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Abstract 

Although Eclat algorithm is an efficient algorithm for mining association rules, there 

are some disadvantages which limit the efficient of Eclat. In this paper, we proposed an 

improved Eclat algorithm called Eclat_growth which is based on the increased search 

strategy. There are three main steps in the Eclat_growth algorithm. First, it scans the 

database and stores it into a table using vertical data format. Then, it builds an increased 

two-dimensional pattern tree and the TID_sets of itemsets in the vertical data format table 

are added into the pattern tree row by row. New frequent itemsets are generated by 

combining the new added item data with the existing frequent itemsets in the pattern tree. 

Finally, all frequent itemsets can be found by picking up all nodes of the pattern tree. In 

the process of generating new frequent itemsets, the prior knowledge is used to fully clip 

the candidate itemsets. In the process of generating an intersection of two itemsets and 

calculating the support degree, we proposed a new method called BSRI (Boolean array 

setting and retrieval by indexes of transactions) to reduce the run time. By comparing 

Eclat_growth with Eclat, Eclat-diffsets, Eclat-opt and hEclat, it is indicated that 

Eclat_growth has the highest performance in mining associating rules from various 

databases. 

 

Keywords: association rules, Eclat, increased search strategy, increased two-

dimensional pattern tree, BSRI 

 

1. Introduction 

Along with the comprehensive application of computer technology, big data gets more 

and more attentions. There is much information hiding in big data. By using the 

technology of data mining, we can mine interesting information from vast data. Mining 

association rules is very important in data mining and can be used for mining frequent 

patterns from databases.  

The basic concepts of association rule can be stated as follows: Let D be a database of 

transactions; T be a transaction, TD. Let I be a set of items, the number of items in I is 

called the length of I. Let X be a subset of I (X I) and X contains k items, we call X a k-

itemset. Each transaction T has a unique identifier (TID) and contains an itemset. The 

support of an itemset X, denoted as Support(X), is the number of transactions which 

contain the itemset X. Set a minimum of support as min_sup, if Support(X) ≥ min_sup, the 

itemset X is a frequency itemset.  

An association rule is an expression A=>B, which represents the probability of item A 

and B arising together in the dataset D, where A I, B I, A ≠ ø, B ≠ ø, and A ∩ B= ø.   

Two of the most classical algorithms for mining association rules are Apriori 

algorithm, proposed by R. Agrawal in 1993 [1], and FP-growth algorithm, proposed by 

Han in 2000 [2]. Apriori algorithm is based on the strategy of breadth-first search, which 

generates a (K+1)-itemsets form frequent k-itemsets, until no more frequent itemsets can 
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be found. Apriori needs to scan the database many times, its efficiency is limited by the 

number of candidate itemsets. According to the shortcoming of Apriori, many people 

proposed their improved algorithms[3-6], such as DHP, proposed by Pork et al. [7], DIC, 

proposed by Brin et al. [8], MFI-TransSW, proposed by H. F. Li et al. [9], and so on. 

Different from Apriori, FP-growth algorithm is based on the strategy of depth-first search, 

it does not need to generate candidate itemsets; instead, it compresses datasets into a FP-

tree and obtains frequent patterns using an FP-tree-based pattern fragment growth mining 

method. On the base of FP-growth, many improved algorithms was proposed[10-12], 

such as TD-FP-Growth, proposed by Wang Ke et al. [13], H-Mine, proposed by Jian Pei 

et al. [14], IFP-growth, proposed by Ke-Chung Lin et al. [15], and so on. Above 

algorithms are all based on the horizontal data format. There are many other algorithms 

based on the vertical data format, such as Eclat and the proposed algorithm. Compared 

with horizontal data format, the technology of vertical data format can improve the 

efficiency of the algorithm. We will introduce the vertical data format and Eclat algorithm 

in the following. 

The organization of this paper can be described as follows. In Section 2, we review the 

original Eclat algorithm and several improved Eclat algorithms. In Section 3, we give the 

Eclat_growth algorithm. In Section 4, we present the experimental results, and 

conclusions are given in Section 5 finally. 

