
International Journal of Database Theory and Application
Vol.9, No.4 (2016), pp.277-288

http://dx.doi.org/10.14257/ijdta.2016.9.4.26

ISSN: 2005-4270 IJDTA

Copyright ⓒ 2016 SERSC

Design of Query Reformulation Engine in Data Access and

Integration System

Xiyin Liu*, Lijun Cao and Zhongping Zhang

Hebei Normal University of Science & Technology, China

College of Information Science and Engineering Yanshan University, China

liuxiyin2003@sina.com

Abstract

This paper introduces three core modules of query reformulation engine, mapping

document, query reformulation module, and statement conversion module. Mapping document

is an XML document that keeps the mapping information between local data source and

related data sources; using mapping document, applications could find data sources that have

mapping relationship with its local data source. The query reformulation module reformulates

the query statements submitted by users to local data resource to query statements to all data

sources that have mapping relationship with local data resource. The statement conversion

module converts XPath statements to OQL statements that are supported by OGSA-DQP;

through OGSA-EDAI in the bottom layer, the access result to the data sources could be

obtained. When a user submits an XPath statement to OGSA-DQP, it calls the query

reformulation module, which first checks the mapping document to find information of other

data sources, then expands and reformulates this XPath statement into query statements that

are suitable for the mapped data sources. Afterward, the statement conversion module converts

the reformulated XPath statements into OQL statements and returns to OGSA-DQP, which

then performs the query operation.

Keywords: integrated, reformulation, schema mapping, query engine

1. Introduction

For schema mapping, traditionally there are three approaches [1-4]. The first one is

GAV (Global As View), which requires global schemas be represented as local schemas;

the second one is LAV (Local As View), which requires global schemas be represented

independent to local schemas, for which mappings from each local schema to the global

schema need to be established; the third one is GLAS, a integration of GAV and LAV,

which is still in its early stage of development. [5-9]

With the development of grid environment, its high-dynamic and distributed features

demand more than the centralized structure of conventional data integration systems. In

grid environments, adding relative data sources into the system requires rewritten of the

global schema, and the repeating of such process for each addition of data source is

laborious. Moreover, global schema is a bottleneck of the system, for that if the global

schema server collapses, the whole system falls apart with it.

This paper made developments and innovations in the following aspects:

In this paper, we present an incompact method, where mapping rules are established

directly among data source schemas instead of on a centralized regulator or a

multi-regulator system. Instead of using single data schema to represent all data sources in

global mode, this method employs a series of local schemas. When a new node (or data

source) is being added to the system, it only needs to provide a mapping rule set, which

describes its own schema and the schemas of other data sources linked with it.This

approach brings flexibility and reliability, for that a node could be added or removed

International Journal of Database Theory and Application

Vol.9, No.4 (2016)

278 Copyright ⓒ 2016 SERSC

dynamically, which fits the high-dynamic activities in grid environment; and also, the

schemas of each data source are only directly connected to a limited number of other data

source schemas, and if the schemas it is not connected to are inside its transitive closure,

these schemas are still reachable. We also designed a query reformulation algorithm to

solve the problem of the query reformulation engine.

2. Schema Mapping

The primary purpose of the query engine is to establish an incompact semantic

network, forming queries to distributed, heterogeneous data sources through semantic

bindings; the underlying network is composed by a series of autonomous nodes which

contain relevant data, and the data sources are connected through the establishment of

mappings; the schema mappings of the data sources are stored in rule documents.

2.1. Establishment and Rules of Schema Mapping

Conventional schema mapping is often accompanied by schema conflicts, including

naming conflict, list structure conflict, data conflict, attribute conflict, and semantic

conflict. In this system, the establishment of mapping between two data sources faces

conflicts too. We presented in this paper a new solution to these conflicts.

