
International Journal of Database Theory and Application

Vol.9, No.4 (2016), pp.23-44

http://dx.doi.org/10.14257/ijdta.2016.9.4.02

ISSN: 2005-4270 IJDTA

Copyright ⓒ 2016 SERSC

A Hybrid Approach of Clustering and Time-Aware Based Novel

Test Case Prioritization Technique

Geetanjali Chaurasia and Sonali Agarwal

Department of Information Technology, Indian Institute of Information

Technology, Allahabad-211012, India

geetanjalichaurasia@gmail.com

sonali@iiita.ac.in

Abstract

Regression testing is an activity during the maintenance phase to validate the changes

made to the software and to ensure that these changes would not affect the previously

verified code or functionality. Often, regression testing is performed with limited

computing resources and time budget. So, fully comprehensive testing is not possible at

this stage. Test-case prioritization techniques are applied to ensure the execution of test

cases in some prioritized order and to achieve some specific goals in minimum possible

time like, increasing the rate of fault detection, detecting the most critical faults as early

as possible etc. The main objective of this paper is to achieve higher value of average

percentage of faults detected, execute the higher priority test cases before lower priority

test cases and also we target to decrease the execution time for achieving the maximum

value of average percentage of faults detected. We proposed a new prioritization

technique that uses a clustering approach and also considers various factors like,

execution time of every test case, code coverage metric, fault detection ratio, test case

failure rate and code complexity metric to reorder the execution of test cases. The results

of this research work will show the importance of clustering technique and various

factors taken into consideration, for achieving effective prioritization of test cases. The

results of implementation will subsequently show that the proposed approach is more

effective than the existing coverage and clustering based prioritization techniques. From

the experimental results, we found that our proposed approach achieved higher value of

average percentage of faults detected than other clustering based and coverage based

techniques. Also, this approach reduces the execution time taken by the prioritized test

cases.

Keywords: Clustering; Regression testing; test case prioritization; test suite

1. Introduction

At the time of the formal testing phase software testers develop the test suites. These

test suites often keep save to reuse them from future’s perspective. “Regression testing” is

an activity during the maintenance phase to validate the changes made to the software and

to ensure that these changes would not affect the previously verified code or functionality.

Often, regression testing is performed with limited computing resources and time budget.

Executing the whole test suite at the time of regression testing is infeasible because a test

suite contains large number of test cases and rerunning all the test cases would take

enormous amount of time and resources. Rerunning such test suites can cost one half of

the total cost requires spending in maintenance phase and take unjustifiable excessive

amount of time [1-3]. For example, an industry reported that executing all the test cases at

the maintenance phase required seven weeks for a product having 20000 lines of code [4].

There are also other challenges that one has to face at this phase like, Software

development team often thinks that any change applied to a part of code will affect only

mailto:geetanjalichaurasia@gmail.com

International Journal of Database Theory and Application

Vol.9, No.4 (2016)

24 Copyright ⓒ 2016 SERSC

that part of code and thus regression testing focusing only that area is sufficient and only

corresponding test cases are sufficient to be executed. But, actually changes made in one

part can draw impact on any other area and the whole code is needed to be tested again

and again. This is a very difficult issue while performing regression testing. While making

regression testing plans, testing team often starts execution with simplest tests and moves

towards the complex and critical tests’ execution covering complex functionalities at last.

This flow of executing test cases totally divert the goal of regression testing to find most

critical defects and bugs at the earliest. To get meaningful results from this phase is a very

slow process. But sometimes project managers do not have that much time to wait for the

results. They want to know whether current version is working correctly or not as early as

possible. Limitation of resource availability is another main challenge of regression

testing. Testing team cannot spend much cost, time and effort at the regression testing

phase as it can spend on formal testing phase of SDLC. But in reality, regression testing

requires maximum resources allocated to the project. One of the main challenges of

regression testing is the repetition of regression testing cycle again and again. Whenever a

change is applied to the software program, regression testing test cases has to get executed

to fix the bugs. It is very difficult to manage all the test cases in large test suites for each

run of the regression testing cycle.

In these situations, testers may re-arrange the test cases to assign the priority to each

test case so as to execute them in a specific order aiming to achieve desired performance

goals. The performance goals include increasing the rate of fault detection, detecting the

severe faults as early as possible, reliability etc. Test case prioritization is different from

test case selection and minimization in the sense that it overcomes the drawbacks of these

two by not discarding the test cases because sometimes discarding of the test cases is not

acceptable [5].

The first test case prioritization technique was proposed by Rothermel et al. in 1999

that only considered code coverage metric information for the prioritization [5]. After that

many test case prioritization techniques have been presented that incorporated various

factors like time, cost, faults, risks, history of executing the test cases etc. There are

various techniques of test case prioritization are available in literature like, Coverage

based, Distribution based, Human based, History based, Risk based, Fault-aware based,

Requirements based etc. Although various clustering based techniques have also been

proposed by researchers, but still improvements are required to make it more effective in

terms of maximum rate of fault detection in minimum execution time and other factors.

