
International Journal of Database Theory and Application

Vol.9, No.5 (2016), pp.251-266

http://dx.doi.org/10.14257/ijdta.2016.9.5.26

ISSN: 2005-4270 IJDTA

Copyright ⓒ 2016 SERSC

An Improved Eclat Algorithm for Mining Association Rules Based

on Increased Search Strategy

Zhiyong Ma, Juncheng Yang, Taixia Zhang and Fan Liu

Faculty of Mechanical Engineering and Mechanics,

Zhejiang Provincial Key Lab of Part Rolling Technology, Ningbo University

818 Fenghua Rd., Ningbo City, Zhejiang Province 315211, P. R. China

mazhiyong@nbu.edu.cn

Abstract

Although Eclat algorithm is an efficient algorithm for mining association rules, there

are some disadvantages which limit the efficient of Eclat. In this paper, we proposed an

improved Eclat algorithm called Eclat_growth which is based on the increased search

strategy. There are three main steps in the Eclat_growth algorithm. First, it scans the

database and stores it into a table using vertical data format. Then, it builds an increased

two-dimensional pattern tree and the TID_sets of itemsets in the vertical data format table

are added into the pattern tree row by row. New frequent itemsets are generated by

combining the new added item data with the existing frequent itemsets in the pattern tree.

Finally, all frequent itemsets can be found by picking up all nodes of the pattern tree. In

the process of generating new frequent itemsets, the prior knowledge is used to fully clip

the candidate itemsets. In the process of generating an intersection of two itemsets and

calculating the support degree, we proposed a new method called BSRI (Boolean array

setting and retrieval by indexes of transactions) to reduce the run time. By comparing

Eclat_growth with Eclat, Eclat-diffsets, Eclat-opt and hEclat, it is indicated that

Eclat_growth has the highest performance in mining associating rules from various

databases.

Keywords: association rules, Eclat, increased search strategy, increased two-

dimensional pattern tree, BSRI

1. Introduction

Along with the comprehensive application of computer technology, big data gets more

and more attentions. There is much information hiding in big data. By using the

technology of data mining, we can mine interesting information from vast data. Mining

association rules is very important in data mining and can be used for mining frequent

patterns from databases.

The basic concepts of association rule can be stated as follows: Let D be a database of

transactions; T be a transaction, TD. Let I be a set of items, the number of items in I is

called the length of I. Let X be a subset of I (X I) and X contains k items, we call X a k-

itemset. Each transaction T has a unique identifier (TID) and contains an itemset. The

support of an itemset X, denoted as Support(X), is the number of transactions which

contain the itemset X. Set a minimum of support as min_sup, if Support(X) ≥ min_sup, the

itemset X is a frequency itemset.

An association rule is an expression A=>B, which represents the probability of item A

and B arising together in the dataset D, where A I, B I, A ≠ ø, B ≠ ø, and A ∩ B= ø.

Two of the most classical algorithms for mining association rules are Apriori

algorithm, proposed by R. Agrawal in 1993 [1], and FP-growth algorithm, proposed by

Han in 2000 [2]. Apriori algorithm is based on the strategy of breadth-first search, which

generates a (K+1)-itemsets form frequent k-itemsets, until no more frequent itemsets can

International Journal of Database Theory and Application

Vol.9, No.5 (2016)

252 Copyright ⓒ 2016 SERSC

be found. Apriori needs to scan the database many times, its efficiency is limited by the

number of candidate itemsets. According to the shortcoming of Apriori, many people

proposed their improved algorithms[3-6], such as DHP, proposed by Pork et al. [7], DIC,

proposed by Brin et al. [8], MFI-TransSW, proposed by H. F. Li et al. [9], and so on.

Different from Apriori, FP-growth algorithm is based on the strategy of depth-first search,

it does not need to generate candidate itemsets; instead, it compresses datasets into a FP-

tree and obtains frequent patterns using an FP-tree-based pattern fragment growth mining

method. On the base of FP-growth, many improved algorithms was proposed[10-12],

such as TD-FP-Growth, proposed by Wang Ke et al. [13], H-Mine, proposed by Jian Pei

et al. [14], IFP-growth, proposed by Ke-Chung Lin et al. [15], and so on. Above

algorithms are all based on the horizontal data format. There are many other algorithms

based on the vertical data format, such as Eclat and the proposed algorithm. Compared

with horizontal data format, the technology of vertical data format can improve the

efficiency of the algorithm. We will introduce the vertical data format and Eclat algorithm

in the following.

The organization of this paper can be described as follows. In Section 2, we review the

original Eclat algorithm and several improved Eclat algorithms. In Section 3, we give the

Eclat_growth algorithm. In Section 4, we present the experimental results, and

conclusions are given in Section 5 finally.

2. Eclat and Improved Algorithms

2.1. Data Format of Eclat

There are two different data formats: horizontal data format and vertical data format.