In this study, each node of the system is treated as a peer point and linked by

establishing mapping relationships among data sources, thus unconventional mapping

approach is employed. The structural heterogeneity of the XML data source is

compensated by combining the paths of different schemas. Mappings are illustrated as

path expressions, and in the mappings contained an explicit element or attribute of the

data source schema and the elements and attributes of the related target data source

schemas. The data integration model proposed in this paper employs XPath query

statements to express the path-to-path mappings, while assuming the data of all data

sources uses XML schema as data model, i.e. this model uses a series of XPath

expressions to describe the path of a data source.

As the first step of establishing schema mappings, a small subset of XPath language

needs to be considered. This subset is expressed by:

q → n ∣.∣q ∕ q∣q // q | q [q] (1)

where n represents a random label, “.” is the current node, “/” is the child node axis,

“//” is the offspring node axis, and “[]” represents a predicate.

A schema mapping is defined as a group of “Formulas”, and the two sides of the

formula represent a pair of schemas. In particular, for a data source schema S a mapping

M is defined with a set of mapping

Rules
 M

k

MMM RRR ,..., 21
. When the execution of a path reaches its mappings,

each mapping rule links to a path in different schemas. A mapping rule could be

expressed in the form of Expression (2).

},{},{: DD

M

S

SM PSCPSR 
 (2)

Where
MR is the label of the rule, SS

 is the data source schema related to the

establishment of the rule, SP
 is the path expression of the data source schema, DS

 is

the target data source schema related to the establishment of the semantic binding, DP
 is

the path expression of the target data source schema, and
MC is the element of the radix

representing the mapping between two related schemas. Mappings could be identified as

1-1, 1-N, N-1, and N-N modes, determining by the number of nodes of the schemas with

mappings established.

International Journal of Database Theory and Application
Vol.9, No.4 (2016)

Copyright ⓒ 2016 SERSC 279

2.2. Schema Mapping Document

Schema mapping rules are stored in documents called schema mapping documents.

Each data source involved in grid data accessing and integrated system stores and

maintains a corresponding schema mapping document, in which the information of all the

mapping rules related to this node is stored.

Figure 1 presents the structure of schema mapping documents. It can be seen that the

expressions of the elements of a single data source schema and a series of elements

defining the mapping rules are included in the document. The rule elements contain a

complex structure, which requires clear illustration of all the paths and radix constraints

of the mappings.

 <schema targetNamespace=”http://SHM/SHMDocument”

 xmlns=”http://www.w3.org/2001/XMLSchema”?>

<element name="Mapping">

<complexType>

<sequence>

<element name="sourceSchema" type="string"

minOccurs="1" maxOccurs="1"/>

<element name="Rule" minOccurs="1">

<complexType>

<sequence>

<attribute name="Cardinality" type="string"

minOccurs="1" maxOccurs="1"/>

<element name="sourcePath" type="string" minOccurs="1"/>

<element name="destSchema" type="string"

minOccurs="1" maxOccurs="1"/>

<element name="destPath" type="string" minOccurs="1"/>

</sequence>

</complexType>

</element>

</sequence>

</complexType>

</element>

</schema>

Figure 1. XML Schema of Schema Mapping Document

Figure 2. Example of Database Schema

International Journal of Database Theory and Application

Vol.9, No.4 (2016)

280 Copyright ⓒ 2016 SERSC

An illustrative example is presented in Figure 2. The underlying databases are

relational databases, but their schemas could be expressed with XML and handled with

query reformulation algorithms. Each of the two nodes contains a dependent and

autonomous database which stores the information of musicians and their works. Two

self-explanatory views are presented in the figure, one hierarchical (representing the local

XML database), the other graphical (representing objects or relational databases).

In OGSA-DQP, the table schemas of a database is described or retrieved in the form of

XML documents.

The table schema of the sample database is presented below in the form of XML

document.

In OGSA-DQP, table schemas of a database could be given or retrieved in the form of

XML documents. When schema mapping between data sources needs to be established,

this mapping should be able to reflect the data domain semantic bindings of the different

data sources, including primary and foreign keys. In this study, the form presented in

Figure 3 is proposed for the establishment of mapping.