In this paper, we present a hybrid approach of clustering and time-aware based novel

test case prioritization technique that first clusters the test cases on the basis of their

common property using Fuzzy C-means and then performs intra and inter- cluster

prioritization based on coverage, complexity metric, execution time and test execution

history. This work is an attempt to propose a better technique that can overcome the

shortcomings of the existing ones and includes execution time factor while prioritizing the

test cases. The comparative analysis of the results obtained by the proposed technique and

the existing clustering based and coverage based prioritization techniques will show the

effectiveness of the proposed one.

The rest of the paper is divided into seven sections. Section II presents the background

of the task under consideration and describes general definition of test case prioritization.

Section III presents related research works that have been done for test case prioritization

problem. Section IV describes our proposed approach in detail. Section V describes the

experimental studies performed for carrying out this research work including object of

analysis, data collection, variables and measures etc. Section VI discusses and analyzes

the experimental results obtained from the proposed approach. Section VII discusses

various threats to validity related to this research work. Section VIII includes conclusion

and future work.

International Journal of Database Theory and Application

Vol.9, No.4 (2016)

Copyright ⓒ 2016 SERSC 25

2. Background

2.1 Methodologies Use for Regression Testing

Four methodologies have been proposed to handle the regression testing challenges:

2.1.1 Retest All

In this method, the test cases that are not applicable to the current modified version of

the software are rejected and the other left over test cases are applied to test the modified

version.

2.1.2 Regression Test Selection

While following the previously discussed method testing team has to apply all the test

cases to test the modified version of the software, which takes a lot of effort and time and

hence it is very expensive. But, in test selection approach subset of test cases are selected

on the basis of the requirements of the modified version. So this method uses the

information of the modifications applied in the current version to select the test cases [6].

2.1.3 Test Suite Reduction

This method reduces the size of the test suite by discarding the test cases that are not

meaningful for the current version of the program by using the information of the

modifications applied in the current version [6]. It also removes the redundant test cases.

It is different from the previous one in the sense that test selection only chooses the test

cases and does not discards the left over test cases. The main benefit of this method is the

ease of handling the large test suites by reducing its size. But sometimes the fault

detection capability of the reduced test suite is questioned.

2.1.4 Test Case Prioritization

In this method test cases are executed in prioritized order. Each test case gets a priority

on the basis of some criteria and then they are applied in prioritized fashion from highest

to lowest priority. Test case prioritization is different from test case selection and

minimization in the sense that it overcomes the drawbacks of these two by not discarding

the test cases because sometimes discarding of the test cases is not acceptable. But,

prioritization can also be used in conjunction with selection and minimization. Before

prioritization, test case minimization is done, i.e., to select a minimum number of test

cases that can fulfil the intension of performing regression testing. Then, we can prioritize

them with goals like, to detect faults as soon as possible, to detect the most destructive

faults first, and to attain certain coverage criterion etc.

This research work mainly focuses on the problem of Test Case Prioritization during

Regression testing phase. The general definition of test-case prioritization can be given as

[6]:

Given: TSU is a test suite.

 PMT is a set of all possible permutations of test cases in TSU

 To map PMT to real numbers a function f is defined.

Problem: Find TSU’€ PMT such that (VTSU”) (TSU”€ PMT)

 (TSU”≠ TSU’) [f(TSU’) ≥ f(TSU”)]

Here, PMT denotes the set of all probable orderings of TSU and f is a function that

when applied to the orderings, provides an award value corresponding to that ordering. So,

we want to have an arrangement of test cases that would achieve the highest award value

among all the possible orderings. There can be many possible award values- rate of fault

International Journal of Database Theory and Application

Vol.9, No.4 (2016)

26 Copyright ⓒ 2016 SERSC

detection, coverage criteria, reliability etc. There are two types of test case prioritization

[5]-

1) General Prioritization- In this, the same reordering of the test cases would be used in

every upcoming version of the program or software, i.e., in this type of prioritization

without any knowledge of the modifications being applied to the program, the same

solution is used for each subsequent version of a program or software.

2) Version Specific Prioritization- In this, we use the knowledge of changes being

applied to a program or software to rearrange the test cases according to those specific

changes and for each successive version the reordering is changed.

2.2 Clustering Based Test Case Prioritization

Clustering based test case prioritization technique considers the common property of

the test cases and clusters them on the basis of their common features. Test cases are

clustered in the sense that test cases within a cluster may have somewhat identical

capability of detecting the faults and if a software testing team has lack of time to

consider all the test cases to be executed at the time of regression testing then they can

execute few of them from each cluster and can achieve approximately similar results.

Also with the help of clustering we can find out any exceptional condition covered by a

test case. Software artifacts are used to find out the common features of the test cases. For

example, Coverage commonality among the test cases can be used to cluster them.

This approach includes two types of prioritization: Intra-cluster prioritization and Inter-

cluster prioritization. Intra-cluster prioritization is done to get the prioritized list of test

cases within each cluster, so that higher priority test cases can be executed first from each

cluster. Inter-cluster prioritization prioritizes the overall test cases in all the test cases.