The data format of Eclat is vertical data format. Both data formats are the representations

of database in memory. Horizontal data format, a “TID-itemset” format, can also be

expressed as “TID: itemset”, in which “TID” is the unique identifier of a transaction in

database, “itemset” is the set of items included in the transaction. Vertical data format, an

“Item-TID_set” format, can also be expressed as “Item: TID_set”, in which “Item” is an

item in database, “TID_set” is the set of transactions including the items. Table 1 shows

the horizontal data format representation of a database and Table 2 shows the

corresponding vertical data format representation. Two data formats have different

efficiency in calculating the support degree of itemset. When adopting the horizontal data

format, it needs to scan the whole database to get the support degree of itemset. But if

adopting the vertical data format, it only needs to calculate the intersection of all TID_sets

of items to get the support degree. For example, when we want to get the support of an

itemset X={I1,I2}, for the data in Table 1, we need to scan all transactions from TID 1 to

TID 6 to get all transactions including item I1 and I2 (1 、 3 、 5 and 6), then

Support(I1,I2)=4. For the data in Table 2, we only need to calculate the intersection of

TID_sets of I1 and I2 and the number of TIDs in the intersection, so Support(I1,I2)=

Num((1,3,4,5,6)∩(1,3,5,6))=Num(1,3,5,6)=4. This example shows that adopting the

vertical data format can reduce the time of scanning database effectively and improve the

efficiency of getting support degree.

International Journal of Database Theory and Application

Vol.9, No.5 (2016)

Copyright ⓒ 2016 SERSC 253

Table 1. Horizontal Data Format of a Database

TID Itemsets

1 I0,I1,I2,I4

2 I0,I3,I5,I6

3 I1,I2,I3,I4,I6

4 I1,I4,I5,I6

5 I0,I1,I2,I5,I6

6 I1,I2,I5,I6

Table 2. Vertical Data Format of a Database

Item TID_set

I0 1,2,5

I1 1,3,4,5,6

I2 1,3,5,6

I3 2,3

I4 1,3,4

I5 2,4,5,6

I6 2,3,4,5,6

2.2. Eclat Algorithm

Eclat algorithm, proposed by ZAKI in 2000, is based on the breadth-first search

strategy, which adopts the technologies of vertical data format, lattice theory,

equivalence classes, intersection and so on [16]. The main steps of Eclat are listed

as follows: scan the database to get all frequent 1-itemsets, generate candidate 2-

itemsets from frequent 1-itemsets, then get all frequent 2-itemsets by clipping non-

frequent candidate itemsets; generate candidate 3-itemsets from frequent 2-itemsets

and then get all frequent 3-itemsets by clipping non-frequent candidate itemsets;

repeat the above steps, until no candidate itemset can be generated.

Same as Apriori, Eclat algorithm also adopts the join operation () to generate

candidate (K+1)-itemset by taking the union of two k-itemset. The condition of two k-

itemset can be joined is that the front k-1 items of the two k-itemset must be the same. For

example, there are two 3-itemset: l31={I1,I2,I3} and l32={I1,I2,I4}, the first and second

items of l31 and l32 are the same, so l31 and l32 can be joined to generate a 4-itemset: l4=

l31 l32={I1,I2,I3,I4}. By using the concept of equivalence classes, Eclat divides the

search space into multiple nonoverlapping sub spaces. The itemsets which have same

prefix can be classified into a same class, and the generation of candidate itemsets can be

only operated in a same class. The technology of equivalence classes can obviously

improve the efficiency of generating candidate itemset and can reduce the occupation of

memory.

International Journal of Database Theory and Application

Vol.9, No.5 (2016)

254 Copyright ⓒ 2016 SERSC

Figure 1. The Process of Getting Intersection

Let l21 and l22 are two itemset, TID_set(l21)={1,3,5,6}，TID_set(l22)={3,4,5,6}. Let l3 =

l21 l22, Support(l3)=S, TID_set(l3)= TID_set(l21) ∩TID_set(l22). Let P1 and P2 are two

pointers respectively directing to the first TID of TID_set(l21) and TID_set(l22). The

process of getting the intersection of l21 and l22 is shown in Figure 1. During the generation

of a (K+1)-itemset, the intersection of the two k-itemset is calculated at the same time, so

the support degree of the (K+1)-itemset can be obtained immediately.

Figure 2. The Mining Process of Eclat

Taking the database shown in Table 2 as an example, let min_sup=3, the process

of mining association rules for Eclat is demonstrated in Figure 2. In Figure 2, the

data in ellipses are itemsets and its support degree and the data under an ellipse are

the TID_sets of itemsets. The itemsets in bold ellipses are frequent itemsets, and the

itemsets in light ellipses are candidate non-frequent itemsets. Figure 2 indicates that

for the database in Table 2, 21 frequent itemsets are generated (eliminating the

frequent 1-itemsets), 21 join and intersection operations are processed and 8

frequent itemsets are generated.