 

2. Eclat and Improved Algorithms 

 
2.1. Data Format of Eclat 

There are two different data formats: horizontal data format and vertical data format. 

The data format of Eclat is vertical data format. Both data formats are the representations 

of database in memory. Horizontal data format, a “TID-itemset” format, can also be 

expressed as “TID: itemset”, in which “TID” is the unique identifier of a transaction in 

database, “itemset” is the set of items included in the transaction. Vertical data format, an 

“Item-TID_set” format, can also be expressed as “Item: TID_set”, in which “Item” is an 

item in database, “TID_set” is the set of transactions including the items. Table 1 shows 

the horizontal data format representation of a database and Table 2 shows the 

corresponding vertical data format representation. Two data formats have different 

efficiency in calculating the support degree of itemset. When adopting the horizontal data 

format, it needs to scan the whole database to get the support degree of itemset. But if 

adopting the vertical data format, it only needs to calculate the intersection of all TID_sets 

of items to get the support degree. For example, when we want to get the support of an 

itemset X={I1,I2}, for the data in Table 1, we need to scan all transactions from TID 1 to 

TID 6 to get all transactions including item I1 and I2 (1 、 3 、 5 and 6), then 

Support(I1,I2)=4. For the data in Table 2, we only need to calculate the intersection of 

TID_sets of I1 and I2 and  the number of TIDs in the intersection, so Support(I1,I2)= 

Num((1,3,4,5,6)∩(1,3,5,6))=Num(1,3,5,6)=4. This example shows that adopting the 

vertical data format can reduce the time of scanning database effectively and improve the 

efficiency of getting support degree. 
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Table 1. Horizontal Data Format of a Database 

TID  Itemsets 

1    I0,I1,I2,I4 

2    I0,I3,I5,I6 

3    I1,I2,I3,I4,I6 

4    I1,I4,I5,I6 

5    I0,I1,I2,I5,I6 

6    I1,I2,I5,I6 

Table 2. Vertical Data Format of a Database 

Item  TID_set 

I0    1,2,5 

I1    1,3,4,5,6 

I2    1,3,5,6 

I3    2,3 

I4    1,3,4 

I5    2,4,5,6 

I6    2,3,4,5,6 

 
2.2. Eclat Algorithm 

Eclat algorithm, proposed by ZAKI in 2000, is based on the breadth-first search 

strategy, which adopts the technologies of vertical data format, lattice theory, 

equivalence classes, intersection and so on [16]. The main steps of Eclat are listed 

as follows: scan the database to get all frequent 1-itemsets, generate candidate 2-

itemsets from frequent 1-itemsets, then get all frequent 2-itemsets by clipping non-

frequent candidate itemsets; generate candidate 3-itemsets from frequent 2-itemsets 

and then get all frequent 3-itemsets by clipping non-frequent candidate itemsets; 

repeat the above steps, until no candidate itemset can be generated.  

Same as Apriori, Eclat algorithm also adopts the join operation ( ) to generate 

candidate (K+1)-itemset by taking the union of two k-itemset. The condition of two k-

itemset can be joined is that the front k-1 items of the two k-itemset must be the same. For 

example, there are two 3-itemset: l31={I1,I2,I3} and l32={I1,I2,I4}, the first and second 

items of l31 and l32 are the same, so l31 and l32 can be joined to generate a 4-itemset: l4= 

l31 l32={I1,I2,I3,I4}. By using the concept of equivalence classes, Eclat divides the 

search space into multiple nonoverlapping sub spaces. The itemsets which have same 

prefix can be classified into a same class, and the generation of candidate itemsets can be 

only operated in a same class. The technology of equivalence classes can obviously 

improve the efficiency of generating candidate itemset and can reduce the occupation of 

memory. 
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Figure 1. The Process of Getting Intersection 

Let l21 and l22 are two itemset, TID_set(l21)={1,3,5,6}，TID_set(l22)={3,4,5,6}. Let l3 = 

l21 l22, Support(l3)=S, TID_set(l3)= TID_set(l21) ∩TID_set(l22). Let P1 and P2 are two 

pointers respectively directing to the first TID of TID_set(l21) and TID_set(l22). The 

process of getting the intersection of l21 and l22 is shown in Figure 1. During the generation 

of a (K+1)-itemset, the intersection of the two k-itemset is calculated at the same time, so 

the support degree of the (K+1)-itemset can be obtained immediately. 