Figure 3. Establish Schema Mapping

Thereby, the schema mappings among data sources are established, and these

mappings should be saved to the schema mapping document of the local node. A segment

of the schema mapping document of node S1 is extracted as shown in Figure 4.

Figure 4. Schema Mapping Document Fragment of S1

This way, the mappings stored in the local schema mapping document are realized.

Through the establishment of schema mappings, semantic bindings are built for the data

sources, founding the basis of the query reformulation algorithm of the next step.

3. Query Reformulation

The core of the query reformulation module is the query reformulation algorithm.

Having discussed in Chapter 2, a schema mapping document is stored at each node, and

this document contains the mapping rules between the local node schema and other node

schemas, among which schema mappings are established and mutual semantic bindings

are built. Users submit an XPath query statement to local schema, and the task of the

query reformulation algorithm is to reformulate this statement.

By executing the query reformulation algorithm prior to the execution of query

statements, the semantic bindings established on each node of the system are obtained,

and more information of other data sources are made available. With this approach, when

International Journal of Database Theory and Application
Vol.9, No.4 (2016)

Copyright ⓒ 2016 SERSC 281

a query statement is submitted to a data source schema, the system would obtain or use

the data on any data source so long as this data source could be reached through semantic

mappings. The system will reformulate the statement, extend and convert it into query

statements that are suitable for each semantic related data source. Therefore, by simply

giving an XPath query statement to local data source schema, a user could retrieve data

from all the linked data sources in the system.

With one XPath statement input and mappings, the query reformulation algorithm will

produce zero, one, or several reformulated query statements. Let Q denote the input

XPath statement, S denote the data source schema where Q is submitted, M denote the

mappings in the system, and iRQ denote the reformulated query statements. The logic of

the algorithm will be detailed below in five major steps.

(1). Identify the path expressions of Q. One or more predicates may be found in every

XPath query statement, and these predicates could generate different branching points in a

tree structure and bring more query statements. Each one of these branches identifies an

explicit path in the XML data source, and in the query statement the identified paths are

collected into a set P.

(2). Search for the candidate paths of all data source schemas related to S. The primary

purpose of this step is to find the corresponding paths of all the data sources that are

semantic related to S. Such purpose means to use the information in the schema mapping

document of S and search for the corresponding path expression of each element Pi in set

P. To be more accurate, for each Pi in query statement Q, the algorithm searches for all

the corresponding paths in the schemas, while these schemas transitively connect to S

through the path Pi. Paths like


jiP , are called candidate paths, and the schemas contain

them


jS are called candidate schemas. Meanwhile, a candidate unit


jiE , is also defined,

and it is given in the form of  

jij PS ,, , where


jiP , is a path set on schema


jS . Therefore, for

each path expression Pi∈P, with 0﹤j﹤n (n is the number of data source schemas in the

system), zero, one or more candidate elements


jiE , are generated. The candidate set  is

a set of candidate elements  

nEEE ,.., 21 , where
  jiij EE , . Then, this step returns a set

 as

the result.

(3). Trim the candidate schemas. In the last step, the candidate schemas are found, and

in this step, each candidate schema needs to be verified to see if it could be used to obtain

one or more reformulated statements of query statement Q. To achieve this purpose, the

query reformulation algorithm checks each candidate schema to see for each path

expression of the statement whether it has at least one candidate path. Also, the algorithm

verifies that none of the candidate paths has been used to reformulate Q, so that extra

consideration of the paths can be avoid. The schemas survived the verification are

considered in the reformulation, and they are called target schemas. A target unit


jiE , is

also defined in the form of  

jij PS ,, , where


jiP , is a path set on


jS . Thereby, for each path

expression Pi in P, zero, one, or more candidate elements are generated. The candidate set
 is a set of candidate elements  

nEEE ,.., 21 , where
  jiij EE , . Then, this step returns a

collection
 as the result.