Although Eclat algorithm has a high efficiency, it still has some shortcomings as

following. 1) Because the generation of candidate itemsets is operated in an

equivalence class, the candidate itemsets are not clipped under the prior knowledge

and the number of candidate itemsets is more than that of Apriori. Taking the

mining process shown in Figure 2 as example, during the process of generation of

candidate 3-itemsets from frequent 2-itemsets, four candidate 3-itemsets ({I1,I2,I4},

International Journal of Database Theory and Application

Vol.9, No.5 (2016)

Copyright ⓒ 2016 SERSC 255

{I1,I2,I5}, {I1,I4,I5}, {I1,I5,I6}) should be clipped under the prior knowledge, however,

in Eclat, they still need to be calculated. 2) Although adopting the technology of

equivalence classes, Eclat needs to judge whether two k-itemsets can be joined to

generate a (k+1)-itemsets, a great deal of time is needed if the itemset is very long.

3) The efficiency for calculating the intersection of itemsets is low, especially when

the itemsets have a large number of transactions. Although Eclat has above

shortcomings, it is still very effective [17]. Many people paid attention to Eclat and

proposed some improved algorithm. We will introduce some improved Eclat

algorithm in the following.

2.3. Existing Improved Eclat Algorithms

Eclat_Diffsets algorithm, proposed by ZAKI et al in 2001 [18], adopts Boolean

matrix and Diffsets to enhance the efficiency of intersection and reduce the memory

occupation. The algorithm adopts Boolean matrix to store the itemset and TID_set,

and uses binary operation to calculate the intersection, which can obviously improve

the efficiency of intersection. Diffsets only keeps track of differences in the

TID_sets of a candidate itemset from its generating frequent itemsets, it can

effectually reduce the size of memory required to store intermediate results when

the database is compact.

HEclat algorithm, proposed by Xiong et al in 2010 [19], adopts the hash Boolean

matrix to polish up the calculation of intersection. The algorithm uses hash Boolean

matrix to store the TID_set of itemsets. When calculating an intersection of two

itemsets, it does not need to compare the TIDs of two itemsets one by one, but need

to use bitwise „and‟ operation on the two Boolean matrix. The technology of hash

Boolean matrix can improve the efficiency only when the number of transactions of

a database is not large. If the number of transactions is very large, hash Boolean

matrix makes things worse.

Eclat-opt algorithm, proposed by Feng et al in 2013 [20], adopts technologies of

double layer hash table, partition list of the set of itemset and TID lost threshold.

These technologies can clip the candidate 3-itemset, reduce the search space as well

as the time of generating candidate itemsets, and speed up the calculation of

intersection. In general, Eclat-opt algorithm is much more effective than other Eclat

based algorithms.

The existing improved Eclat algorithms can polish up the efficiency of original Eclat

algorithm, but these algorithms still have some defects, such as large number of candidate

itemset, inefficiency of itemsets connection and intersection.

3. Eclat_Growth Algorithm

According to the shortcomings of Eclat and existing improved algorithms, we proposed

a new improved algorithm, called Eclat_growth, which is based on increased search

strategy and vertical data format. In Eclat_growth, we established an increased two-

dimensional pattern tree and the TID_sets of itemsets in the vertical data format table are

added into the pattern tree row by row. New frequent itemsets are generated by combining

the new added itemset with the existing frequent itemsets in the pattern tree. The process

of combining new added itemset and existing frequent itemsets is based on the breadth-

first search. Firstly, the candidate and frequent 2-itemsets are generated, then build up the

candidate and frequent 3-itemsets, and so on, until all frequent itemsets in the pattern

table are combined with the new added itemset. The candidate itemsets are composed

directly by the frequent itemset and new added itemset, without the operation of itemsets

connection. Due to the breadth-first search strategy, the prior knowledge can be used for

clip the candidate itemsets completely. Thus, all redundant candidate itemsets will be

clipped. Instead of intersecting the TID_sets of two itemsets, Eclat_growth adopts a new

International Journal of Database Theory and Application

Vol.9, No.5 (2016)

256 Copyright ⓒ 2016 SERSC

method called BSRI (Boolean array setting and retrieval by indexes of transactions) to

calculate the intersection and support degree of two itemsets. The technology of BSRI can

obviously decrease the computational complexity.

3.1. The Main Process of Eclat_Growth Algorithm

The main process of Eclat_growth algorithm is shown in Table 3. First, it scans the

database and stores it into a table using vertical data format. Second, it establishes a null

increased two-dimensional pattern tree and adds the TID_sets of itemsets in the vertical

data format table into the pattern tree row by row to generate new frequent itemsets.

Finally, all frequent itemsets can be found by picking up all nodes in the pattern tree.