 

 

Figure 2. The Mining Process of Eclat 

Taking the database shown in Table 2 as an example, let min_sup=3, the process 

of mining association rules for Eclat is demonstrated in Figure 2. In Figure 2, the 

data in ellipses are itemsets and its support degree and the data under an ellipse are 

the TID_sets of itemsets. The itemsets in bold ellipses are frequent itemsets, and the 

itemsets in light ellipses are candidate non-frequent itemsets. Figure 2 indicates that 

for the database in Table 2, 21 frequent itemsets are generated (eliminating the 

frequent 1-itemsets), 21 join and intersection operations are processed and 8 

frequent itemsets are generated. 

Although Eclat algorithm has a high efficiency, it still has some shortcomings as 

following. 1) Because the generation of candidate itemsets is operated in an 

equivalence class, the candidate itemsets are not clipped under the prior knowledge 

and the number of candidate itemsets is more than that of Apriori. Taking the 

mining process shown in Figure 2 as example, during the process of generation of 

candidate 3-itemsets from frequent 2-itemsets, four candidate 3-itemsets ({I1,I2,I4}, 
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{I1,I2,I5}, {I1,I4,I5}, {I1,I5,I6}) should be clipped under the prior knowledge, however, 

in Eclat, they still need to be calculated. 2) Although adopting the technology of 

equivalence classes, Eclat needs to judge whether two k-itemsets can be joined to 

generate a (k+1)-itemsets, a great deal of time is needed if the itemset is very long. 

3) The efficiency for calculating the intersection of itemsets is low, especially when 

the itemsets have a large number of transactions. Although Eclat has above 

shortcomings, it is still very effective [17]. Many people paid attention to Eclat and 

proposed some improved algorithm. We will introduce some improved Eclat 

algorithm in the following. 
 

2.3. Existing Improved Eclat Algorithms 

Eclat_Diffsets algorithm, proposed by ZAKI et al in 2001 [18], adopts Boolean 

matrix and Diffsets to enhance the efficiency of intersection and reduce the memory 

occupation. The algorithm adopts Boolean matrix to store the itemset and TID_set, 

and uses binary operation to calculate the intersection, which can obviously improve 

the efficiency of intersection. Diffsets only keeps track of differences in the 

TID_sets of a candidate itemset from its generating frequent itemsets, it can 

effectually reduce the size of memory required to store intermediate results when 

the database is compact. 

HEclat algorithm, proposed by Xiong et al in 2010 [19], adopts the hash Boolean 

matrix to polish up the calculation of intersection. The algorithm uses hash Boolean 

matrix to store the TID_set of itemsets. When calculating an intersection of two 

itemsets, it does not need to compare the TIDs of two itemsets one by one, but need 

to use bitwise „and‟ operation on the two Boolean matrix. The technology of hash 

Boolean matrix can improve the efficiency only when the number of transactions  of 

a database is not large. If the number of transactions is very large, hash Boolean 

matrix makes things worse.  

Eclat-opt algorithm, proposed by Feng et al in 2013 [20], adopts technologies of 

double layer hash table, partition list of the set of itemset and TID lost threshold. 

These technologies can clip the candidate 3-itemset, reduce the search space as well 

as the time of generating candidate itemsets, and speed up the calculation of 

intersection. In general, Eclat-opt algorithm is much more effective than other Eclat 

based algorithms. 

The existing improved Eclat algorithms can polish up the efficiency of original Eclat 

algorithm, but these algorithms still have some defects, such as large number of candidate 

itemset, inefficiency of itemsets connection and intersection. 

