
International Journal of Database Theory and Application

Vol.9, No.4 (2016), pp.239-246

http://dx.doi.org/10.14257/ijdta.2016.9.4.22

ISSN: 2005-4270 IJDTA

Copyright ⓒ 2016 SERSC

Research on SQLite Database Query Optimization Based on

Improved PSO Algorithm

Aite Zhao
1
, Zhiqiang Wei

1
 and Yongquan Yang

1,*

1
Ocean University of China, 266100, Qingdao, Shandong, China

tiddyzhao@hotmail.com, weizhiqiang@ouc.edu.cn, i@yangyongquan.com

Abstract

In recent years, with the development of the information industry, we ushered in the

age of big data, more and more Internet and mobile products are popping up. According

to the mobile device is portable, real-time etc, the development of mobile phone system

become the focus of scientific and technological development, but the research on its

local database is relatively small. This paper introduced a query optimization method

based on improved Particle Swarm Optimization algorithm (PSO) for SQLite database on

Android platform. This method improves the original PSO, and put the database

transaction into the Particle Swarm Optimization algorithm, and should be used to join

query. It improves the speed of complex query, and optimizes the query on SQLite

database. Experimental results show that this method is an effective way to optimize the

SQLite database query, and also can be used in the Android platform.

Keywords: query optimization, Particle Swarm Optimization algorithm, SQLite,

Android, database transaction, join query

1. Introduction

Android operating system is a universal operating system, and it has become one of the

world's most popular mobile platforms. It is easy to use in single binary cell phones, tablet

PCs, and other devices. The number of the smart phone and tablet PC that use the

Android operating system has been more than 1 billion [1]. Moreover, the local database

of Android system is convenient. SQLite [2] is an embedded and lightweight database on

Android operating system. SQLite supports SQL syntax of standard relational database

for complex queries. You only need to define the Create or Update SQL statement, and

then SQLite can automatically manage your Android platform. Most database query

optimization algorithms are working on PC -side optimization, ignoring the lightweight

SQLite database optimization. This paper has improved Particle Swarm Optimization

algorithm with the Android platform SQLite database, and constructed a model which is

suitable for Android platform.

Particle Swarm Optimization (PSO) is an algorithm developed gradually in recent

years. PSO is based on the social – psychological principle and is a randomized algorithm

based on the crowd. Unlike the evolutionary algorithm, PSO does not choose, typically,

all members of the group exist from start to end. With the passage of time and iterative

improvement of the quality of solutions, results of their interaction will be improved [3],

[4]. This paper presents an algorithm that can be used in the Android platform, based on

improved PSO algorithm. Using this algorithm to create model on the Android platform,

and use the more complex join query as an example to research. First, we should build a

syntax tree for the join query, and then use the tree coding to transform the tree and

generates the corresponding connected graph. The next step is to calculate the fitness and

take out the optimal solution according to the fitness, and then update the position and

velocity of the particle. These steps should be loop iteratively until the query finished.

mailto:tiddyzhao@hotmail.com
mailto:weizhiqiang@ouc.edu.cn

International Journal of Database Theory and Application

Vol.9, No.4 (2016)

240 Copyright ⓒ 2016 SERSC

This model uses the Android 4.4 Version as the operating system, and uses Office

Automation (OA) application to do simulation experiment for the improved PSO

algorithm.

2. Related Work

There are a lot of algorithms for query optimization. The main types of the main are

dynamic programming algorithm, swarm intelligence algorithm, genetic algorithm, ant

colony optimization algorithm, Simulate Anneal Arithmetic and hybrid optimization

algorithm. The following is mainly about genetic algorithm and ant colony optimization

algorithm (ACO).

2.1. Genetic Algorithm

Genetic algorithm is derived from Darwin's theory of evolution. First, the problem is

abstracted as a population, then code individual of this population, and the next step is to

calculate individual fitness, and extract individuals which have high fitness as an initial

population. Then Individuals in this population will do genetic operation (crossover and

selection and mutation), loop to do this thing and produce more strong offspring, and

finally determine the optimal solution [5]. In this algorithm, the process of calculating

fitness is similar to PSO. They are based on the study of the swarm intelligence algorithm.