Table 3. The Main Process of Eclat_Growth

Function Eclat_growth-Algorithm (Database: D, Min_sup: MS)

// the basic function of Eclat_growth

Define: VM : Vertical Matrix, PT: Two-dimensional Pattern Tree,

 FIs: Frequent Itemsets

//Input: D, MS; Output: All FIs

L1. VM = CreateVMfromDatabase(Database: D)

L2. PT= CreateNullPatternTree

L3. for i = 1 to length(VM) do

L4. if length(VM[i].TID_sets) >= MS then

L5. AddItemsettoPatternTree(VM[i], PT, MS);

L6. end // end for i = 1 to length(VM)

L7. FIs=GetAllFrequentItemsetsfromPatternTree(Two-dimensional

 Pattern Tree: PT)

End

3.2. The Increased Two-Dimensional Pattern Tree

The increased two-dimensional pattern tree is composed of nodes and a layer pointer

array. A node is defined as following: TreeNode={itemset, TID_set, PointerstoFathers,

PointerstoChildren, HorizontalPointer, IsValid}. Every TreeNode includes the

information of a frequent itemset, such as the itemset and the TID_set. Besides itemset

and TID_set, a TreeNode also has other four elements, we give the illustration of the four

elements as following: the element “PointerstoFathers” are pointers pointing to the nodes

of its two fathers; the element “PointerstoChildren” are pointers pointing to the nodes of

its children; the element “HorizontalPointer” are a transverse pointer, which is used for

connecting the frequent itemsets with same length together; the element “IsValid” is a

boolean value, which is used for indicating whether the node can be combined with

another node. If an (K+1)-itemset A is joined by two k-itemset B and C, then B and C are

the fathers of A, and A is the child of B and C. The pattern tree has multiple layers and the

frequent itemsets with same length belong to the same layer. The layer pointer array is

defined as following: LayerPointers: array of Pointer. The elements of layer pointer array

are pointers pointing to the first node of all layers. So we can find all frequent 1-itemsets

based on the first element of the layer pointer array, and find all frequent 2-itemsets based

on the second element, and so on. All frequent itemsets can be found from the elements of

the layer pointer array.

The first step of establishing the increased two-dimensional pattern tree is tree

initialization: add a null node to tree as the father node of all frequent 1-itemsets, and set

the length of LayerPointers as zero. After initialization, every TID_set of frequent 1-

itemset in the vertical data format table are added into the pattern tree as the nodes of the

first layer. Supposing the new added itemset as In, which contains the transactions of

International Journal of Database Theory and Application

Vol.9, No.5 (2016)

Copyright ⓒ 2016 SERSC 257

TID_set (In), the process of adding a new itemset to pattern tree can be described as

following.

Firstly, build a new node “Node(In)” for In. The elements of Node(In) are:

Node(In).itemset=In, Node(In).TID_set=TID_set(In), Node(In).PointerstoFathers=nil,

Node(In).PointerstoChildren=nil, and Node(In).IsValid=true. The HorizontalPointer of the

last node in the first layer (frequent 1-itemset layer) is set to point to Node(In).

Combine Node(In) with every node (Node(Ix-1)) in the first layer (frequent 1-itemset

layer) to generate candidate 2-itemsets and calculate the support degree of the candidate

2-itemsets. If a candidate 2-itemset is frequent, a new node for the candidate 2-itemset

will be built, the element “itemset” of new node will be set as the combination of Ix-1 and

In, and the element “TID_set” of new node will be set as the intersection of TID_set(Ix-1)

and TID_set(In). Also, the element “PointerstoFathers” of new node will point to Node(Ix-

1) and Node(In). Finally the HorizontalPointer of the last node in the second layer

(frequent 2-itemset layer) is set to point to the new node. If a candidate 2-itemset is not

frequent, it will need to be abandoned and the element “IsValid” of all children of

Node(Ix-1) must be set as false.

Combine Node(In) with every node (Node(Ix-2)) in the second layer (frequent 2-itemset

layer) to generate candidate 3-itemsets. If the element “IsValid” of Node(Ix-2) is false, it

cannot be combined with Node(In). Thus, we need to set the value of “IsValid” as true for

further combination. If the element “IsValid” of Node(Ix-2) is true, it needs to be combined

with Node(In) to generate a candidate 3-itemset, and to calculate the support degree of the

candidate 3-itemset. If the candidate 3-itemset is frequent, a new node for the candidate 3-

itemset will be built, the element “itemset” of new node will be set as the combination of

Ix-2 and In, the element “TID_set” of new node will be set as the intersection of TID_set(Ix-

2) and TID_set(In). Also, the element “PointerstoFathers” of new node will point to

Node(Ix-2) and Node(In), finally set the HorizontalPointer of the last node in the thrid layer

(frequent 3-itemset layer) to point to the new node. If a candidate 3-itemset is not

frequent, it needs to be abandoned and the element “IsValid” of all children of Node(Ix-2)

must be set as false.

In the same way, Node(In) needs to be combined with all of the nodes in other layers to

get all frequent itemsets.

The process of adding a TID_set of frequent 1-itemset in the vertical data format table

to the pattern tree is shown in Table 4.