 

3. Eclat_Growth Algorithm 

According to the shortcomings of Eclat and existing improved algorithms, we proposed 

a new improved algorithm, called Eclat_growth, which is based on increased search 

strategy and vertical data format. In Eclat_growth, we established an increased two-

dimensional pattern tree and the TID_sets of itemsets in the vertical data format table are 

added into the pattern tree row by row. New frequent itemsets are generated by combining 

the new added itemset with the existing frequent itemsets in the pattern tree. The process 

of combining new added itemset and existing frequent itemsets is based on the breadth-

first search. Firstly, the candidate and frequent 2-itemsets are generated, then build up the 

candidate and frequent 3-itemsets, and so on, until all frequent itemsets in the pattern 

table are combined with the new added itemset. The candidate itemsets are composed 

directly by the frequent itemset and new added itemset, without the operation of itemsets 

connection. Due to the breadth-first search strategy, the prior knowledge can be used for 

clip the candidate itemsets completely. Thus, all redundant candidate itemsets will be 

clipped. Instead of intersecting the TID_sets of two itemsets, Eclat_growth adopts a new 
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method called BSRI (Boolean array setting and retrieval by indexes of transactions) to 

calculate the intersection and support degree of two itemsets. The technology of BSRI can 

obviously decrease the computational complexity. 

 

3.1. The Main Process of Eclat_Growth Algorithm 

The main process of Eclat_growth algorithm is shown in Table 3. First, it scans the 

database and stores it into a table using vertical data format. Second, it establishes a null 

increased two-dimensional pattern tree and adds the TID_sets of itemsets in the vertical 

data format table into the pattern tree row by row to generate new frequent itemsets. 

Finally, all frequent itemsets can be found by picking up all nodes in the pattern tree. 

Table 3. The Main Process of Eclat_Growth 

Function Eclat_growth-Algorithm (Database: D, Min_sup: MS) 

// the basic function of Eclat_growth 

Define: VM : Vertical Matrix, PT: Two-dimensional Pattern Tree, 

       FIs: Frequent Itemsets 

//Input: D, MS; Output: All FIs 

L1. VM = CreateVMfromDatabase(Database: D) 

L2. PT= CreateNullPatternTree 

L3. for i = 1 to length(VM) do 

L4.   if length(VM[i].TID_sets) >= MS then 

L5.     AddItemsettoPatternTree(VM[i], PT, MS); 

L6. end // end for i = 1 to length(VM) 

L7. FIs=GetAllFrequentItemsetsfromPatternTree(Two-dimensional 

 Pattern Tree: PT) 

End 

 

3.2. The Increased Two-Dimensional Pattern Tree 

The increased two-dimensional pattern tree is composed of nodes and a layer pointer 

array. A node is defined as following: TreeNode={itemset, TID_set, PointerstoFathers, 

PointerstoChildren, HorizontalPointer, IsValid}. Every TreeNode includes the 

information of a frequent itemset, such as the itemset and the TID_set. Besides itemset 

and TID_set, a TreeNode also has other four elements, we give the illustration of the four 

elements as following: the element “PointerstoFathers” are pointers pointing to the nodes 

of its two fathers; the element “PointerstoChildren” are pointers pointing to the nodes of 

its children; the element “HorizontalPointer” are a transverse pointer, which is used for 

connecting the frequent itemsets with same length together; the element “IsValid” is a 

boolean value, which is used for indicating whether the node can be combined with 

another node. If an (K+1)-itemset A is joined by two k-itemset B and C, then B and C are 

the fathers of A, and A is the child of B and C. The pattern tree has multiple layers and the 

frequent itemsets with same length belong to the same layer. The layer pointer array is 

defined as following: LayerPointers: array of Pointer. The elements of layer pointer array 

are pointers pointing to the first node of all layers. So we can find all frequent 1-itemsets 

based on the first element of the layer pointer array, and find all frequent 2-itemsets based 

on the second element, and so on. All frequent itemsets can be found from the elements of 

the layer pointer array. 

The first step of establishing the increased two-dimensional pattern tree is tree 

initialization: add a null node to tree as the father node of all frequent 1-itemsets, and set 

the length of LayerPointers as zero. After initialization, every TID_set of frequent 1-

itemset in the vertical data format table are added into the pattern tree as the nodes of the 

first layer. Supposing the new added itemset as In, which contains the transactions of 
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TID_set (In), the process of adding a new itemset to pattern tree can be described as 

following. 