(4). Reformulate query statements. In this step, for the returned set
 , the algorithm

will generate one or more XPath query statements on the basis of each of the schemas in

the set. Detailing below is the process carried out for each target schema


jS in
 :

a. Estimate radix constraints. If in collection P, each path Pi has a corresponding path

on schema


jS , then all the mappings between S and


jS are of the type 1-1 or N-1. Then

the output reformulated query statements are just single statement expressed on target

schema


jS . Contrarily, if in P multiple target paths on schema


jS exist, then multiple

reformulated query statements will be generated on schema


jS . The number of the

reformulated query statements depends on the possible combinations of paths. If the radix

International Journal of Database Theory and Application

Vol.9, No.4 (2016)

282 Copyright ⓒ 2016 SERSC

of set P is k, and denoted by |P|, then for schema


jS , the number of path combinations

com equals to the product of the radixes of each path , i.e.
  jkjj PPPcom ,,2,1

b. Check the binding conditions. Once the mapping radixes are established, before the

actual generation of reformulated statements, the binding conditions among the paths


jiP ,

of target schemas


jS need to be checked. In the 1-1 and N-1 mapping cases, since there

will only be a single reformulated query statement generated, if in schema


jS at least two

paths exist and the constraints are not considered, no reformulated statement will be

generated. Also, in the 1-N mapping case, as long as each path combination fulfills the

binding condition, equivalent number of reformulated statements will be generated.

c. Construct XPath query statements. After checking the binding conditions of the

target paths, the actual construction of one or more XPath query statements is initialized.

Thereby, the reformulated query statements of the query statement Q are the query

statements to target schema


jS .

(5). Call the query reformulation algorithm circularly. Circularly call the query

reformulation algorithm to the reformulated statements in order to obtain the query

statements corresponding to every transitive mapping.

Combining the information of the two data sources given above, following is an

illustrative example of the work of query reformulation engine. corresponding to the

operations shown in Figure 5 and 6. After checking the XML schema expression of local

data source, a user submits an XPath query statement

Q=/Musician[Style=“Pop”]/artefact/title to S1 to retrieve the names of the works of the

musicians styling in “pop”. After accepting the initial query statement the query

reformulation engine works by the following procedure. First, it identifies the paths P1

and P2 in Q and generates an output set P, and then it retrieves the schema mapping

document stored and maintained in schema S1, and in this document stored the schema

mapping rules of S1 with other related data sources. The algorithm then finds two

mapping rules to schema S1 and S2 from P1 and P2 respectively. Precisely, one of the

rules relates P1 to the two paths in schema S2, and the two paths are

/Data/kind/Singer/school and /Data/kind/Writer/style, while the other rule relates P2 to

/Data/kind/singer/songs/title and /Data/kind/writer/artefact. Therefore, in step 2 the

algorithm returns a candidate set composed by element


jiP , and schema


2S . In this

example, since schema


2S is related to both path P1 and P2, it is identified as a target

schema and used to reformulate the query statement Q. Eventually, the algorithm

produces two query statements based on schema S2, named 1RQ and iRQ
2 , which will be

executed on S2.

目标集合

候选集合

P

Q=/Musician[style=”Pop”]/artifact/title

P1=/Musician/Style

P2=/Musician/artifact/title

/Musician[style=”Pop”] /artefact/title

1

1,2P
 =/Data/kind/Singer/School

 /Data/kind/Writer/Style

2,2P
 =/Data/kind/Singer/Songs/Title

 =/Data/kind/Writer/artefact

2S


1,2P
 =/Data/kind/Singer/School

 /Data/kind/Writer/Style

2,2P
 =/Data/kind/Singer/Songs/Title

 =/Data/kind/Writer/artefact

2S


1R
Q =/Data/kind/Singer[School=”Pop”]/Songs/Title

2R
Q =/Data/kind/Writer[style=”Pop”]/artefact

2

3

4

5

Figure 5. Example of Query Reformulation Algorithm

International Journal of Database Theory and Application
Vol.9, No.4 (2016)

Copyright ⓒ 2016 SERSC 283

Following are the pseudo codes of the query reformulation algorithm.