Table 4. The Process of Adding an Itemset Data to Pattern Tree

Function AddItemsettoPatternTree(Vertical Matrix: VM[i], Two-

dimensional Pattern Tree: PT, Min_sup: MS)

// add a new node to Pattern Tree

Define: tmpNode, newNode, newCombineNode : TreeNode

//Input: VM, PT; Output: a new Pattern Tree

L1. for i = 1 to length(LayerPointers) do

L2. if i =1 then

L3. newNode = AddNewNodetoTree(VM[i])

L4. tmpNode = LayerPointers[i]

L5. while tmpNode ≠ null do

L6. if tmpNode.isValid = true then

L7. newCombineNode = CombineNewPattern(newNode,

 tmpNode)

L8. if Support(newCombineNode) >= MS then

L9. AddNodetoTree(newCombineNode)

L10. else

L11. SetAllChildrenFalse(newCombineNode)

L12. end //end if Support(newCombineNode) >= MS

International Journal of Database Theory and Application

Vol.9, No.5 (2016)

258 Copyright ⓒ 2016 SERSC

L13. else

L14. tmpNode.isValid == true;

L15. end //end if tmpNode.isValid = true

L16. tmpNode = tmpNode.HorizontalPointer

L17. end //end while tmpNode ≠ null

L18. end //end for i = 1 to length(LayerPointers)

End

Taking the database shown in Table 2 as an example, by setting the minimum support

degree of 3, the process of building the increased two-dimensional pattern is demonstrated

in figures from Figure 3 to Figure 6. In the figures, the nodes in bold ellipses are frequent

itemsets; the nodes in broken line ellipses are candidate non-frequent itemsets, which are

not added into the pattern tree; the nodes in the ellipses with dark grey background are

new added nodes in each step; the nodes in the ellipses with black background are unable

to combine with the new added node in each step. The figures show that for the database

in Table 2, there are 17 frequent itemsets are generated (eliminating the frequent 1-

itemsets) and 8 frequent itemsets are generated. Comparing with Eclat (Figure 2), by

adopting the technology of increased two-dimensional pattern tree, Eclat_growth can clip

the candidate itemsets completely and reduce the number of candidate itemsets obviously

under the prior knowledge.

Figure 3. The Process of Building a Pattern Tree (Step1 to Step3)

Figure 4. The Process of Building a Pattern Tree (Step4)

International Journal of Database Theory and Application

Vol.9, No.5 (2016)

Copyright ⓒ 2016 SERSC 259

Figure 5. The Process of Building a Pattern Tree (Step5)

Figure 6. The Process of Building a Pattern Tree (Step6)

3.3. The Calculation of Intersection and Support Degree

The calculation of intersection is the most time-consuming step in Eclat. It needs to

compare the TIDs of two itemsets one by one to evaluate which is ineffective when the

number of TIDs is very large. Although making some improvements, the basic method for

calculating intersection of the existing Eclat based algorithms is still the same with Eclat.

In this paper, we proposed a high efficient method called BSRI (Boolean array setting and

retrieval by indexes of transactions) to calculate the intersection and support degree of

two itemsets. In the follows, we introduce the method of BSRI sophisticatedly.

Figure 7. The Process of BSRI

International Journal of Database Theory and Application

Vol.9, No.5 (2016)

260 Copyright ⓒ 2016 SERSC

We establish a Boolean array, set the length of array as the number of

transactions, and set all elements of the array as 0. Taking the TIDs in an itemset as

index, the corresponding elements of Boolean array are set as 1. Then we retrieve

the elements of Boolean array according to the TIDs in another itemset. If an

element is 1, the according TID into intersection will be add and the support degree

will be increased. For example, we need to calculate the intersection and support

degree of I0 and I2 in the database shown in Table 2, I0={1,2,5}，I2={1,3,5,6}.

Since the number of transactions of the database is 6, the Boolean array is built as

BA=(0,0,0,0,0,0). Based on the TIDs in I0, we set the indexed elements of BA as 1,

BA[1]=1, BA[2]=1, BA[5]=1, now BA=(1,1,0,0,1,0). Based on the TIDs in I2, we

retrieve the corresponding elements of BA, we get BA[1]=1, BA[3]=0, BA[5]=1,

BA[6]=0, so the intersection if I0 and I2 is {1,5} and the support degree is 2. The

above process is shown in Figure 7. The above introduction shows that by using the

technology of BSRI, we only need to set and search the elements of a Boolean array

to calculate the intersection and support degree.

In the process of building an increased two-dimensional pattern tree, we use the TIDs

of the new added itemset for setting the Boolean array and use the TIDs of the frequent

itemset in pattern tree for retrieving. Thus the efficient can be enhanced further.

4. Experimental Studies

In order to present the efficiency of the Eclat_growth algorithm, we compare it with the

original Eclat algorithm [16], the Eclat_Diffsets algorithm [18], the hEclat algorithm [19]

and the Eclat-opt algorithm [20]. The comparisons of Eclat with other algorithms are

detailedly presented in [16] and [17]. In this paper, we only compare Eclat_growth with

the Eclat based algorithms. All experiments were performed on a PC with Inter Core 1.8G

and 4G main memory, running on Microsoft Windows 8 64-bit and all the programs are

coded in Pascal. We apply the algorithms on six synthetic databases which have been

commonly used for many association rules algorithms. Among the databases, two of them

are sparse ones, and three are dense ones, the numbers of transactions are from 3000 to

990002, the numbers of items are from 72 to 41271. All databases can be found online

[21]. Table 5 shows the information of the databases.