Firstly, build a new node “Node(In)” for In. The elements of Node(In) are:   

Node(In).itemset=In, Node(In).TID_set=TID_set(In), Node(In).PointerstoFathers=nil, 

Node(In).PointerstoChildren=nil, and Node(In).IsValid=true. The HorizontalPointer of the 

last node in the first layer (frequent 1-itemset layer) is set to point to Node(In). 

Combine Node(In) with every node (Node(Ix-1)) in the first layer (frequent 1-itemset 

layer) to generate candidate 2-itemsets and calculate the support degree of the candidate 

2-itemsets. If a candidate 2-itemset is frequent, a new node for the candidate 2-itemset 

will be built, the element “itemset” of new node will be set as the combination of Ix-1 and 

In, and the element “TID_set” of new node will be set as the intersection of TID_set(Ix-1) 

and TID_set(In). Also, the element “PointerstoFathers” of new node will point to Node(Ix-

1) and Node(In). Finally the HorizontalPointer of the last node in the second layer 

(frequent 2-itemset layer) is set to point to the new node. If a candidate 2-itemset is not 

frequent, it will need to be abandoned and the element “IsValid” of all children of 

Node(Ix-1) must be set as false. 

Combine Node(In) with every node (Node(Ix-2)) in the second layer (frequent 2-itemset 

layer) to generate candidate 3-itemsets. If the element “IsValid” of Node(Ix-2) is false, it 

cannot be combined with Node(In). Thus, we need to set the value of “IsValid” as true for 

further combination. If the element “IsValid” of Node(Ix-2) is true, it needs to be combined 

with Node(In) to generate a candidate 3-itemset, and to calculate the support degree of the 

candidate 3-itemset. If the candidate 3-itemset is frequent, a new node for the candidate 3-

itemset will be built, the element “itemset” of new node will be set as the combination of 

Ix-2 and In, the element “TID_set” of new node will be set as the intersection of TID_set(Ix-

2) and TID_set(In). Also, the element “PointerstoFathers” of new node will point to 

Node(Ix-2) and Node(In), finally set the HorizontalPointer of the last node in the thrid layer 

(frequent 3-itemset layer) to point to the new node. If a candidate 3-itemset is not 

frequent, it needs to be abandoned and the element “IsValid” of all children of Node(Ix-2) 

must be set as false. 

In the same way, Node(In) needs to be combined with all of the nodes in other layers to 

get all frequent itemsets. 

The process of adding a TID_set of frequent 1-itemset in the vertical data format table 

to the pattern tree is shown in Table 4. 

Table 4. The Process of Adding an Itemset Data to Pattern Tree 

Function AddItemsettoPatternTree(Vertical Matrix: VM[i], Two-

dimensional Pattern Tree: PT, Min_sup: MS) 

// add a new node to Pattern Tree 

Define: tmpNode, newNode, newCombineNode : TreeNode 

//Input: VM, PT; Output: a new Pattern Tree 

L1. for i = 1 to length(LayerPointers) do 

L2.   if i =1 then 

L3.     newNode = AddNewNodetoTree(VM[i]) 

L4.   tmpNode = LayerPointers[i] 

L5.   while tmpNode ≠ null do 

L6.     if tmpNode.isValid = true then 

L7.       newCombineNode = CombineNewPattern(newNode, 

                         tmpNode) 

L8.       if Support(newCombineNode) >= MS then 

L9.         AddNodetoTree(newCombineNode) 

L10.      else 

L11.        SetAllChildrenFalse(newCombineNode) 

L12.      end //end if Support(newCombineNode) >= MS 
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L13.    else 

L14.      tmpNode.isValid == true; 

L15.    end //end if tmpNode.isValid = true 

L16.    tmpNode = tmpNode.HorizontalPointer 

L17.   end //end while tmpNode ≠ null 

L18. end //end for i = 1 to length(LayerPointers) 

End 

 

