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Abstract  

Multi Query Optimization is one of the most important tasks in Relational Database 

Management System (RBMS) and it becomes common due to high usage of online 

decision support management systems in every industry nowadays. In multi query 

optimization, queries are optimized and executed in batches. However, there are many 

algorithms use to detect and unified common sub-expressions among multiple queries and 

unified them so that the more encompassing sub- expression is executed and the other 

sub-expressions are derived from. In this work, multi-query optimization algorithm using 

heuristics and semantic approaches was proposed and encoded on SQL Server version 

10.0.1600 and three queries were used for the experiment between the proposed 

algorithm and most recent basic Multi Query Optimization Algorithm (Volcano RU). The 

result of experiment showed that, Proposed Algorithm gave the best plans compared 

Volcano RU Algorithm, across all three queries and was best for all queries in terms of 

execution time and CPU time. 

Keywords: Multi Query Optimization, Semantic, Heuristic, Systematic, inter-query 

shareability, common sub-expressions 

  

1. Introduction 

In multi-query optimization, queries are not optimizing one by one but rather 

optimizing and executing in batches. Complex queries are becoming common, with the 

growing use of decision making support systems and other analytical support systems. [3] 

The query optimizer therefore is responsible for finding the best execution strategy so that 

fewer resources are used to retrieve data [4]. However, there are three main approaches to 

query optimization which include the following  

 

1.1 Systematic Query Optimization 

In systematic query optimization, the system estimates the cost of every plan and then 

chooses the best one [1]. The best cost plan is not always universal since it depends on the 

constraints put on data. For example, joining on a primary key may be done more easily 

than joining on a foreign key since primary keys are always unique and therefore after 

getting a joining partner, there is no other key expected. The system therefore breaks out 

of the loop and hence does not scan the whole table. The costs considered in systematic 

query optimization include access cost to secondary storage, storage cost, computation 

cost for intermediate relations and communication costs [5].  The importance put on these 

costs depend on the type of database. 
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1.2 Heuristic Query Optimization 

In the heuristic approach, the operator ordering is used in a manner that economizes the 

resource usage but conserving the form and content of the query output [2].  The principle 

aim is to: 

(i) Set the size of the intermediate relations to the minimum and increase the rate at which 

the intermediate relation size tend towards the final relation so as to optimize memory [2]. 

(ii) Minimize on the amount of processing that has to be done on the data without 

affecting the output [3]. 

1.3 Semantic Query Optimization 

This is a combination of Heuristic and Systematic optimization.  The constraints specified 

in the database schema can be used to modify the procedures of the heuristic rules making 

the optimal plan selection highly creative [7]. This leads to heuristic rules that are locally 

valid though cannot be taken as rules of the thumb.   

2. Related Works   

Most of the multi query optimization algorithms do not take into consideration 

possibilities of sub-expressions that may be common and save more in overall costs 

except in reuse based optimization sharing possibilities are explored [6]. These algorithms 

are Basic Volcano, Volcano SH , and Volcano RU use the same principal though with 

different philosophies. These algorithms use DAG to represent the search space. In some 

cases however, search space is represented as an AND-OR DAG. [5]. An AND-OR DAG 

is a DAG whose nodes are divided into two:  the AND nodes and the OR nodes. AND 

nodes have only OR nodes as their children and OR nodes have only AND nodes as their 

children. The AND node in an AND-OR DAG has algebraic operation like select (σ), 

project (π), etc. They are therefore referred to as operational nodes [3]. The OR node of an 

AND-OR DAG represents a logical expressions that generates the same result set as when 

a child operational node is applied on its children/ child. OR nodes are referred to as 

equivalence nodes. These algorithms include the following:-  

2.1 Basic Volcano Algorithm 

The Basic Volcano Algorithm uses DAG as a representation of the query plans. It has a 

problem of extensibility since AND-OR DAGs are easier to extend than the DAGs. The 

Basic Volcano algorithm materializes all nodes that appear more than once. This brings in 

a problem that not all nodes that appear more than once cause savings when materialized. 

As observed in [2], for some nodes, it is cheaper to recompute than to materialize and 

reuse them. This is because materialization involves writing and reading to disk which is 

costly.  This algorithm determines the cost of the nodes by using a depth first traversal of 

the DAG. Below is the pseudocode of the algorithm.      