Table 5. The Information of Test Databases

Database
Number of

transactions

Number of

items

Average

length
type

T10I4D100K 100000 1000 10 Sparse

kosarak 990002 41271 7 Sparse

T40I10D100K 100000 1000 40 Mid-dense

mushroom 8124 120 23 Dense

chess 3196 76 37 Dense

accidents 340183 469 34 Dense

4.1. Experimental Results

In the first experiment, we investigate the run time of the Eclat_growth algorithm

comparing with Eclat, hEclat and Eclat-opt based on two sparse database: T10I4D100K

and kosarak. The test results are shown in Figure 8 and Figure 9. Since Eclat_Diffsets is

suitable for dense database, we do not contain Eclat_Diffsets in this experiment.

In the second experiment, we investigate the run time of the Eclat_growth algorithm

comparing with Eclat, Eclat_Diffsets, hEclat and Eclat-opt based on three dense database:

T40I10D100K, mushroom and chess. The test results are shown in Figure 10, Figure 11

and Figure 12.

International Journal of Database Theory and Application

Vol.9, No.5 (2016)

Copyright ⓒ 2016 SERSC 261

In the third experiment, we investigate the run time of the Eclat_growth algorithm

comparing with Eclat, Eclat_Diffsets, hEclat and Eclat-opt by varying the number of

transactions on the basis of databases of kosarak and accidents. We mine the frequent

itemset from kosarak by taking the number of transactions from 200000 to 990000 and

the minimum support is set as 0.3%. For accidents, we set the minimum support as 50%,

and take the number of transactions from 100000 to 340000. The test results are shown in

Figure 13 and Figure 14.

Figure 8. Run Time on T10I4D100K

Figure 9. Run Time on Kosarak

Figure 10. Run Time on T40I10D100K

Figure 11. Run Time on Mushroom

International Journal of Database Theory and Application

Vol.9, No.5 (2016)

262 Copyright ⓒ 2016 SERSC

Figure 12. Run Time on Chess

Figure 13. Run Time on Kosarak with Variant Number of Transactions

Figure 14. Run Time on Accidents with Variant Number of Transactions

4.2. Performance Analysis

According to the results in the first experiment, for mining associate rules on sparse

database with large transactions (100000 and 990002) and large items (1000 and 41271),

Eclat_growth is more effective than Eclat-opt and Eclat, however, hEclat is the most time-

consuming. Taking T10I4D100K as example (Figure 8), when the minimum support

varies from high support (1000，1%) to low support (40，0.04%), the run time of

Eclat_growth is 58% versus 24% of that of Eclat-opt, and is 26% versus 15% of that of

Eclat. In the second experiment, for the mid-dense database of T40I10D100K (Figure 10),

Eclat_growth also has the highest efficiency. For the dense database of mushroom (Figure

11), when the minimum support varies from high support (2000，25%) to low support

(600，7.5%), the run time of Eclat_growth is 13% versus 23% of that of Eclat-opt, and is

18% versus 1.8% of that of Eclat.

The performances of Eclat based algorithms mainly depend on the number of candidate

itemsets and the efficiency of calculating intersection. The methods of generating

candidate itemsets in Eclat, Eclat_Diffsets and hEclat are all the same. In the generation

of candidate itemsets, there are no clip strategies under the prior knowledge, therefore,

many redundant candidate itemsets will be built and calculated. Double layer hash table is

International Journal of Database Theory and Application

Vol.9, No.5 (2016)

Copyright ⓒ 2016 SERSC 263

used in Eclat-opt to clip the candidate itemsets. Because the Double layer hash table can

only work in generating candidate 3-itemsets from frequent 2-itemsets, the performance is

very limited. Due to the increased two-dimensional pattern tree, the prior knowledge can

be used in Eclat_growth for clip the candidate itemsets completely and all redundant

candidate itemsets will be clipped. Taking the database of T10I4D100K and mushroom

for example, we compare the numbers of candidate itemsets of Eclat and Eclat_growth

when mining association rules with different minimum supports and the results are shown

in Table 6 and Table 7 which demonstrate that the numbers of candidate itemsets of

Eclat_growth are obviously less than that of Eclat, especially when the database is sparse.

Less candidate itemsets is an important factor for high performance of Eclat_growth.