Taking the database shown in Table 2 as an example, by setting the minimum support 

degree of 3, the process of building the increased two-dimensional pattern is demonstrated 

in figures from Figure 3 to Figure 6. In the figures, the nodes in bold ellipses are frequent 

itemsets; the nodes in broken line ellipses are candidate non-frequent itemsets, which are 

not added into the pattern tree; the nodes in the ellipses with dark grey background are 

new added nodes in each step; the nodes in the ellipses with black background are unable 

to combine with the new added node in each step. The figures show that for the database 

in Table 2, there are 17 frequent itemsets are generated (eliminating the frequent 1-

itemsets) and 8 frequent itemsets are generated. Comparing with Eclat (Figure 2), by 

adopting the technology of increased two-dimensional pattern tree, Eclat_growth can clip 

the candidate itemsets completely and reduce the number of candidate itemsets obviously 

under the prior knowledge. 

 

 

Figure 3. The Process of Building a Pattern Tree (Step1 to Step3) 

 

Figure 4. The Process of Building a Pattern Tree (Step4) 
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Figure 5. The Process of Building a Pattern Tree (Step5) 

 

Figure 6. The Process of Building a Pattern Tree (Step6) 

 

3.3. The Calculation of Intersection and Support Degree 

The calculation of intersection is the most time-consuming step in Eclat. It needs to 

compare the TIDs of two itemsets one by one to evaluate which is ineffective when the 

number of TIDs is very large. Although making some improvements, the basic method for 

calculating intersection of the existing Eclat based algorithms is still the same with Eclat. 

In this paper, we proposed a high efficient method called BSRI (Boolean array setting and 

retrieval by indexes of transactions) to calculate the intersection and support degree of 

two itemsets. In the follows, we introduce the method of BSRI sophisticatedly. 

 

Figure 7. The Process of BSRI 
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We establish a Boolean array, set the length of array as the number of 

transactions, and set all elements of the array as 0. Taking the TIDs in an itemset as 

index, the corresponding elements of Boolean array are set as 1. Then we retrieve 

the elements of Boolean array according to the TIDs in another itemset. If an 

element is 1, the according TID into intersection will be add and the support degree 

will be increased. For example, we need to calculate the intersection and support 

degree of I0 and I2 in the database shown in Table 2, I0={1,2,5}，I2={1,3,5,6}. 

Since the number of transactions of the database is 6, the Boolean array is built as 

BA=(0,0,0,0,0,0). Based on the TIDs in I0, we set the indexed elements of BA as 1, 

BA[1]=1, BA[2]=1, BA[5]=1, now BA=(1,1,0,0,1,0). Based on the TIDs in I2, we 

retrieve the corresponding elements of BA, we get BA[1]=1, BA[3]=0, BA[5]=1, 

BA[6]=0, so the intersection if I0 and I2 is {1,5} and the support degree is 2. The 

above process is shown in Figure 7. The above introduction shows that by using the 

technology of BSRI, we only need to set and search the elements of a Boolean array 

to calculate the intersection and support degree. 

In the process of building an increased two-dimensional pattern tree, we use the TIDs 

of the new added itemset for setting the Boolean array and use the TIDs of the frequent 

itemset in pattern tree for retrieving. Thus the efficient can be enhanced further. 

 

4. Experimental Studies 

In order to present the efficiency of the Eclat_growth algorithm, we compare it with the 

original Eclat algorithm [16], the Eclat_Diffsets algorithm [18], the hEclat algorithm [19] 

and the Eclat-opt algorithm [20]. The comparisons of Eclat with other algorithms are 

detailedly presented in [16] and [17]. In this paper, we only compare Eclat_growth with 

the Eclat based algorithms. All experiments were performed on a PC with Inter Core 1.8G 

and 4G main memory, running on Microsoft Windows 8 64-bit and all the programs are 

coded in Pascal. We apply the algorithms on six synthetic databases which have been 

commonly used for many association rules algorithms. Among the databases, two of them 

are sparse ones, and three are dense ones, the numbers of transactions are from 3000 to 

990002, the numbers of items are from 72 to 41271. All databases can be found online 

[21]. Table 5 shows the information of the databases. 