3. Related Works

In 1999 Rothermel et al. proposed various code coverage based test case prioritization

techniques [5]. They proposed statement based, branch based, fault exposing potential

(fep) based techniques. Rothermel and Elbaum suggested two main strategies for test case

prioritization [7, 8]. Both strategies can be applied on any coverage criterion. Total

strategy simply arranges the test cases in non-increasing order according to the number of

statements covered by them, whereas, additional strategy sorts the test cases in decreasing

order of covering the maximum statements not yet covered by previously executed test

cases before any other previously unexecuted test cases. The techniques proposed by them

include both total as well as additional strategies. They proposed total statement coverage,

additional statement coverage, total branch coverage, additional branch coverage, total

fep, additional fep based prioritization techniques. In 2002, some researchers have

proposed function level prioritization in addition to statement level prioritization [9]. Li et

al. suggested a framework that produces the test cases covering the points given higher

preference by computing preferences using code coverage capability [10]. Aggrawal et al.

suggested an approach based on code coverage criteria but this technique especially

focuses upon version specific test case prioritization [11]. Srivastava et al. proposed a test

case prioritization technique on the basis of coverage criteria to increase the value of

APFD (Average Percentage of Faults Detected) metric [12]. In 2007 Bryce et al. proposed

a test case prioritization technique using interaction coverage which was especially

presented for Event-driven software [13]. In this test cases are prioritized on the basis of

event interaction coverage and it uses the concept of software interaction testing. Zhang et

al. proposed a new group of coverage based ART techniques [14]. This technique is based

on the white-box coverage information. White-box ART prioritization technique at each

step chooses the next test case that is farthest away from the already prioritized test cases.

Harrold et al. presented modified condition/ decision coverage based prioritization

approach [15]. MC/DC is a very powerful technique for verification and it is found that if

International Journal of Database Theory and Application

Vol.9, No.4 (2016)

Copyright ⓒ 2016 SERSC 27

test cases meet MC/DC coverage need then they can detect important errors that can’t be

found by functional testing. Jeffrey et al. presented a method of prioritization based on the

relevant slices of outputs of various test cases [16]. This technique is a combination of

total statement coverage criterion and also depends upon the number of statements

covered by a test case that influence the output generated by that test case.

Under the umbrella of Human-based approaches Tonella et al. suggested case based

ranking methodology which is based on machine learning algorithm that uses the user

knowledge for prioritization [17]. This approach provides ranking with the help of two

inputs- 1) a set of initial indicators of priority and 2) pairwise comparisons of test cases

obtained from the expert. To enhance the scalability of human based approach, Yoo et al.

proposed an approach that combines the pairwise comparison of test cases with clustering

technique [18]. In this technique also prioritization is based on comparisons performed by

human testers but test cases are clustered according to their similarity and these clusters

are provided to the testers. The inter-class prioritization is performed by the tester

whereas; intra-class prioritization is done on the basis of coverage criterion. Kim and

Porter proposed the test case prioritization technique based on historical information

about the execution of test cases in resource constrained environment [19]. Khalilian et al.

proposed an approach on history based test case prioritization that uses the historical fault

detection performance information of test cases for prioritization [20].

Srivastava et al. proposed a combination of requirement based and risk based

prioritization where the task on hand is performed on the basis of identified requirements

and risk factors [21]. It follows two level strategies for prioritizing the test cases which

includes two priority factors- 1) Priority based on requirements provided by customers,

developers and managers.2) severity of risks exist in requirements. The risk based

prioritization technique proposed by Kavitha et al. attains the objective by ordering the

test cases in a way to achieve maximum rate of fault identification with most severe

defects identified at the earliest by test cases [22]. Krishnamoorthi et al. proposed a model

for prioritization based on software requirement specification uses six factors to prioritize

the test cases: Customer preference, modifications in requirement, complexity in

implementation, completeness, traceability and influence of fault [23]. A research has

been performed to propose fault based prioritization technique that incorporates fault

localization approach [24]. This approach focuses on not only detecting the faults but also

finding out where the set of faults located in a program so as to provide ease to debugging

activity. Yu et al. proposed a fault based prioritization strategy for specification based

testing that prioritizes the test cases based on their potential of detecting the faults [25].

The information about test cases and corresponding faults covered by them has been

derived using specifications. So, this technique can also be used when source code is

unavailable.

Mirarab and Tahvildari used Bayesian networks based on probability theory for

prioritizing the test cases at regression testing phase [26]. This approach takes an

advantage of augmenting different sources of information together into a single model for

prioritization. It also prioritizes the test cases on the basis of their success probability.

