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Abstract 

Kernel K-means clustering (KKC) is an effective nonlinear extension of K-means 

clustering, where all the samples in the initial space are mapped into the feature space 

and then K-means clustering is performed based on the mapped data. However, all the 

mapped data are expressed by the implicit form, which causes the initial cluster centers 

can’t be selected flexibly. Once the selected initial cluster centers aren’t suitable, it tends 

to fall into local optimal solutions and can’t guarantee stable result. Based on a standard 

orthogonal basis of the sub-space spanned by all the mapped data, a novel improving 

non-linear algorithm of KKC is presented in this paper. The novel algorithm can express 

the mapped data using the explicit form, which make it very flexible to select the initial 

cluster centers as the linear K-means clustering does. Moreover, the computational 

complexity of the presented algorithm is also significantly reduced compared to that of 

KKC. The results of simulation experiments illustrate the proposed method can eliminate 

the sensitivity to the initial cluster centers and simplify computational processing. 
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1. Introduction 

As one of the core data mining techniques, clustering analysis shows widely 

application in many fields, such as machine learning, patter recognition, image processing 

et al. K-means clustering algorithm is one of the most popular methods for clustering 

analysis because its effectiveness and easy operation
 
[1-3]. However, K-means clustering 

is only a linear algorithm in essence. It is unsuitable for highly complex and nonlinear 

data distributions. In contrast, as a nonlinear extension of K-means clustering, kernel K-

means clustering (KKC) [4-6] can capture the nonlinear features of the data. The mainly 

idea of KKC is as followed.  Using a nonlinear mapping, all the samples in the initial 

space are mapped into a high-dimensional or infinite-dimensional space, which is called 

the feature space, and then K-means clustering is performed based on the mapped samples 

in the feature space. Using the kernel trick, all the computation of KKC can be done by 

the kernel function, where the kernel function is the inner product operation of the feature 

space in session. So KKC can not only capture the nonlinear features of the initial data but 

also avoid the expression of the complex nonlinear mapping. 

Unfortunately, as all the data in the feature space are expressed by the implicit form, 

the drawback of KKC is the initial cluster centers can’t be selected flexibly. Once the 

initial cluster centers aren’t suitable, it tends to fall into local optimal solutions and can’t 

guarantee stable result. 

In order to deal with the above problem, a novel improving nonlinear algorithm is 

presented in this paper. The main idea is as follows. Using a standard orthogonal basis of 

the sub-space spanned by all the mapped data mapped onto the feature space, all the 

mapped data is expressed in the explicit form. Subsequently, some existing optimizing 
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initial cluster centers algorithms of K-means clustering can be extended easily. In this 

paper, we employed the meliorated initial center algorithm proposed by Khan et al [2]. 

The rest of the paper is arranged as follows. In Section 2, a brief instruction to KKC is 

given. Section 3 elucidates the proposed optimizing algorithm of KKC, in which we will 

introduce in detail how to obtain the explicit form of the mapped data in the feature space. 

In Section 4, we demonstrate the effectiveness of out algorithm by some experiments. 

Finally, we give conclusions of our work in Section 5. 

 

2. Kernel K-Means Clustering (KKC) 

Let },,,{ 21 NxxxX   denotes the input data set, where N  denotes the number of all 

data.  The main idea of KKC is all the samples ),,2,1( Nixi   is firstly mapped in the 

feature space by a nonlinear mapping )( and then the K-means clustering algorithm 

based on the mapped samples ),,2,1)(( Nixi   in the feature space.  Obviously, 

where performing KKC means minimum Eq. (1). 
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Where )(k denotes the kernel function. 

Combing the kernel function and the K-means clustering, we can get the algorithm of 

KCC as followed. 

Algorithm 1 The K-means clustering 

Step1. Identifying the initial cluster centers ),,,( 21



Kmmm  . In other words, K  

different samples are randomly selected from all mapped data ),,2,1)(( Nixi   

as the class centers. 

Step2. According to Eq. (3), any one sample x from },,,{ 21 NxxxX   is 

arranged respectively to thk -  class.  


 kmx

Kk
k 
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
                                         (3) 

Step3. Updating the cluster centers ),,,( 21



Kmmm   and the 
J  according to 

Eq.(1). In fact, the cluster center ),,2,1( Kkm k 


 can’t be obtained in feature space. 

So, ),,2,1( Kkm k 


 only be repeated by one mapped sample )( kx , where the 

distance sum of all the mapped samples belonging to thk   class and )( kx  is 

minimum. 

Step4. Repeating step2 and step3, until 
J don’t change or the change is small. 
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3. The Optimizing Algorithm of KKC (OKKC) 

From the process of KCC presented in the second section, we known that the initial 

clustering center is chosen randomly from all the mapped data. Once the initial clustering 

center isn’t suitable, the result may be a local minimum and easily cause the result 

unstable. 