PROCEDURE: Volcano(eq) 

Input: Root node of Expanded DAG 

Output: Optimized plan 

Read (op ∈ child (eq))         

Read (InpEq ∈ child (op))        

For (every non-calculated op ∈ child (eq)      

For (every inpEq ∈ child (op))      

Volcano(inpEq)  

   If inpEq∈ leaf node       
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        cost(inpEq)= 0       

    If  (eq ∉ M )       

cost(op) = cost of executing (op) +ΣCost(inpEq)  

cost(eq) = min{cost(op)|op ∈ children(eq)}   

    else  

     If (eq ∈ M )        

   cost(eq) = min{cost(eq),reusecost(eq)}   

                             mark op as calculated      

endfor 

endfor 

   endif 

   endif 

   endif 

 

2.2 Volcano SH Algorithm 

The Volcano-SH is an extension of the Basic Volcano algorithm in that it uses the Basic 

Volcano optimal plans as an input. The volcano SH computes the cost of each node and 

decides whether or not it is cost effective to materialize it [2].  This is done by considering 

a scenario of materialization and reuse against re computation. . Below is the pseudocode 

of the algorithm.      

Procedure VOLCANO-SH 

Input: Consolidated Volcano best plan P for virtual root of DAG 

Output: Set of nodes to materialize M, and the corresponding best plan P 

Global variable: M, the set of nodes chosen to be materialized 

Consolidated Volcano best plan P for virtual root of DAG     

M = { }           

Perform prepass on P to introduce subsumption derivations     

Let Croot = COMPUTEMATSET(root)       

Set Croot = Croot ∑+d∈M(cost(d) + matcost(d))       

Undo all subsumption derivations on P where the subsumption node is not chosen to be 

materialized.  

return (M,P) 

Procedure COMPUTEMATSET(e) 

If cost(e) is already memoized, return cost(e)      

Let operator oe be the child of e in P       

For each input equivalence node ei of oe       

Let Ci= COMPUTEMATSET(ei) // returns computation cost of ei  

If ei is materialized, let Ci = reusecost(ei)     

Compute cost(e) = cost of operation oe + ∑i Ci     

If (matcost(e)/(numuses−(e) − 1) + reusecost(e) < cost(e))    

If e is not introduced by a subsumption derivation    

add e to M // Decide to materialize e     

else if cost(e) + matcost(e) + reusecost(e) ∗ (numuses−(e) − 1) is less than 

savings           to parents of e due to introducing materialized e   

add e to M // Decide to materialize e     

           Memoize and return cost(e)       
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2.3 Volcano-RU Algorithm 

 The Volcano-RU exploits sharing well beyond the optimal plans of the individual queries 

but it aims at reusing and sharing sub-expressions which are not necessarily in the 

individual query optimal plans [5].  Volcano-RU is sequential, considering possibilities of 

reusing expressions of previously optimized queries in subsequent queries.  For a set of 

queries in the same pseudo root, after optimizing Qi, the nodes in the plans of Qi are 

identified. Since at that moment the algorithm has no idea of the structure of the 

subsequent queries, it checks whether it would be optimal if a certain node was 

materialized for reuse one extra time. While optimizing the next query, costs saving 

expressions are considered to be present [3]. The Volcano- SH is then applied to further 

detect and exploit more sharing opportunities. In such a case, a query is able to share sub-

expressions within itself and materializable plans are all identified [6].  Below is the 

pseudocode of the algorithm.      

Procedure VOLCANO-RU 

Input: Expanded DAG on queries Q1, . . . ,Qk (including subsumption derivations) 

Output: Set of nodes to materialize M, and the corresponding best plan P 

N = Ф // Set of potentially materialized nodes     

For each equivalence node e, Set count[e] = 0      

For i = 1 to k          

Compute Pi, the best plan for Qi, using Volcano, assuming nodes in N are 

materialized   

For every equivalence node in Pi      

set count[e] = count[e] + 1      

If (cost(e) + matcost(e) + count[e] ∗ reusecost(e) < (count[e] + 1) 

∗ cost(e))   