Korel et al. proposed a model based technique in which differences between the original

and modified models are used to prioritize the test cases [27]. George et al. proposed

heuristic methods for model based test case prioritization to overcome the complexity of

model dependence based prioritization and to provide simple as well as efficient methods

for the same [28]. Cost aware based techniques proposed by Elbaum et al. considers that

the severity of each fault as well as cost of executing every test case together are two

important factors for prioritization [29]. Thus main goal of cost aware based techniques is

to execute test cases having minimum cost and highest rate of fault detection with

detecting most severe faults earlier at the time of regression testing. A very effective

technique of test case prioritization with the time budget factor using Integer Linear

Programming (ILP) was suggested by Zhang et al. [30]. The two main goals to achieve

International Journal of Database Theory and Application

Vol.9, No.4 (2016)

28 Copyright ⓒ 2016 SERSC

while using this technique are- 1) we need to select the test cases, so that their execution

time should not go beyond the time budget. 2) We need to prioritize the test cases so that

they can detect the faults as early as possible. It has two main steps- 1) ILP is applied for

test case selection. 2) Then for prioritizing the test cases any traditional technique can be

used.

Various clustering based techniques have also been proposed by researchers. Table 1

summarizes these techniques.

Table 1. Summary of Existing Clustering Based Approaches

Title/Author Clustering

Technique Used

Technique for

prioritization

Carlson et al.

“A clustering approach to improving

test case prioritization: An industrial

case study” [31].

Agglomerative

Hierarchical

Clustering

1. Code Coverage- Method

coverage

2. Code Complexity Metric-

LOC and Method

dependency count

3. Fault history information-

Fault detection rate

Arafeen et al.

“Requirement based clustering

approach” [32].

K-Means 1. Lines of code

2. Nested block depth

3. McCabe’s cyclomatic

complexity

Jacob and Ravi

“A Novel Approach For Test Suite

Prioritization” [33].

K-Means Cyclomatic Complexity

Badwal et al.

“Test Case Prioritization using

Clustering” [34].

Agglomerative

Hierarchical

Clustering

1. Statement coverage

2. Number of function calls

4. Proposed Methodology

The detailed steps of the proposed approach are shown in Figure 1. In this approach

first we have selected the datasets, that is, a software application for which test cases were

already provided. For clustering the test cases code coverage commonality information

has been used between the test cases and Fuzzy C-means has been used as a clustering

technique. After getting the clusters of test cases, fault history information, source code

information including code complexity, test case execution history and execution time

taken by the test cases have been used to re-arrange the test cases within the cluster. All

these factors are necessary to assign the priority to the test cases. No technique available

so far have used execution time factor for this task. So this proposed approach combines

the idea of code coverage, fault-aware based, cost-aware based and clustering based

approaches with the inclusion of execution time factor. After performing prioritization

within the cluster, next step is to perform inter-cluster prioritization. For this we have

used one-per cluster sampling approach in round-robin manner to decide the priority of

test cases across the clusters. Using these final priorities, test cases are executed in that

order to minimize the time, cost and effort and to maximize the rate of fault detection.

International Journal of Database Theory and Application

Vol.9, No.4 (2016)

Copyright ⓒ 2016 SERSC 29

Figure 1. Detailed Steps of Proposed Approach

4.1 Clustering of Test Cases

The first step of the proposed approach is clustering of the test cases on the basis of

some common feature. The test cases have been clustered on the basis of their common

coverage features. Line coverage, method coverage and branch coverage have been

considered to group the test cases, in the sense that if test cases have some coverage

commonality then they are somewhat similar type of test cases and they also have same

potential of detecting the bugs. For clustering, Fuzzy C-means clustering method has been

used [35-36]. The reason behind using FCM is that it may be the possibility while

clustering the test cases that we may not get firm boundaries of the clusters. Test cases

may belong to one or more clusters according to its commonality with test cases in

different cluster.

4.1.1 Fuzzy C-Means

The other clustering techniques proposed so far are referred to as hard or crisp

clustering, which means that each data point is allocated to only one cluster. For fuzzy

clustering, this constraint is diminished, and the data point can be affiliated to all of the

clusters depending on its membership value for each cluster. This concept is exceptionally

helpful when there is ambivalence among the clusters’ boundaries and they are not well

defined. Furthermore, this approach is quite useful to identify more delicate relations

between a data point and its corresponding clusters. The steps of algorithm used for

clustering are:

Step 1: Initialize number of clusters K and cluster centre matrix M(0). Also initialize

fuzzification parameter m=2.

Step 2: Use following equations to evaluate membership matrix W(0) :

 (1)

International Journal of Database Theory and Application

Vol.9, No.4 (2016)

30 Copyright ⓒ 2016 SERSC

If dpq = 0 then wpq = 1 and wpq = 0 for q ≠ r (2)

Where, p=1,..,N and q, r= 1,..,K

Step 3: At each iteration increase t by 1 and recalculate centre matrix M(t) by using:

 (3)

Where, Xp is a data point.

Step 4: Recalculate membership matrix using equation (1) and (2).

Step 5: If | W(t)-W(t-1) | < ε then stop further iterations otherwise move back to step 3.

According to the membership value of each test case in each and every cluster, we

assigned test cases to the cluster. Cluster centre matrix has been initialized using random

generator function. While considering the distance function we used “Aggregate

Quantifiable metric” defined in equation (4). This metric was proposed by Vangala et al.

to be used especially in test case comparison and clustering task [37].