Algorithm 5.1: Query Reformulation Algorithm

Input: Query statement Q, schema S, and mapping M (mapping rule that is saved in the

schema mapping document)

Output: Reformulated query statement set


QRA (Q,S,M)

Begin

(1) Identify the paths of query statement Q, and assign to the set P;

(2) for each path Pi in P do

(3) look for candidate path through Pi and M, and assign to
 ;

(4) trim candidate schema
 , and assign to

 ;

(5) for each


jS
 in

 do

(6) if (S and


jS
 are 1-N mappings) then

(7) merge paths


jiE , , and assign to
 ;

(8) for each candidate query statement
Q in

 do

(9) if (check if
Q satisfies the connection condition) then

(10) assemble
Q into query statement, and assign to

Q ;

(11)
rec QRA(mapping documents of

Q ,


jS
, and



jS
);

(12) if (the radix of
rec is greater than 0) then

(13)
 

rec   ;

(14)
   

Q ;

(15) else

(16) if(check if


jiE , satisfies the connection condition) then

(17) assemble
Q into query statement, and assign to

Q ;

(18)
rec QRA (mapping documents of

Q ,


jS
, and



jS
);

(19) if (the radix of
rec is greater than 0) then

(20)
 

rec   ;

(21)
   

Q ;

(22) return


End

4. Statement Conversion

The query statement submitted by user and the query reformulation statements handled

by the reformulation engine are all in the form of XPath statements. However, the

underlying distributed query processer OGSA-DQP supports OQL statements only, thus a

statement conversion module became necessary. The XPath statements given with the

XML expressions of the relational databases supported by OGSA-DQP are mostly in the

form of Expression (3).

/database_A[predicateA]/table_A[predicate_B]/column_A (3)

International Journal of Database Theory and Application

Vol.9, No.4 (2016)

284 Copyright ⓒ 2016 SERSC

Where, predicate_A ::= table_pred_A[column_pred_A = value_pred_A], and

Predicate_B ::= column_pred_B = value_pred_B。

Thereby, the mappings to the “select”, “from”, and “where” sub-statements of OQL are

obvious. column_A defines the “select” attribute, while table_A and table_pred_A define

the “from” sub-statement. If the column_pred_A = value_pred_A, and column_pred_B =

value_pred_B, then they should be put in the “where” domain.

In this system, there are actually two additional functions provided to OGSA-DQP.

(1) Query reformulation. When the user submits an XPath statement to the schema of

local data source, the system will reformulate the statement and generate corresponding

query statements to related data sources.

(2) Conversion of query language. The reformulated query statements are still XPath

statements, while the distributed query processor only supports OQL statements.

Therefore, we added in the system the function of converting the reformulated query

statements into OQL statements in the query reformulation engine.

These two functions are implemented in SchemaMappingActivity, and the schema of

the new activity is as shown in Figure 6. The element Expression contains the submitted

XPath query statement and ServiceLocation contains the addresses of related Web

services, and these addresses will generate the reformulated query statements later. This

way, OGSA-DQP will support two types of operations as shown in Figure 7 OQL query

statements, and XPath query statements, which actually will be converted into OQL

statements after reformulation.

 <activityConfiguration> ...

<activityMap>

<activity name="XPathMappingStatement"

implementation="uk.org.ogsadai.dqp.gdqs.XPathMappingActivity"

schema="xpath_mapping_statement.xsd"/>

<activity name="oqlQueryStatement"

implementation="uk.org.ogsadai.dqp.gdqs.OQLQueryStatementActivity"

schema="oql_query_statement.xsd"/>

...