 

3.1. Second-Order Headings 

In order to reduce the sensitive of KKC to the initial clustering centers, we presented a 

novel optimizing algorithm of KKC (OKKC). The main idea is as followed. Firstly, we 

get a standard orthogonal basis of the subspace spanned by all the mapped 

samples ),,2,1)(( Nixi  . Secondly, we obtain the projection vector of each mapped 

samples. Lastly, we perform K-means clustering based all the projection vectors in the 

projection space. Because the projection vectors are expressed in the explicit form, it is 

very easy to extent the existing optimizing initial cluster centers algorithms of K-means 

clustering. An overview of the proposed optimizing algorithm is illustrated in Figure1. In 

Figure 1, r
ii 1}{  denotes the standard orthogonal basis of the subspace spanned by all the 

mapped samples N
iix 1)}({  . Where r  denotes the number of the basis. In the next part, we 

will give the detailed process about how to obtain r
ii 1}{  . Based the basis, we can get the 

projection vectors N
iiyY 1}{   by Eq. (4). Lastly, we perform the K-means clustering. 

Because  iy  can be expressed in explicit form  it will is very convenient to optimize the 

initial cluster centers using the existing optimizing initial cluster centers algorithms of K-

means clustering.  

)(),,2,1( ix
T

riy                                                  (4) 

 

 

Figure 1. The Process of OKKC 

In the process of OKKC, we may have noticed the question: is KKC equivalent to 

OKKC? The answer is apparently yes. The reason is that the distance of any two samples 

in the projection space is equal to that of the corresponding two samples in the feature 

space. This can be described in Eq. (5). Based on Eq.(4), it is easy to verify Eq.(5) is 

correct. 

Njijxixjyiy ,,2,1,)()(                           (5) 

 

3.2 How to Get a Standard Orthogonal Basis 

In order to get a standard orthogonal basis r
ii 1}{   of the subspace spanned by all the 

mapped samples N
iix 1)}({  , we firstly designed a iterative algorithm to find a basis 

r
ibix 1)}({   and then make the orthogonalization of r

ibix 1)}({   for getting a standard 
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orthogonal basis r
ii 1}{  . The iterative algorithm to find a basis can be described as the 

follows [7]. 

Alogrithm2. The iterative algorithm to find a basis  

Step1. Initialization Select randomly a sample x  from the 

set N
iixX 1}{  and 0),( xxk . Where )(k denotes the kernel function. Let 

.1,
),(

1},{},{  t
xxk

GxDxS  

Step2. The condition of ending the procedure If ,Nt  then put out D  and let the 

procedure end. Otherwise, next step. 

Step3. Discrimination function Select randomly a sample .SXx  let 

},{  xSS   1 tt  and verify Eq. (6) is correct or not. 

                                                  0 stGkT
stkttk                                             (6) 

Where .),,()(),,( Dxxxkkxxkk iiisttt    

Step4. Update the procedure. If Eq. (6) is correct, go back step2. Otherwise, do the 

following and go to step2. 
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When the above procedure stop, we get a samples set r
ibixD 1}{  . Its mapped samples 

r
ibixD 1)}({)(    will be a basis of the subspace spanned by N

iix 1)}({  , which can be 

easily verified using the linear correlation theories. After that, we can orthogonalize the 

basis r
ibixD 1)}({)(    using Eq. (7). 

                                                                                                                                       (7) 

Where                                                ,                                    denotes respectively the 

eigenvector and the corresponding eigenvalue of the kernel 

matrix rkjbkbjrr xxkK  ,1)),(( . 

Combined with Eq.(4) and Eq.(7), the projection vector of any mapped sample )( ix can 

obtained by Eq.(8). 

                                                                                                                                       (8) 

Algorithm3. The optimizing algorithm of KKC (OKKC) 

Step1. Based on algorithm 2, we get a basis 
r
ibixD

1
)}({)(


  . 

Step2. Computing the kernel matrix rkjbkbjrr xxkK  ,1)),((  of the 

basis r
ibixD 1)}({)(    and eigenvalue decomposition of rrK  for getting the matrix C . 

Step3. Using Eq. (8), we get the projection vectors N
iiyY 1}{  . 

Step4. Using the existing optimizing initial cluster centers algorithms of K-means 

clustering, we finish cluster process of N
iiyY 1}{  . In this paper, we employed the 

meliorated initial center algorithm proposed by Khan et al. 

 

4. Experiments 

Use footnotes sparingly (or not at all!) and place them at the bottom of the column on 

the page on which they are referenced. Use Times New Roman 9-point type, single-

spaced with 10-point interlining spacing. To help your readers, avoid using footnotes 

altogether and include necessary peripheral observations in the text. 