// Worth materializing if used once more 

    add e to set N       

Combine P1, . . . , Pk to get a single DAG-structured plan P     

(M,P) = VOLCANO-SH(P) // Volcano-SH makes final materialization decision  

 

3. Result and Discussion  

3.1 Multi Query Optimization Algorithms Using Heuristic Approach  

In this proposed improved algorithm, two query plans are compared for each pair of node 

so to establish whether or not they are sharable. If they are sharable, the appropriate entry 

in the multi query sharing matrix will incremented. For example, for a batch of n queries 

Q1, Q2,…… Qn.  For any query Qx, a set of nodes in the Volcano optimal plan as a set of 

volcano best plans and  Let Sx be the set of equivalence nodes in the plan of Qx. 

Therefore, the algorithm checks nodes pairwise and establishes whether sharing can be 

possible. If it is possible for any queries Qx and Qy , the query popularities and M[x,y] are 

incremented and it continues until the all they are exhausted. Considering a general query 

sharing matrix M below: 

{

             
             
             

} 

The entry M [x, y]= mxy  is an integer that shows how many sub-expressions 

(equivalence nodes in AND-OR DAGs) that are sharable between queries Qx  and Qy . 

This is the same as the value of M [y, x]. The sum up of the entries in a column (or a 

row), will result the total number of instances in which nodes in the plan have sharable 
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partners.  This is called query popularity.  All nodes that have partners are marked so that 

the optimizer can identify which nodes necessitate checking other plans while searching 

for common sub-expressions and which nodes do not. This helps in eliminating null 

searches hence a more efficient strategy. After identifying the extent of sharing among the 

queries, we can be able to tell which pair or pairs of queries have nothing in common.  

When start searching for common sub-expressions, it starts with one query and search for 

the sharable sub-expressions with other queries in the DAG. The Query plan, which is at 

the center of the searching process, is called the focal node. Since the plans are already 

traversed at the searching stage, the nodes will be marked (those with sharable sub-

expressions elsewhere) and those node that will not be marked.  It is only on marked 

nodes that the search for other plans for sharable nodes will be done. It should be noted 

that a node being marked does not mean that its partners will be searched for in all plans.  

Since the query sharing matrix has the summary of what query shares with what, only 

those with non-zero entries in the sharing matrix are searched for a column/ row 

representing the extent of sharing between the focal plan and such a plan are checked. The 

algorithm therefore searches only in optimistic cases. Below is the pseudocode of the 

algorithm.      

Procedure Heuristics (shareability Search Algorithm) 

Input: Expanded DAG on queries Q1, . . .  

Output: Set of plans in decreasing order of their popularity 

for x =1; x<=n; i++ 

  for y =1; y<=n; j++  

    Order of Each Query = 0 

      repeat 

NextOrder = 0; 

Sx = Set of nodes in Query x  

k = First node in SX 

Sy = Set of nodes in Query y  

z = First node in Sy 

while(Sx still has nodes) 

   while(Sy still has nodes) 

if(k = = z)  

nextOrder = 1  

    if(ORDER = 0) 

        break out of the two while loops 

    else 

increment M[x,y] and M[y,x] and mark z and k  

endif  

         endif 

       endwhile 

                  endwhile 

         ORDER = next(ORDER) 

      until(nextOrder= 0 or orders are exhausted) 

  endfor  

endfor 

 

3.2 Multi Query Optimization Algorithm Using Semantic Approach 

This algorithm identifies the plan with the highest popularity and establishing its details 

(node costs and frequency). The common sub-expressions are searched for in the rest of 

the queries following the stable marriage preference list of the focal plan.  If according to 
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the sharing matrix M, a certain plan is not having any node to share with the focal plan, it 

does not search it. When a focal plan is identified, the costs and number of times a node is 

used in the plan, count are established. If a node is marked, then it means that it has 

sharable partners in other plans.  The sharable nodes are searched for in the plans that 

share at least a node with the focal plan. Each time a sharable node is found, the count is 

incremented by one and it’s assured to be of the same cost as the node in the focal plans.  

The test for materialization used in the Volcano SH is then applied using the new 

estimated cost and the node count in the pseudo rooted plan. In this algorithm, nodes were 

chosen to materialize from the high order nodes downwards. This is used in such a way 

that if say two nodes are sharable and two have to be removed, this reduces the sample 

space of subsequent searches and saves the cost of computing already catered for nodes. 