 (4)

Where,) illustrates the value and Wk depicts weight of the kth metric.

4.2 Intra Cluster Prioritization

After having the clusters of test cases, a new intra-cluster prioritization algorithm has

been applied to assign priorities to the test cases within a cluster. For this purpose we have

used the following metrics:

4.2.1 Code Coverage Metric

Code coverage metric provides the statistics about the part of code covered by a single

test case from the total covered code by all the test cases. We have considered statement,

method and branch coverage and computed the coverage ratio of each test case. This

metric has been used because larger the part of code covered by a test case, higher should

be its priority.

4.2.2 Test-Case Failure Rate

This metric has been considered because here the task is to prioritize the test cases at

the regression testing phase where the information of the previous running status of the

test cases is already available and if a test case has failed many times then the fault

covered by it, is still unresolved, and thus it should get the higher priority to be executed

for the next time.

4.2.3 Fault Detection Ratio

Fault detection ratio of each test case depicts the capability of detecting faults by a test

case and a test case is more important to execute if it has more fault detection capability.

4.2.4 Execution Time

Execution time taken by each test case is also very important information to be

included while performing the test case prioritization and to get good results. If time taken

by a test case is low then it should get higher priority to get executed.

International Journal of Database Theory and Application

Vol.9, No.4 (2016)

Copyright ⓒ 2016 SERSC 31

4.2.5 Code Complexity Metric

It provides the information about the complexity level of the code. Higher complex

code requires more vigorous testing efforts. The formula of each metric is shown in Table

2.

Table 2. Metrics and Related Formulae

Metric Formula

Code Coverage Metric

(Statement Coverage)

Test-case failure rate

Fault detection ratio

Code Complexity Metric
Complexity of a test case is equal to the average of the

complexities of classes covered by that test case.

4.3 Algorithm for Intra-Cluster Prioritization

Input: Clusters C1,C2,..,Cn having t1, t2,..,tn test cases in each.

Output: A prioritized list of test cases.

1. Start

2. For each cluster, do

3. for all t in C do

4. TFRt Calculate test-case failure rate from previous execution history.

5. Calculate coverage ratio CRt coverage of (line + branch + method)/3

6. Et Determine execution time of test case t.

7. CCt Compute code complexity for t.

8. FDRt Compute fault detection ratio for t.

9. for all t in C do

10. Normalize TFR, CR, E, CC, FDR.

11. Priorityt= (TFRt + CRt + CCt + FDRt) - Et

12. Sort test cases according to their test priority.

13. End

4.4 Inter Cluster Prioritization

After getting the prioritized test cases, the test cases have been executed in round-robin

pattern from each cluster. We started this process with the highest priority test case from

first cluster and executed it, and then the highest priority test case from second cluster has

been selected and so forth. After executing one test case from each cluster the process has

been repeated for the second highest priority test cases. In this way inter-cluster

prioritization has been achieved and if an organization cannot spend its time to execute all

the test cases, it can skip the execution of low priority test cases from each cluster. This

step would finally decide the priority of a test case for execution. Figure 19 is showing

this inter cluster prioritization approach.

5. Experimental Studies

Some empirical studies have been performed to assess the potential of the proposed

approach in prioritizing the test cases. The plot of conducting the experiments is

illustrated here.

International Journal of Database Theory and Application

Vol.9, No.4 (2016)

32 Copyright ⓒ 2016 SERSC

5.1 Research Questions

This approach has been proposed to handle the challenges of regression testing in best

possible ways, to perform the regression testing with minimum resources like, time and

cost and to achieve higher average percentage of faults detected. This work considers and

will answer the following research questions:

RQ1: How to increase the rate of fault detection at the time of regression testing?

RQ2: Whether clustering approaches perform better than non-clustering approaches?

RQ3: What is the effect of considering other important factors over considering only

code coverage metric for prioritization?

RQ4: How to reduce the rate of execution time?

5.2 Variables and Measures

5.2.1 Independent Variables

The independent variable for conducting this study is test case prioritization method.

To determine the effectiveness of our proposed approach six control techniques and the

proposed technique have been considered to be compared. These seven techniques are

mentioned in Table 3.

Table 3. Description of Techniques Under Experiment

Label Description

Torig
Random ordering of Test Cases

Tcodecov
Prioritized using code coverage only without clustering

Tallfac
Prioritized using all metrics mentioned in Chapter 3 without clustering

Tkmcodecov
Clustering using K-means and prioritized using code coverage only

Tkmallfac
Clustering using K-means and prioritized using all factors

Tfcmcodecov
Clustering using FCM and prioritized using code coverage only

Tfcmallfac
Clustering using FCM and prioritized using all factors

These techniques have been considered to compare the results of using K-means and

FCM clustering techniques, to compare the results between clustering and non-clustering

based techniques and to compare the results between techniques using code coverage only

and using all factors. The motive is to show the effect of clustering based approach over

non-clustering based approaches, chosen clustering technique and effect of considering all

metrics over code-coverage based only.