2.2. Ant Colony Optimization Algorithm

ACO is derived from the foraging behavior of ants. Many Ants will release a kind of

secretion called information pigment in began foraging, the amount of information

pigment decide the distance between paths, the higher the concentration of information

pigment is, the more ants who select this path will be attracted. Information pigment of

paths also will volatile with the passage of time. Information pigment of shortest path that

can reach food will be increasingly more, and information pigment of path cannot reach

food will increasingly less, The optimal solution can be determined by the number of

information pigment [6-7]. However, when ants choose the same path after the beginning

of the food, then the information pigment on that path will become more, so that local

optimal solution will be obtained possibly in the later stage. The distinction between

information pigments can be studied, they are the number after find the food, and the

number hasn’t found the food.

2.3. Particle Swarm Algorithm

Also called Particle Swarm algorithm of particle swarm optimization algorithm, from

the birds of prey, PSO can be regarded as a flock, are determined by the loop iteration of

Particle Swarm Optimization. The process is similar to genetic algorithm, but not cross in

the iterative process, selection and mutation genetic manipulation. First to initial of a

particles group, in it, each particle has a adapted value, on each particle for adapted value

calculation, find optimal solution, into iterative process, then according to adapted value

on optimal solutions for adjustment, update location and speed of birds, if reached

maximum number of iterations or minimum errors, iterative process should be ended,

determine optimal solutions, otherwise, continues to calculate adapted value for next

iteration [8-9].

3. Database Query Optimization Algorithm Based on Particle Swarm

Optimization Algorithm

Now I will introduce the main method of the optimization algorithm. It contains two

parts and some important steps.

International Journal of Database Theory and Application

Vol.9, No.4 (2016)

Copyright ⓒ 2016 SERSC 241

3.1 Particle Swarm Optimization Algorithm

Suppose size of a particle is n and the space dimension is d, then the current position of

the ith particles is:

Xi=(Xi1, Xi2, Xi3, Xi4, Xi5,…, Xid), 0≤i≤n.

The velocity vector of the ith particle:

Vi= (Vi1, Vi2, Vi3, Vi4, Vi5,..., Xid), 0 ≤ i ≤ n.

Search for the individual optimal solution (pBest):

Pi= (Pi1, Pi2, Pi3, Pi4, Pi5,..., Pid), 0 ≤ i ≤ n.

Search for the global optimal solution (gBest):

Pg=(Pg1, Pg2, Pg3, Pg4, Pg5,..., Pgd).

The formula of updating velocity and position of each particle is:

Vid=W*Vid+c1r1(pid-Xid)+c2r2(Pgd-Xid).

Xid=Xid+Vid.

Parameters: W in the formula is inertia weight; you can use the Linearly Decreasing

Weight (LDW) strategy to define it. Parameter c1 and c2 represent learn factors, usually,

we make c1=c2=2 to ensure its efficiency. Parameter r1 and r2 are average random

numbers that in the range of 1 to 5. Vid∈[-Vmax, Vmax], users can set the maximum

value and minimum value of the velocity, but if the velocity was too big or too small, it

will make the results deviate from the optimal solution [10-11].

3.2 Sqlite Database Query Optimization Algorithm

SQLite query optimization mainly includes the following steps:

0)Uses the concept of database transaction to do optimization for database query

process. SQLite database embedded in the Android system, database operations are timed

to commit the transaction, this means that it commits once in a while, increased the time

consumption for reading and writing file, so add transaction operation helps to improve

the efficiency of database query [12]. Using function begin Transaction () to manually

open the transaction is preparation of database query.

1) Initializes the particle swarm, and then calculates each particle's position, velocity

and fitness, and forms an orderly connection string.

2) Finds (updates) individual best solution (pBest).

3) Finds (updates) the global best solution (gBest).

4) Updates particles' position and velocity, and select connected relation and put them

into the collection, finally orderly string.

5) To determine whether the number of iterations reaches the maximum, if you reach

the maximum number of iterations, you end a query, otherwise continue with c), d), e),

and update the optimal solution.