Cxxx brbbr ))(),(),((),,,( 2121   

 ruruuC  ,,2,1 21  ）,2,1,（, rjiu ii 

）,,2,1（)),(,),,(),,(( 21 NixxkxxkxxkCy ibribib
T

i  



International Journal of Database Theory and Application 

Vol.9, No.4 (2016) 

 

 

Copyright ⓒ 2016 SERSC      101 

Experiment1:the Bispiral dataset contains 150 data points from two classes, each data 

point is a two-dimensional real vector, the KKC and the proposed OKKC were applied , 

Figure(2) and Figure(3) show the clustering results, here, the maximum times of iteration 

is 100. 

 

 

Figure 2. The Clustering Results for Bispiral Using Original KKC Algorithm 

 

Figure 3.The Clustering Results for Bispiral Using OKKC Algorithm 

From Figure(2) and Figure(3), we can see that the errors that we use the original KKC 

algorithm is 40, and the accuracy is only 60.784 percent; on the contrary, if the OKKC 

method is applied, the errors is only 3, and the relative accuracy increase to 96.0784 

percent. 

Experiment 2: The dataset contains 100 data points from three classes. Each class 

includes 50 data points. Each data point is a four-dimensional real vector, the KKC and 

the proposed OKKC were applied , Figure(4) and Figure(5) show the clustering results, 

here, the maximum times of iteration is 100. 
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Figure 4. The Clustering Results for Dataset Using Original KKC Algorithm 

 

Figure 5. The Clustering Results for Dataset Using OKKC Algorithm 

From Figure(4) and Figure(5), we can see that the errors that we use the original KKC 

algorithm is 41, and the accuracy is only 49.3827 percent; on the contrary, if the OKKC 

method is applied, the errors is only 3, and the relative accuracy increase to 96.2963 

percent. 

Experiment 3: The dataset contains 100 data points from three classes. Each class 

includes 50 data points. Each data point is a four-dimensional real vector, the KKC and 

the proposed OKKC were applied , Figure(6) and Figure(7) show the clustering results, 

here, the maximum times of iteration is 100. 
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Figure 6. The Clustering Results for Bispiral Using the Original Algorithm 

 

Figure 7. The Clustering Results for Bispiral Using the OKKC Algorithm 

From Figure(6) and Figure(7), we can see that the errors that we use the original KKC 

algorithm is 23, on the contrary, if the OKKC method is applied, the errors is only 13. 

Experiment4: To validate the performance of the presented algorithm---OKCC, three 

standard subsets (Iris, Balance-scale, and Wine) from UCI are employed in our 

experiments. To each dataset, we perform experimental operation for five times 

respectively. Table 1 shows the experimental results. In every experiment, the initial 

centers are randomly selected in KKC. On the other hand, the initial centers are optimized 

in OKCC (see algorithm3). In all  

The experiments, the Gaussian kernel function                                                               ,   

where N denotes the number of all the samples. In fact, the optimized initial centers 

haven’t any practical information, so we only list the number of a basis and skip the 

concrete value of the initial centers. 

Table 1. The Cluster Results Based on KKC and OKKC 

Algorithm 
Iris Balance-scale Wine 

Initial center accuracy rate Initial center accuracy rate Initial center accuracy rate 

 

 

KKC 

1 35,6,21 93.2% 616,496,589 73% 35,191,34 61.2% 

2 47,5,42 84.1% 316,128,345 78.4% 15,89,131 79.2% 

3 12,49,134 85.3% 21,151,43 62.7% 26,112,169 84% 

4 37,71,84 73% 431,322,125 56% 110,46,96 76% 
5 24,9,43 90.5% 232,145,284 72% 89,172,59 89.1% 

Average accuracy rate  85.22%  68.42%  77.9% 

OKCC r=4 94% r=12 81.3% r=21 87.3% 

）1.0/（exp),(
2

Nyxyxk 
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As can be seen from Table1, the accuracy rate of KKC is very unstable, the reason is 

that KKC is very sensitive to the initial centers. However, the proposed algorithm---

OKKC is very stable and the accuracy rate is much higher than that of KKC, which verify 

KKC is very effective. 

 

5. Conclusion 

To reduce the sensitive to the initial cluster centers of kernel K-means clustering 

(KKC), an optimizing algorithm is proposed in this paper. Firstly , we designed a iterative 

algorithm to find a standard orthogonal basis of the subspace spanned by all the mapped 

data in the feature space, and then perform the linear K-means clustering algorithm based 

the projection vectors in the projection space. Because the projections vectors are 

expressed in the explicit form, it is easy to employ the existing optimizing cluster center 

algorithm of K-means clustering. In the experimental section, its performance of OKKC 

is verified based on the three subsets form UCI. Those experiments shown the accuracy 

rate of the proposed algorithm is much higher than that of KKC and its stability also be 

guaranteed. 

Finally, as the extension of the kernel method, the accuracy of OKKC is still sensitive 

to the kernel parameter. How to reduce the sensitive of the kernel parameter still needs the 

further investigation. 
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