5.2.2 Dependent Variables

To answer our research question 2 and to prove the validity and benefits of the

proposed technique over the previous available techniques, it is required measuring the

value of rate of fault detection. So, it is needed to evaluate the value of APFD (Average

percentage of faults detected) metric [38]. Higher APFD value indicates better

performance of the corresponding prioritization technique. Suppose “TS be a test suite

having m test cases and F be a set of n faults. Let TCFi be the first test case in prioritized

order which is covering fault i.” The APFD is expressed as:

International Journal of Database Theory and Application

Vol.9, No.4 (2016)

Copyright ⓒ 2016 SERSC 33

 (5)

To answer the research question 4, the considered dependent variable is execution time

taken by the prioritized test cases that are contributing in achieving the higher APFD

value. As a part of this research work, the execution time taken by the techniques under

consideration has been evaluated and compared in order to access the effectiveness of the

proposed technique in reducing the execution time.

5.3 Object Programs

Two software applications Apache ant and JMeter have been selected to perform this

work. Two applications have been used to evaluate and also validate the results. Table 4

shows the subject programs used to perform this experiment. Apache ant is a Java library

and build tool similar to make [39]. JMeter is a pure Java application used to perform load

and performance testing of web applications [40]. These programs and their test cases

have been taken from Software Artifact Infrastructure Repository [41]. So, both are Java

based applications and their test cases’ available in the repository are JUnit test cases.

Table 4. Datasets and Related Information

Subject Versions Size Test Classes Faults

Ant 9 627 150 21

JMeter 6 389 28 9

Ant dataset has 9 original and fault seeded version. Here, number of test cases in

dataset are 150 and number of faults seeded are 21. For JMeter dataset, 6 original and

fault seeded versions are available with 28 test cases and 9 faults. Their fault seeded

versions have been used to perform this work. For each version different numbers of test

cases are applicable. Maximum number of test cases applicable for any version is

mentioned in Table 4.

5.4 Experiment Setup and Procedure

5.4.1 Experiment Environment

The environment to perform these experiments consist of a machine having Windows 7

as an operating system, Intel Core i3 processor with 4 GB RAM. As a programming

language, Java has been used throughout this experimental study.

5.4.2 Data Collection

After finalizing the object of analysis, the next step is to collect data to perform

clustering and prioritization. Data that need to be collected are: JUnit test suite, Coverage

information, execution time, test case failure rate, and fault detection ratio and code

complexity information.

After having datasets with JUnit test cases, test suites with 150 test cases in Apacahe

Ant application and 32 test cases in JMeter application using Eclipse IDE have been

developed. For developing these test suites JUnit environment has been used and included

junit3.8.1 library in our project. The test cases added in this suite can be executed together

by only executing this test suite using JUnit. The test cases are executed in the order in

which they have been added in this suite. Initially they have been added in random order.

To perform clustering of test cases we have used Java programming language in

Eclipse IDE. Eclipse IDE has been used throughout the implementation process. Two

clustering techniques have been implemented to compare the results- K-Means and Fuzzy

C-means. K-means have been used in previous researches of test case prioritization and

International Journal of Database Theory and Application

Vol.9, No.4 (2016)

34 Copyright ⓒ 2016 SERSC

my proposed approach considers FCM for this task. To group the test cases, their

coverage ratio feature have been used. So, at this stage the first task is finding out the

coverage ratio of each test case. To get the coverage information, EMMA code coverage

tool has been used. This tool has been integrated with Eclipse and JUnit framework in our

project by installing its plug-in.

We ran this tool with JUnit test suite, and collected the coverage information for all the

test cases. Covered instructions, branches and methods by each test case have been

gathered and the statement, branch and method coverage ratios have been calculated using

the formula mentioned in Table 2. EMMA tool has also been used to collect complexity

metric values for each test case. This tool provides Complexity values as a total

complexity of class and how much complexity has been covered by test cases covering

that class. Complexity of a test case is equal to the average of the complexities of classes

covered by that test case. We have generated complexity report in XML file and

converted into CSV file to further use this information for applying intra-cluster

prioritization approach.

To obtain test case failure ratio first data from test case execution history of previous

runs of test cases have been gathered through previous versions. We obtained information

about how many times each test has been executed and how many times it has been failed

through JUnit test suite execution of previous versions. This test suite execution history is

available in XML file which contain information about all the previous runs of test cases

and their pass status has been shown through value 1 and value 0 for a fail test case. The

data of this xml file has been used to calculate test case failure ratio of each test case. The

result of this module has been given as input to the intra-cluster prioritization algorithm.

To calculate the fault detection ratio, first the fault matrix using Gen_fault_matrix tool

has been produced. This tool generates fault matrix in the form of Universe file which can

be opened in Notepad. This matrix shows the fault id and test number. In this, 0 indicates

that this fault is not covered by the mentioned test case and 1 indicates fault covered by

this test case. The formula mentioned in Table 2 has been used to calculate fault detection

ratio. The result of this module has been given as input to the intra-cluster prioritization

algorithm. To obtain the execution time taken by each test case, simply the JUnit test suite

execution report has been used and exported in XML format.