6) Obtains the optimal query plan.

7) End query.

8) Uses the setTransactionSuccessful () function tags query was successful.

9) Uses the endTransaction () function to commit the transaction.

The detailed process of database query optimization is shown in the following Figure1.

International Journal of Database Theory and Application

Vol.9, No.4 (2016)

242 Copyright ⓒ 2016 SERSC

Find and update pBest and
gBest

Updates particles' position
and velocity

Orderly string

no Reach the maximum number of
iterations and minimum error

yes

Find the optimal query plan

Start

 Initialize the particle swarm
and calculate fitness

Begin transaction

Mark query successfully

Commit the transaction

End

Figure 1. Flow Chart of Database Query Optimization Algorithm

4. Database Query Optimization Design

This paper is based on improved particle swarm algorithm with more complex join

query as an example for query optimization. Office Automation (OA) is an application on

the basis of the Android operating system, its database SQLite contains many tables; now

only take 4 tables (files, position, admin, singlefile) to do join query. The steps are as

follows:

4.1 Build a Query Connected Graph

First of all, we should generate the connected graph according to the connection query

statement. The query statement is: select files._id, fileName, files.filesNo, filesName, pos,

name, time from files inner join singlefile on files.filesNo=singlefile.filesNo inner join

position on singlefile.filesNo=position.filesNo inner join admin on

position.filesNo=admin.filesNo. According to the above connected graph, the connected

graph is G (V, E), V is the node, and E is the edge, then the connected graph is obtained

as follows:

International Journal of Database Theory and Application

Vol.9, No.4 (2016)

Copyright ⓒ 2016 SERSC 243

files

adminposition

singlefilea Join1

b Join2

c Join3

Figure 2. Join Query Connected Graph

Remark 1. In Figure2, a, b, c, d are connection properties, join1, join 2, join 3, join 4

are Connection identifications. Constructing the syntax tree of the query statement is

according to the node of the connection.

4.2 Create the Initial Population, Build a Binary Tree

According to the properties and identifies of the graph, it is necessary to encode the

query statement, due to the simple and easy method to operate, and avoid the situation

that binary encoding may result in illegal solution, In this paper, we use binary tree

coding, the generated syntax tree are as follows:

∞

files singlefile

∞

∞

position

admin

Figure 3. Join Query Syntax Tree

Remark 2. According to the syntax tree shown in Figure3, first encoding the binary tree

by DLR, the value of leaf nodes is 1, the value of non leaf nodes is 0, the corresponding

code is (0,0,0,1,2,3,4), due to the connection operations are in non leaf nodes, so 0 values

are in the top, code can be simplified to (1,2,3,4). Coding sequence is the initial

population. Each code number in the sequence is the position of each particle in the mass,

after the DLR, velocity of particles can be generated.

4.3 Calculate Fitness

Particles in the process of finding the optimal solution require fitness to judge. The

computation of fitness needs to design fitness function, and fitness function also directly

affects the convergence rate and optimal solution of the particle.

International Journal of Database Theory and Application

Vol.9, No.4 (2016)

244 Copyright ⓒ 2016 SERSC

If there are n relations in the query, the internal node number of its syntax tree is ti, the

cost of the query is the sum of the nodes of syntax tree, and the mathematics is as follows.

consume (t) = consume (ti), i= 1, 2,..., n-1;

Calculating the fitness first should determine the appropriate cost function consume

(P), take the reciprocal, is fitness function of particles.

F (P) = 1/consume (P)

At first, the fitness of all particles in the particle swarm should be calculated, and the

particles with high fitness are taken. The greater the consumption is, the smaller the

particle's fitness is.

4.4 Update Particles' Position and Velocity

First of all, we rank all the particles according to their fitness value from high to low,

particle which has the highest adaptive value will enter the next round of iteration, and

other particles will update the position and velocity, In the process of updating, to set the

minimum and maximum values of the particle location. When encounter a duplicate

location value, plus one, until the location is available.

When the maximum number of iterations is reached, the loop is over, and the optimal

query plan is found. Then the transaction is submitted manually and the query is

completed.