</activityMap>

</activityConfiguration>

Figure 6. Fragment of Activity Configuration Document of OGSA-DOP

 <?xml version="1.0" encoding="UTF-8"?> ...

<xsd:schema

<xsd:complexType name="XPathMappingType">

<xsd:complexContent>

<xsd:extension base="gds:ActivityType">

<xsd:sequence>

<xsd:element name="expression"

minOccurs="1" maxOccurs="1">

<xsd:complexType mixed="true">

<xsd:complexContent>

<xsd:extension base="gds:ActivityInputType"/>

</xsd:complexContent>

</xsd:complexType>

</xsd:element>

<xsd:element name="ServiceLocation"

minOccurs="1" maxOccurs="1">

<xsd:complexType mixed="true">

<xsd:complexContent>

<xsd:extension base="gds:ActivityInputType"/>

</xsd:complexContent>

</xsd:complexType>

</xsd:element>

<xsd:element name="webRowSetStream"

minOccurs="1" maxOccurs="1">

<xsd:complexType mixed="true">

<xsd:complexContent>

<xsd:extension base="gds:ActivityOutputType"/>

</xsd:complexContent>

</xsd:complexType>

</xsd:element>

</xsd:sequence>

</xsd:extension>

</xsd:complexContent>

</xsd:complexType>

<xsd:element name="XPathMappingStatement"

type="gds:XPathMappingType"

substitutionGroup="gds:activity"/>

</xsd:schema

Figure 7. Schema of New Activity

International Journal of Database Theory and Application
Vol.9, No.4 (2016)

Copyright ⓒ 2016 SERSC 285

5. Experiment and Related Analysis

A query reformulation engine in data access and integration system, which is service

oriented and suitable for grid environment, has been presented in this paper. This section

will introduce an experiment, which aims to verify the feasibility of the proposed query

reformulation engine, and to analyze its time consumption and performance on the basis

of feasibility.

5.1. Data and Preparation of the Experiment

The experimental data is from the DB Research data set, which is a set of data on

papers, articles with time they were published. This paper selects three databases: ICDE,

VLDB and SIGMOD to verify the feasibility of the proposed engine and to obtain some

related analysis. The corresponding database XML representations of the three databases

are shown in Figure 8 while these databases are respectively installed in three computers

connected in local area network.

 <databaseSchema dbname=”ICDE”>

<table name=”Journal”>

 <column name=”Artical”/>

 <column name=”Year”/>

</table>

 </databaseSchema>

 <databaseSchema dbname=”VLDB”>

 <table name=”Proceedings”>

 <column name=”Paper”/>

 <column name=”Year”/>

 </table>

 </databaseSchema>

<databaseSchema dbname=”SIGMOD”>

 <table name=”Paper”>

 <column name=”Title”/>

 <column name=”Year”/>

</table>

</databaseSchema>

Figure 8. XML Representation of Databases

Mapping rules are firstly needed to establish. The mapping rules of the mapping

documents on node maintaining of ICDE database are

/ICDE/journal/article->/VLDB/proceedings/pap and

/ICDE/journal/year->/VLDB/proceedings/year. On the other hand,

VLDB/proceedings/paper->/SIGMOD/paper/title and /VLDB/proceedings/year

->/SIGMOD/paper/year are the rules of the mapping documents on node maintaining of

VLDB database.

5.2. Experiment Results

The experiment contains two parts. One part is to verify the feasibility while the other

part is to analyze time consumption of the system.

After retrieving the mode of local data source, users give an XPath query code

QICDE=/ICDE/journal[year= "2005"]/article to the nodes saved in ICDE database. In this

manner, the system can not only get query results of local data source, but also obtain

query results of the other two databases, which are shown in Figure 9.

In the measurement of the consumption of system time, there are five measurement

parameters.