5.4.3 Procedure

Figure 2 shows the blueprint of the experimental setup. This Figure presents an abstract

view of the implementation process. After gathering all the required data, the test cases

have been clustered by K-means and FCM using coverage commonality. “Aggregate

Quantifiable metric” has been used as a similarity metric and to calculate the distance

between the two test cases. The difference in their statement; branch and method coverage

ratio has been used and their weightage have been taken equally as 1. The experiment has

been performed by varying cluster numbers for Apache ant as 5 and 10 and for JMeter 4

and 6 numbers of clusters have been taken.

After clustering intra and inter cluster prioritization have been performed and APFD

value has been computed. First intra-cluster prioritization has been performed using K-

means clustering result and the proposed algorithm, and then the same task has been

performed using FCM and the proposed algorithm. We have calculated priority metric

value of each test case by using the formula mentioned in proposed algorithm and

rearranged the test cases in each cluster. After having prioritized test cases within

each cluster, final priorities of the test cases have been obtained across the cluster

by selecting one test case from each cluster starting with highest priority test case

from 1st cluster and so on in round robin manner.

After getting final priorities of the test cases, APFD value has been calculated

and a new test suite has been developed in which test cases have been added in final

International Journal of Database Theory and Application

Vol.9, No.4 (2016)

Copyright ⓒ 2016 SERSC 35

priority order. We have executed this test suite and evaluated execution time to

compare it with the execution time taken by the random order test suite.

6. Experimental Results

6.1 Answer to RQ1: APFD Value

To answer the research question 1, we started our analysis with APFD value

comparison of all the considered techniques for Apache Ant dataset for all the 8 versions.

The results will clearly show that Tfcmallfac outperforms over all other techniques and

the proposed approach is able to achieve higher value of average percentage of faults

detected than other considered techniques. The lowest value of APFD is given by Torig,

that is, when any particular ordering on the test cases has not been applied. This

comparison has been performed for cluster numbers 5 and 10 and for both; the pattern of

results is same. APFD value for Torig is 51.55% for version 1 which is the lowest among

all other techniques and APFD value for Tfcmallfac is 87.35% which is the highest

among the others.

Approximately across all the versions the results are same. Also the cluster numbers

has been varied and it was found that there is no improvement in APFD value even if the

cluster numbers are increased. The results of Apache Ant dataset with cluster number 5

and 10 are shown in Figure 3 and 4.

Figure 2. Experimental Setup

International Journal of Database Theory and Application

Vol.9, No.4 (2016)

36 Copyright ⓒ 2016 SERSC

0

10

20

30

40

50

60

70

80

90

100

A
P

FD
 v

al
u

e

Prioritization Techniques

V1

V2

V3

V4

V5

V6

V7

V8

Figure 3. APFD Values for Apache Ant with Cluster Numbers 5

0

20

40

60

80

100

A
P

FD
 v

al
u

e

Prioritization Techniques

V1

V2

V3

V4

V5

V6

V7

Figure 4. APFD Values for Apache Ant with Cluster Numbers 10

In the above Figures, it can be seen that the APFD values achieved by Tkmallfac is less

than Tfcmallfac but higher than Tfcmcodecov only. Also Tallfac is having higher value

than Tcodecov.

To validate these results, same experiment has been performed with JMeter dataset

across all 5 versions having cluster numbers 4 and 6 and results obtained are shown in

Figures 5 and 6. For version1 and cluster numbers 4 the APFD value achieved by

Tcodecov is 66.12% whereas Tfcmallfac gives 90.75%. Here, also Tkmallfac outperforms

Tfcmcodecov.

International Journal of Database Theory and Application

Vol.9, No.4 (2016)

Copyright ⓒ 2016 SERSC 37

0

10

20

30

40

50

60

70

80

90

100

A
P

FD
 v

al
u

e
s

Prioritization Techniques

V1

V2

V3

V4

V5

Figure 5. APFD Values for JMeter with Cluster Numbers 4

0

10

20

30

40

50

60

70

80

90

100

A
P

FD
 v

al
u

e
s

Prioritization Techniques

V1

V2

V3

V4

V5

Figure 6. APFD Values for JMeter with Cluster Numbers 6

Table 5 shows the improvement of Tfcmallfac over all other considered

techniques. It can be seen that results are improved with Tfcmallfac. The maximum

improvement has been achieved over Torig. Results have also been improved over

Tkmallfac. Also, from the results it is clear that by increasing the cluster numbers

the results are not getting more improved. The similar improvement patterns have

been observed for all other versions of both datasets.

Table 5. Improvement % of Tfcmallfac over Other Techniques

Dataset C
lu

ster

Torig Tcodecov Tallfac Tkmcodecov Tkmallfac Tfcmcodecov

Ant

Version-

8

5 77.51 36.70 28.09 19.69 9.11 14.65

10 72.69 32.99 24.61 16.19 1.02 8.59

International Journal of Database Theory and Application

Vol.9, No.4 (2016)

38 Copyright ⓒ 2016 SERSC

JMeter

Version-

5

4 36.15 26.49 24.14 18.11 6.79 13.59

6 26.99 17.98 15.78 14 8.95 3.95

6.2 Answer to RQ2

To answer the research question 2, clustering based techniques and non-clustering

based techniques have been compared. Table 6 represents that clustering improved

the APFD value over all non-clustering techniques irrespective of the metrics

considered for prioritization. The similar improvement patterns have been observed

for all other versions of both datasets.