Table 6. The Numbers of Candidate Itemsets for Mining T10I4D100K

Support 400 200 100 80 60 40

the numbers of candidate

itemsets for Eclat
398998 585042 806403 950397 1258847 2168909

the numbers of candidate

itemsets for Eclat_growth
199562 286621 372228 432736 581053 1091003

the numbers of frequent

itemsets
2001 13255 27532 35019 44583 62864

Table 7. The Numbers of Candidate Itemsets for Mining Mushroom

Support 1600 1400 1200 1000 800 600

the numbers of candidate

itemsets for Eclat
59528 68388 118273 155182 724498 1186352

the numbers of candidate

itemsets for Eclat_growth
55537 62357 105383 131500 598489 1016465

the numbers of frequent

itemsets
53583 58773 98575 118455 574431 932181

Besides the number of candidate itemsets, the efficiency of calculating intersection is

another important factor for the performance of Eclat based algorithms. Eclat and

Eclat_Diffsets need to compare the TIDs of two itemsets one by one to calculate the

intersection. Eclat-opt adopts the same method as Eclat, but it uses an optimized strategy

called TID lost threshold to improve the performance of calculating intersection to a

certain degree. hEclat adopts hash Boolean matrix to polish up the calculation of

intersection, which can improve the efficiency only when the number of transactions of a

database is not large. If the number of transactions is very large, hash Boolean matrix

makes things worse. Eclat_growth adopts BSRI to calculate the intersection and support

degree of two itemsets, it can effectually improve the performance by less operations than

that of other Eclat based algorithms. We test the performance of BSRI by using BSRI in

Eclat algorithm. Table 8 shows the run time of the original Eclat algorithm and the Eclat

with BSRI for mining association rules on T40I10D100K, the minimum support is set

from 7000(7%) to 900(0.9%). The test result shows that BSRI can obviously improve the

performance. For the database of T40I10D100K, 34% performance is enhanced on

average.

International Journal of Database Theory and Application

Vol.9, No.5 (2016)

264 Copyright ⓒ 2016 SERSC

Table 8. The Run Time of Eclat and Eclat with BSRI for Mining T40I10D100K

Support 7000 6000 5000 4000 3000 2000 1000 900

Eclat 5.82 8.20 11.49 15.45 21.62 29.87 66.73 169.64

Eclat with

BSRI
3.94 5.25 7.09 9.25 12.63 17.59 45.87 147.53

In the third experiment (Figure 13 and Figure 14), we investigate the effect of

transactions number on the algorithms‟ performances by mining association rules from

kosarak and accidents with different transactions numbers. According to the experimental

results, the transactions number has a serious influence on the efficiency of the five

algorithms. As the number of transactions becoming larger and larger, the run time of five

algorithms will increase multiply. Comparing with other algorithms, the efficiency of

Eclat_growth is most obviously cut down. Due to the increased search strategy, the whole

pattern tree needs to be stored in memory. When the number of transactions is very large,

the memory usage is huge, which cuts down the performance of Eclat_growth obviously.

For other algorithms, the memory usages are evidently less than Eclat_growth, because

they only need to store two different length frequent itemsets in memory. In Figure 14,

when the number of transactions is larger than 250000, Eclat_growth is less efficient than

Eclat_Diffsets. However, in other conditions, Eclat_growth is still faster than other

algorithms.

5. Conclusions

Mining association rules is one of the most important problems in data mining.

Therefore, many algorithms were proposed to facilitate mining association rules.

Although Eclat algorithm has the high performance, it still has some defects, such as large

number of candidate itemset, inefficiency of itemsets connection and intersection.

According to the shortcomings of Eclat, we proposed an improved Eclat algorithm called

Eclat_growth. Eclat_growth algorithm, on the basis of increased search strategy, adopts

two new technologies, such as increased two-dimensional pattern tree and BSRI. In the

process of building an increased two-dimensional pattern tree, the prior knowledge can be

used for clipping the candidate itemsets completely and all redundant candidate itemsets

will be clipped. BSRI is used for calculating the intersection and support degree, it can

obviously decrease the computational complexity. The theoretical analysis and

experimental studies all indicate that Eclat_growth has the highest performance in mining

associating rules from various databases than Eclat, Eclat-diffsets, Eclat-opt and hEclat.

Acknowledgements

This work was supported by the National Science Foundation of China (No.

51305213), the Scientific Research Fund of Zhejiang Provincial Education Department

(Y201224583) and the K. C. Wong Magna Fund in Ningbo University.

References

[1]. R. Agrawal, T. Imilienski and A. Swami, “Mining association rules between sets of items in large

databases,” Proceeding of the ACM SIGMOD Int‟l Conference on Management of Data, Washington

DC, (1993), pp. 207-216.

[2]. J. Han, J. Pei and Y. Yin, “Mining frequent patterns without candidate generation”, Proceedings of the

2000 ACM SIGMOD International Conference on Management of Data, (2000), pp. 1-12.

[3]. J. Dong and M. Han, “BitTableFI: An efficient mining frequent itemsets algorithm”, Knowledge-Based

Systems, vol. 20, no. 4, (2007), pp. 329-335.

[4]. C. Aflori and M. Craus, “Grid implementation of the Apriori algorithm”, Advances in Engineering

International Journal of Database Theory and Application

Vol.9, No.5 (2016)

Copyright ⓒ 2016 SERSC 265

Software, vol. 38, no. 5, (2007), pp. 295-300.