N: the number of waiting queries after extension of reformulation;

International Journal of Database Theory and Application

Vol.9, No.4 (2016)

286 Copyright ⓒ 2016 SERSC

T1: time used by the query reconstruction engine from the initial query to return of the

OQL statement after the reformulation;

T2: execution time of distributed processors after they receive the OQL query

statement;

(4) T: time that users have to wait for;

(5) T3: other time, T3=T-T1-T2.

The experiment is conducted in two conditions, which call the data services locally and

remotely. The time used by these two conditions is shown in Figure 10 and 11.

Figure 9. The Return Results of Given Queries

Figure 10. Response Time when Service Calls are Local

Figure 11. Response Time when the Services Calls are Remote

From the results in Figure 9, by establishing the mapping between the data sources,

users can obtain the access results of the other two data sources after submitting just one

query. This demonstrates the system is feasible.

In Figure 10, T2 increases rapidly when there are more queries, while T1 and T3 keep

stable. In Figure 11, the total used time T is relatively large because it is the remote call

service, while other conditions are similar with those in local call service. T2 also

increases linearly, while T1 and T3 are stable.

International Journal of Database Theory and Application
Vol.9, No.4 (2016)

Copyright ⓒ 2016 SERSC 287

Two conclusions can be obtained from the above observation. Firstly, the proposed

query rewriting engine for the data access and integration system is feasible, and suitable

for data access and integration in grid environment. Second, in most cases, the time used

of the proposed engine is relatively small and quit stable, which is acceptable for users.

6. Conclusions

The schema mapping document in query reformulation engine stores the schema

mapping rules. By establishing the relations among data sources with these rules, a

correlative Peer network is formed, therefore the bottleneck of global schema is

overcome.

The interaction of the engine is that when user submits an XPath statement to

OGSA-DQP, it calls the query reformulation engine. Then, the engine first retrieves the

schema mapping document, finds the information of related data sources, and then

extends and reformulates the XPath statement to generate suitable query statements to

other established related data sources. At last, through statement conversion module, the

obtained reformulated XPath statements are converted to OQL statements supported by

OGSA-DQP and return them to OGSA-DQP, which then execute the query operation and

completes the database access.

References

[1] A. Cali, D. Calvaness and G. D. Gianomo, “On the expressive power of data integration Systems”,

Berlin, Springer, (2003), pp. 338-350.

[2] A. Y. Halevy, “Answering queries using views: a survey”, The International Journal on Very Large Data

Bases, vol. 10, no. 4, (2001), pp. 270-294.

[3] A. Y. Halevy, “Logic—based techniques in data integration”, In: Minker J. Logic Based Artificial

Intelligence. New York: Kluwer Publishers. (2000), pp. 575-595.

[4] M. Lenzerini, “Data Integration: a theroretical perspective”, In: Wisconsin M. Proceedings of

Twenty-first ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems. New

York: ACM Press, (2002), pp. 233-246.

[5] S. Castano and V. Antonellis, “Global viewing of heterogeneous data sources”, Transactions on

Knowledge and Data Engineering, vol. 13, no. 2, (2001), pp. 277-297.

[6] H. T. Mogulkoc, D. W. Coit and F. A. Felder, “Electric power system generation expansion plans

considering the impact of Smart Grid technologies”, International Journal of Electrical Power & Energy

Systems, vol. 42, no. 1, (2012), pp. 229-239.

[7] A. Usman and S. H. Shami, “Evolution of Communication Technologies for Smart Grid applications”,

Review Article. Renewable and Sustainable Energy Reviews, vol. 19, (2013), pp. 191-199.

[8] A. P. Malozemoff, “New Material Requirements for Superconductor Grid Technology”, Original

Research Article. Physics Procedia, vol. 36, (2012), pp. 1429-1433.

[9] V. Giordano and G. Fulli, “A business case for Smart Grid technologies”, A systemic perspective

Original Research Article. Energy Policy, vol. 40, (2012), pp. 252-259.

International Journal of Database Theory and Application

Vol.9, No.4 (2016)

288 Copyright ⓒ 2016 SERSC