Procedure Proposed Multi Query Optimization Algorithm Using Semantic Approach   

Input: Set of plans in decreasing order of their popularity (Proposed Multi Query 

Optimization Algorithm Using Heuristic Approach)     

Output: Set of best plans  

S = Set of plans in decreasing order of their popularity  

X = first plan in S  

repeat 

Calculate the cost of each node  

Calculate the  numuses of each node  

S* = subset of S which share atleast a node with x 

XOrder = highest order of x 

repeat 

n = node in XOrder  

e = equivalent node  

if (e is marked) 

repeat 

traverse S* for e of the same order with and sharable with e 

increment numuses(e) whenever a sharable node is met 

until(S* is exhausted) 

if(sharable condition(e)) 

select the node to be materialized and add it to the 

materializable node 

remove the rest of the node  

update the DAG for the materialized node to cater for the removed 

node’s parents  

unmark the chosen node  

                     endif 

endif 

until(nodes in XOrder are exhausted) 

X = next(X) 

until(plans on non-zero popularity are exhausted) 

 

4. Performance Study   

To study the benefits of multi-query optimization algorithm on a real database, both the 

proposed improved and Volcano RU algorithms were encoded on Microsoft SQL Server 

version 10.0.1600.22 running on Windows 7 64 bits operating system, with AMD A4 

3320M APU With Radeon ™ HD Graphic Processor, 2.00 GHz and 4GB of RAM and 

three queries were executed to test their effects. Thus, we measured the total elapsed time 

for executing all these three queries and the results are shown in Figure 1.1, Figure 1.2 
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and Figure 1.3. The results indicate that the proposed multi-query optimization gives 

significant time improvements on a real system compared to Volcano RU Algorithm.  

Query One: The time RU Volcano Algorithm takes before to execute query one on 

database is 4810ms while the proposed algorithm takes 141ms.  On other hand, the CPU 

time for RU Volcano Algorithm was 31ms while for the proposed algorithm was 21ms. 

Therefore, the proposed Algorithm is more efficient and effective than Volcano RU 

Algorithm in terms of execution and CPU time with respect to query one.  The results are 

shown in Figure 1.1   

 

 Figure 1.1 Performance Study Result of Query One 

Query Two: The time RU Volcano Algorithm takes before to execute query two on 

database is 3790ms while the proposed algorithm takes 117ms.  On other hand, the CPU 

time for both RU Volcano Algorithm and the proposed algorithm was 0ms respectively. 

Therefore the Proposed Optimization Algorithm is more efficient and effective than 

Volcano RU Algorithm in terms of execution time only. The results are shown in Figure 

1.2 

 

 Figure 1.2 Performance Study Result of Query Two 

Query Three: The time RU Volcano Algorithm takes before to execute query three on 

database is 14ms while the proposed algorithm takes 3ms.  On other hand, the CPU time 

for both RU Volcano and Proposed Improved Optimization Algorithms was 0 ms.  

Therefore, the Proposed Algorithm is more efficient and effective than Volcano RU 

Algorithm in terms of execution time only with respect to the query.  The results are 

shown in Figure 1.3 
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Chart 4.4 Performance Study Result of Query Three 

5. Conclusion and Future Study  

In this work multi query optimization algorithm using heuristic and semantic was 

proposed and its benefits were demonstrated on a real database system. The performance 

of the algorithm, using queries based on the TPC-D benchmark, demonstrates that multi-

query optimization is practical and gives significant benefits at a reasonable cost. The 

algorithm uniformly gave the best plans, across all the queries and Volcano-RU, which is 

cheaper, may be appropriate for inexpensive queries.  

However, for future study, the proposed algorithm can be further improved by 

incorporating Cache. Thus In a traditional database engine, every query is processed 

independently but in decision support applications, queries often overlap in the data that 

they access and in the manner in which they utilize the data, i.e., there are common 

expressions between queries. A natural way to improve performance is to allocate a 

limited-size area on the disk to be used as a cache for results computed by previous 

queries. The contents of the cache may be utilized to speed up the execution of 

subsequent queries. Therefore, there is need to incorporate cache to store final and/or 

intermediate results of queries in a cache.  
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