[5]. F. Berzal, J. Cubero and N. Marin, “TBAR: An efficient method for association rule mining in relational

databases”, Data & Knowledge Engineering, vol. 37, no. 1, (2001), pp. 47-64.

[6]. D. C. Pi, X. L. Qin and N. S. Wang, “Mining Association Rule Based on Dynamic Pruning”, Mini-

Micro Systems, vol. 10, (2004), pp. 1850-1852.

[7]. J. Pork, M. Chen and P. Yu, “An effective hash based algorithm for mining association rules”, ACM

SIGMOD, vol. 24, no. 2, (1995), pp. 175-186.

[8]. S. Brin, R. Motwani and C. Silverstein, “Beyond market baskets: generalizing association rules to

correlations,” ACM SIGMOD Conference on Management of Data, Tuscon, AZ, (1997), pp. 265–276.

[9]. H. F. Li and S. Y. Lee, “Mining frequent itemsets over data streams using efficient window sliding

techniques”, Expert Systems with Applications, vol. 36, no. 2, (2009), pp. 1466-1477.

[10]. Y. F. Zhong and H. B. Lv, “An Incremental Updating Algorithm to Mine Association Rules Based on

Frequent Pattern Growth”, Computer engineering and Application, vol. 26, (2004), pp. 174-175.

[11]. R. Balazs, “Nonordfp: An FP-Growth Variation without Rebuilding the FP-Tree”, Proceedings of the

IEEE ICDM Workshop on Frequent Itemset Mining Implementa-tions, (2004).

[12]. G. Gosta and J. F. Zhu, “Fast Algorithms for Frequent Itemset Mining Using FP-Trees”, IEEE

Transactions on Knowledge and Data Engineering, vol. 17, no. 10, (2005), pp. 1347-1362.

[13]. W. Ke, T. Liu, H. J. Wei and L. J. Qiang, “Top down fp-growth for association rule mining”, The 6th

Pacific-Asia Conference, PAKDD 2002, Taipei, Taiwan, (2002), pp. 334-340.

[14]. J. Pei, J. W. Han and H. J. Lu, “H-Mine: Fast and space-preserving frequent pattern mining in large

databases”, IIE Transactions, vol. 39, no. 6, (2007), pp. 593-605.

[15]. K. C. Lin, I. Liao and Z. S. Chen, “An improved frequent pattern growth method for mining association

rules”, Expert Systems with Applications, vol. 38, no. 5, (2011), pp. 5154-5161.

[16]. M. Zaki, “Scalable algorithms for association mining”, IEEE Transactions on Knowledge and Data

Engineering, vol. 12, no. 3, (2000), pp. 372-390.

[17]. L. S. Thieme, “Algorithmic Features of Eclat”, Proceedings of the IEEE ICDM Workshop on Frequent

Itemset Mining Implementations, Brighton, UK, November, (2004).

[18]. M. J. Zaki and K. Gouda, “Fast vertical mining using diffsets”, Proceedings of the ninth ACM SIGKDD

international conference on Knowledge discovery and data mining, New York, USA, (2003), pp. 326-

335.

[19]. X. Z. Yang, C. P. En and Z. Y. Fang, “Improvement of Eclat algorithm for association rules based on

hash Boolean matrix”, Application Research of Computers, vol. 27, no. 4, (2010), pp. 1323-1325.

[20]. F. P. En, L. Yu, Q. Q. Ying and L. L. Xing, “Strategies of efficiency improvement for Eclat algorithm”,

Journal of Zhejiang University (Engineering Science), vol. 47, no. 2, (2013), pp. 223-230.

[21]. Available at: http://fimi.ua.ac.be/data.

Authors

Zhiyong Ma, received the Ph.D. degree in Institute of Mechanical

Design, Zhejiang University in 2010. He is working in the Faculty of

Mechanical Engineering and Mechanics, Zhejiang Provincial Key

Lab of Part Rolling Technology, Ningbo University, Ningbo, China.

His current research interests include mechanical symmetry theory and

knowledge discovery in mechanical design.

Juncheng Yang, is now pursuing a master degree in the Faculty

of Mechanical Engineering and Mechanics, Zhejiang Provincial Key

Lab of Part Rolling Technology, Ningbo University, Ningbo, China.

His current research interest is knowledge discovery in mechanical

design.

International Journal of Database Theory and Application

Vol.9, No.5 (2016)

266 Copyright ⓒ 2016 SERSC

Taixia Zhang, is now pursuing a master degree in the Faculty of

Mechanical Engineering and Mechanics, Zhejiang Provincial Key

Lab of Part Rolling Technology, Ningbo University, Ningbo, China.

Her current research interests include mechanical symmetry theory

and knowledge discovery in mechanical design.

Fan Liu, is now pursuing a master degree in the Faculty of

Mechanical Engineering and Mechanics, Zhejiang Provincial Key Lab

of Part Rolling Technology, Ningbo University, Ningbo, China. Her

current research interests include mechanical symmetry theory and

knowledge discovery in mechanical design.