5. Algorithm Test and Result Analysis

After optimizing the application of office automation by using the improved PSO,

query statement becomes: select files._id, fileName, files.filesNo, filesName, pos, name,

time from files inner join position on files.filesNo=position.filesNo inner join admin on

position.filesNo=admin.filesNo inner join singlefile on singlefile.filesNo=admin.filesNo.

Doing join query for the 4 tables files, position, admin, singlefile, using the function

System.nanoTime () to calculate the running time difference before and after the query,

and then print to the logcat console. Print results are shown in Figure4:

Figure 4. Query Time Comparison Before and After Optimization

Remark 3. By computing the average of the results of the above five groups, the

optimized query time is 0.1151819368s faster than no-optimization query. The amount of

International Journal of Database Theory and Application

Vol.9, No.4 (2016)

Copyright ⓒ 2016 SERSC 245

data in the four tables is less, the maximum number of records in the four tables is only

39, and the more datas in SQLite database is, the more obvious the effect will be.

Query result is shown in the following figure:

Figure 5. Join Query Results

6. Conclusion

Above, through the analysis and research on PSO algorithm, enhanced efficiency of

join query statement, and the improved PSO algorithm is applied to Android operating

system, optimized the SQLite database, and combine the database transaction and particle

swarm optimization algorithm, it can improve the performance of SQLite database. With

the constant exploration of the PSO algorithm, I hope the algorithm will be applied in

more and more fields.

Acknowledgement

This paper is supported by the Fundamental Research Funds for the Central

Universities (No.201413065), key Science and Technology Program of Shandong

province (No. 2014GGX101005), and Qingdao strategic emerging industry development

plan (No. 13-4-1-45-hy).

References
[1] The Android Story, “Android, the world's most popular mobile platform”,

http://www.android.com/historyhttps://developer.android.com/about/index.html, (2015).

[2] M. Owens and G. Allen, “The definitive guide to SQLite”, Berkeley: A press, (2006).

http://www.android.com/historyhttps:/developer.android.com/about/index.html

International Journal of Database Theory and Application

Vol.9, No.4 (2016)

246 Copyright ⓒ 2016 SERSC

[3] J. Sun, W. Fang and X. J. Xu, “Quantum-behaved particle swarm optimization: analysis of the

individual particle's behavior and parameter selection”, Evolutionary 393. - Computation, vol. 20. No. 3,

(2012), pp. 349.

[4] D. S. L. Coelho, “Gaussian quantum-behaved particle swarm optimization approaches for constrained

engineering design problems”, Expert Systems with Applications, vol. 37, (2010), pp. 1676-1683.

[5] K. Deb, A. Pratap and S. Agarwal, “A fast and elitist multiobjective genetic algorithm: NSGA-II”,

Evolutionary Computation, IEEE Transactions on, vol. 6, no. 2. (2002), pp. 182-197.

[6] M. Dorigo, “Special section on ant colony optimization”, IEEE Trans. on Evolutionary Computation,

vol. 6, no. 4, (2002), pp. 317-319.

[7] L. J. Ke, Q. F. Zhang and R. Battiti, “MOEA/D-ACO: A multi-objective evolutionary algorithm using

decomposition and ant colony”, IEEE Transactions on Systems Man and Cybernetics Part A-Systems

and Human, no. 99, (2013), pp. 1-15.

[8] G. Lin, “Optimization of database query application research based on particle swarm algorithm”, vol.

29, no. 3, (2012), pp. 974-975.

[9] C. Guo, L. Zhu and X. Li, “Multi-join Query Optimization Method Based on Ant Colony Algorithm”,

Computer Engineering, vol. 35, no. 10, (2009), pp. 173-176.

[10] C. T. Man and G. M. Sheng, “An Improved Algorithm Based on Cooperative Particle Swarm

Optimization”, Journal of Harbin University of Science & Technology, (2010).

[11] G. H. Guo and Z. G. A. Wang, “Modified Particle Swarm Optimization”, Journal of Harbin University

of Science & Technology, (2010).

[12] G. Allen and M. Owens, “The definitive guide to SQlite”, American, A press, (2010), pp. 193−144.