Table 5. The Information of Test Databases 

Database 
Number of 

transactions 

Number of 

items 

Average 

length 
type 

T10I4D100K 100000 1000 10 Sparse 

kosarak 990002 41271 7 Sparse 

T40I10D100K 100000 1000 40 Mid-dense 

mushroom 8124 120 23 Dense 

chess 3196 76 37 Dense 

accidents 340183 469 34 Dense 

 

4.1. Experimental Results 

In the first experiment, we investigate the run time of the Eclat_growth algorithm 

comparing with Eclat, hEclat and Eclat-opt based on two sparse database: T10I4D100K 

and kosarak. The test results are shown in Figure 8 and Figure 9. Since Eclat_Diffsets is 

suitable for dense database, we do not contain Eclat_Diffsets in this experiment. 

In the second experiment, we investigate the run time of the Eclat_growth algorithm 

comparing with Eclat, Eclat_Diffsets, hEclat and Eclat-opt based on three dense database: 

T40I10D100K, mushroom and chess. The test results are shown in Figure 10, Figure 11 

and Figure 12. 
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In the third experiment, we investigate the run time of the Eclat_growth algorithm 

comparing with Eclat, Eclat_Diffsets, hEclat and Eclat-opt by varying the number of 

transactions on the basis of databases of kosarak and accidents. We mine the frequent 

itemset from kosarak by taking the number of transactions from 200000 to 990000 and 

the minimum support is set as 0.3%. For accidents, we set the minimum support as 50%, 

and take the number of transactions from 100000 to 340000. The test results are shown in 

Figure 13 and Figure 14. 

 

     

Figure 8. Run Time on T10I4D100K 

 

Figure 9. Run Time on Kosarak 

 

Figure 10. Run Time on T40I10D100K 

 

Figure 11. Run Time on Mushroom 
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Figure 12. Run Time on Chess 

 

Figure 13. Run Time on Kosarak with Variant Number of Transactions 

 

Figure 14. Run Time on Accidents with Variant Number of Transactions 

 

4.2. Performance Analysis 

According to the results in the first experiment, for mining associate rules on sparse 

database with large transactions (100000 and 990002) and large items (1000 and 41271), 

Eclat_growth is more effective than Eclat-opt and Eclat, however, hEclat is the most time-

consuming. Taking T10I4D100K as example (Figure 8), when the minimum support 

varies from high support (1000，1%) to low support (40，0.04%), the run time of 

Eclat_growth is 58% versus 24% of that of Eclat-opt, and is 26% versus 15% of that of 

Eclat. In the second experiment, for the mid-dense database of T40I10D100K (Figure 10), 

Eclat_growth also has the highest efficiency. For the dense database of mushroom (Figure 

11), when the minimum support varies from high support (2000，25%) to low support 

(600，7.5%), the run time of Eclat_growth is 13% versus 23% of that of Eclat-opt, and is 

18% versus 1.8% of that of Eclat. 

The performances of Eclat based algorithms mainly depend on the number of candidate 

itemsets and the efficiency of calculating intersection. The methods of generating 

candidate itemsets in Eclat, Eclat_Diffsets and hEclat are all the same. In the generation 

of candidate itemsets, there are no clip strategies under the prior knowledge, therefore, 

many redundant candidate itemsets will be built and calculated. Double layer hash table is 
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used in Eclat-opt to clip the candidate itemsets. Because the Double layer hash table can 

only work in generating candidate 3-itemsets from frequent 2-itemsets, the performance is 

very limited. Due to the increased two-dimensional pattern tree, the prior knowledge can 

be used in Eclat_growth for clip the candidate itemsets completely and all redundant 

candidate itemsets will be clipped. Taking the database of T10I4D100K and mushroom 

for example, we compare the numbers of candidate itemsets of Eclat and Eclat_growth 

when mining association rules with different minimum supports and the results are shown 

in Table 6 and Table 7 which demonstrate that the numbers of candidate itemsets of 

Eclat_growth are obviously less than that of Eclat, especially when the database is sparse. 

Less candidate itemsets is an important factor for high performance of Eclat_growth. 

