Volcano Algorithm takes before to execute query one on

database is 4810ms while the proposed algorithm takes 141ms. On other hand, the CPU

time for RU Volcano Algorithm was 31ms while for the proposed algorithm was 21ms.

Therefore, the proposed Algorithm is more efficient and effective than Volcano RU

Algorithm in terms of execution and CPU time with respect to query one. The results are

shown in Figure 1.1

 Figure 1.1 Performance Study Result of Query One

Query Two: The time RU Volcano Algorithm takes before to execute query two on

database is 3790ms while the proposed algorithm takes 117ms. On other hand, the CPU

time for both RU Volcano Algorithm and the proposed algorithm was 0ms respectively.

Therefore the Proposed Optimization Algorithm is more efficient and effective than

Volcano RU Algorithm in terms of execution time only. The results are shown in Figure

1.2

 Figure 1.2 Performance Study Result of Query Two

Query Three: The time RU Volcano Algorithm takes before to execute query three on

database is 14ms while the proposed algorithm takes 3ms. On other hand, the CPU time

for both RU Volcano and Proposed Improved Optimization Algorithms was 0 ms.

Therefore, the Proposed Algorithm is more efficient and effective than Volcano RU

Algorithm in terms of execution time only with respect to the query. The results are

shown in Figure 1.3

Volcano RU
Algorithm

Proposed Improved
Optimization

Algorithm

CPU Time 31 21 31 21

Elapsed Time 4810 141 4810 141

0
1000
2000
3000
4000
5000
6000

TI
m

e
 (

m
s)

Volcano RU
Algorithm

Proposed
Improved

Optimization
Algorithm

CPU Time 0 0 0 0

Elapsed Time 3790
117

3790 117

0
500

1000
1500
2000
2500
3000
3500
4000

Ti
m

e
 (

m
s)

International Journal of Database Theory and Application

Vol.9, No.6 (2016)

226 Copyright ⓒ 2016 SERSC

Chart 4.4 Performance Study Result of Query Three

5. Conclusion and Future Study

In this work multi query optimization algorithm using heuristic and semantic was

proposed and its benefits were demonstrated on a real database system. The performance

of the algorithm, using queries based on the TPC-D benchmark, demonstrates that multi-

query optimization is practical and gives significant benefits at a reasonable cost. The

algorithm uniformly gave the best plans, across all the queries and Volcano-RU, which is

cheaper, may be appropriate for inexpensive queries.

However, for future study, the proposed algorithm can be further improved by

incorporating Cache. Thus In a traditional database engine, every query is processed

independently but in decision support applications, queries often overlap in the data that

they access and in the manner in which they utilize the data, i.e., there are common

expressions between queries. A natural way to improve performance is to allocate a

limited-size area on the disk to be used as a cache for results computed by previous

queries. The contents of the cache may be utilized to speed up the execution of

subsequent queries. Therefore, there is need to incorporate cache to store final and/or

intermediate results of queries in a cache.

References

[1] Dalvi, J. R., Raghavan, V. V., Brian B. (2001). Analysis of Common Subexpression Exploitation

Models in Multiple Query Processing, in Proc. 10th Int. Conf. on Data Engineering, IEEE Press, pp. 82-

97

[2] Graefe, G. & McKenna, W. J. (1991). Extensibility and Search efficiency in the Volcano Optimiser

generator. Technical report CU-CS-91-563. University of Colorado.,

[3] Muhammad, L. J., Yahaya Bala Zakariyau and Abdullahi Garba Ali. (2015). Efficient Multi-Query

Optimization Algorithm. International Journal of Database Theory and Application Vol.8, No.6, pp.133-

138. Science & Engineering Research ISSN: 2005-4270

[4] Kyuseok, S., Sellis, T. K and Nau, D. (1994). Improvements on a Heuristic algorithm for Multiple-query

Optimization. Technical report, University of Maryland, Department of Computer Science.

[5] Muhammad, L. J., Yahaya Bala Zakariyau, Abdullahi Garba Ali and Abba Garba. (2014). On Multi-

Query Optimization Algorithms Problem. International Journal of Database Theory and Application

Vol.7, No.6), pp.13-20. Science & Engineering Research ISSN: 2005-4270

[6] Park, P. and Segar, A. (1988). Using common sub-expressions to optimise multiple queries. Proceedings

of the IEEE International Conference on Data Engineering.

[7] Roy, P. Seshadri,S. Sudarshan,S. and Bhobe, S (1998). Practical Algolithms for multi query

Optimisation. Technical report, Indian institute of Technology, Bombay.

[8] Pandao, S. D. and Isalkar, A. D. (2012). Multi Query Optimization Using Heuristic Approach,

International Journal of Computer Science and Network (IJCSN) Volume 1, Issue 4

Volcano RU Algorithm
Proposed Improved

Optimization Algorithm

CPU Time 0 0

Elapsed Time 14 3

0
2
4
6
8

10
12
14
16

Ti
m

e
 (

m
s)