Table 6. The Numbers of Candidate Itemsets for Mining T10I4D100K 

Support 400 200 100 80 60 40 

the numbers of candidate 

itemsets for Eclat 
398998 585042 806403 950397 1258847 2168909 

the numbers of candidate 

itemsets for Eclat_growth 
199562 286621 372228 432736 581053 1091003 

the numbers of frequent 

itemsets 
2001 13255 27532 35019 44583 62864 

Table 7. The Numbers of Candidate Itemsets for Mining Mushroom 

Support 1600 1400 1200 1000 800 600 

the numbers of candidate 

itemsets for Eclat 
59528 68388 118273 155182 724498 1186352 

the numbers of candidate 

itemsets for Eclat_growth 
55537 62357 105383 131500 598489 1016465 

the numbers of frequent 

itemsets 
53583 58773 98575 118455 574431 932181 

 

Besides the number of candidate itemsets, the efficiency of calculating intersection is 

another important factor for the performance of Eclat based algorithms. Eclat and 

Eclat_Diffsets need to compare the TIDs of two itemsets one by one to calculate the 

intersection. Eclat-opt adopts the same method as Eclat, but it uses an optimized strategy 

called TID lost threshold to improve the performance of calculating intersection to a 

certain degree. hEclat adopts hash Boolean matrix to polish up the calculation of 

intersection, which can improve the efficiency only when the number of transactions of a 

database is not large. If the number of transactions is very large, hash Boolean matrix 

makes things worse. Eclat_growth adopts BSRI to calculate the intersection and support 

degree of two itemsets, it can effectually improve the performance by less operations than 

that of other Eclat based algorithms. We test the performance of BSRI by using BSRI in 

Eclat algorithm. Table 8 shows the run time of the original Eclat algorithm and the Eclat 

with BSRI for mining association rules on T40I10D100K, the minimum support is set 

from 7000(7%) to 900(0.9%). The test result shows that BSRI can obviously improve the 

performance. For the database of T40I10D100K, 34% performance is enhanced on 

average. 
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Table 8. The Run Time of Eclat and Eclat with BSRI for Mining T40I10D100K 

Support 7000 6000 5000 4000 3000 2000 1000 900 

Eclat 5.82 8.20 11.49 15.45 21.62 29.87 66.73 169.64 

Eclat with 

BSRI 
3.94 5.25 7.09 9.25 12.63 17.59 45.87 147.53 

 

In the third experiment (Figure 13 and Figure 14), we investigate the effect of 

transactions number on the algorithms‟ performances by mining association rules from 

kosarak and accidents with different transactions numbers. According to the experimental 

results, the transactions number has a serious influence on the efficiency of the five 

algorithms. As the number of transactions becoming larger and larger, the run time of five 

algorithms will increase multiply. Comparing with other algorithms, the efficiency of 

Eclat_growth is most obviously cut down. Due to the increased search strategy, the whole 

pattern tree needs to be stored in memory. When the number of transactions is very large, 

the memory usage is huge, which cuts down the performance of Eclat_growth obviously. 

For other algorithms, the memory usages are evidently less than Eclat_growth, because 

they only need to store two different length frequent itemsets in memory. In Figure 14, 

when the number of transactions is larger than 250000, Eclat_growth is less efficient than 

Eclat_Diffsets. However, in other conditions, Eclat_growth is still faster than other 

algorithms. 

 

5. Conclusions 

Mining association rules is one of the most important problems in data mining. 

Therefore, many algorithms were proposed to facilitate mining association rules. 

Although Eclat algorithm has the high performance, it still has some defects, such as large 

number of candidate itemset, inefficiency of itemsets connection and intersection. 

According to the shortcomings of Eclat, we proposed an improved Eclat algorithm called 

Eclat_growth. Eclat_growth algorithm, on the basis of increased search strategy, adopts 

two new technologies, such as increased two-dimensional pattern tree and BSRI. In the 

process of building an increased two-dimensional pattern tree, the prior knowledge can be 

used for clipping the candidate itemsets completely and all redundant candidate itemsets 

will be clipped. BSRI is used for calculating the intersection and support degree, it can 

obviously decrease the computational complexity. The theoretical analysis and 

experimental studies all indicate that Eclat_growth has the highest performance in mining 

associating rules from various databases than Eclat, Eclat-diffsets, Eclat-opt and hEclat. 
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