Table 6. Improvement % of Clustering Techniques over Non-clustering
Techniques

Dataset Ant Version-8 JMeter Version-5

Cluster 5 10 4 6

Techniques

T
co

d
eco

v

T
a

llfa
c

T
co

d
eco

v

T
a

llfa
c

T
co

d
eco

v

T
a

llfa
c

T
co

d
eco

v

T
a

llfa
c

Tkmcodecov 14.21 7.01 14.46 7.25 7.09 5.11 3.49 1.56

Tkmallfac 25.29 17.39 31.65 23.36 18.44 16.2

4

13.50 11.39

Tfcmcodecov 19.24 11.72 22.48 14.75 11.36 9.29 8.28 6.27

Tfcmallfac 36.70 28.09 32.99 24.61 26.49 24.1

4

17.98 15.78

6.3 Answer to RQ3

The next comparison has been made in between techniques including code

coverage, complexity, execution time, test case failure ratio and fault detection ratio

factors and techniques including code coverage only. Table 7 shows the results of

this comparison and it can be concluded that Clustering is more important to be

considered over all factors because Tallfac gives negative improvement over

Tkmcodecov and Tfcmcodecov.

But, it is also showing that techniques considering both clustering and all factors

are better than anyone. So, from the results, it can be clearly concluded that the

prioritization technique considering FCM and all metrics mentioned in Table 2 gives

best results over all other techniques.

Table 7. Comparison of Techniques Including Test Case Failure Ratio, Fault
Detection Ratio and Execution Time and Techniques Excluding these

Factors

Excluding all factors

Dataset Ant Version-8 JMeter Version-5

International Journal of Database Theory and Application

Vol.9, No.4 (2016)

Copyright ⓒ 2016 SERSC 39

Including

all factors

Techniques

T
co

d
eco

v

T
k

m
co

d
eco

v

T
fcm

co
d

eco
v

T
co

d
eco

v

T
k

m
co

d
eco

v

T
fcm

co
d

eco
v

Tallfac 6.73 -6.56 -1.05 1.39 -4.86 -8.50

Tkmallfac 25.29 9.70 5.08 18.44 10.59 6.36

Tfcmallfac 36.70 19.69 14.65 26.49 18.11 13.59

6.4 Answer to RQ4: Execution Time

If the execution time taken by all the techniques is compared then it is found that

Tcodecov is taking maximum time as 131.35 seconds to execute all the test cases for

Apache ant version 8 whereas time taken by Torig is 109.02 seconds. Tfcmallfac is

taking 10.48 seconds with number of clusters 5 and 17.84 seconds with cluster

numbers 10. It is clear from the results that all techniques those including execution

time factors for prioritization are taking less execution time than techniques that do

not consider this factor. Figure 7 shows the graph of execution time taken by each

technique to execute the test suite.

0

20

40

60

80

100

120

140

Ex
e

cu
ti

o
n

 t
im

e
 in

 s
e

co
n

d
s

Prioritization Techniques

Cluster-5

Cluster-10

Figure 7. Execution Time for Apache Ant Version-8

The results are same with JMeter also. Here, time taken by Torig is 13.53 seconds

and by Tallfac is 10.65 seconds. Figure 8 shows the results of JMeter execution time

analysis with all the techniques under experiment.

International Journal of Database Theory and Application

Vol.9, No.4 (2016)

40 Copyright ⓒ 2016 SERSC

0

2

4

6

8

10

12

14

16

Ex
e

cu
ti

o
n

 t
im

e
 in

 s
e

co
n

d
s

Prioritization Techniques

Cluster-4

Cluster-6

Figure 8. Execution Time for JMeter Version-5

7. Threat to Validity

7.1 Threat to Internal Validity

Every research work faces some limitations to its validity and this may face the

same. There are some threats to internal validity that involves considering the

accuracy in performing the experiments. The perfection of experiment depends on

the accuracy in the results provided by tools used, metrics considered, precision in

performing clustering task and other data. The results of EMMA tool and

gen_fault_matrix tool have a great impact on the internal validity. Also the

clustering technique FCM affects the performance of the experiment. Considering

this, widely acceptable FCM clustering algorithm has been used. The execution time

and test case failure ratio have been obtained through JUnit execution report. So,

accuracy of these data depends upon the performance of JUnit.

7.2 Threat to External Validity

Threat to external validity is all about the universalization of the results o f the

research work that is up to which level the results can be generally applicable. This

includes conditions for which results can be generalized and limitations on these

results. Here, in this approach the combination of clustering technique and time

aware based technique with intra and inter-cluster prioritization has been proposed

which is itself a novel approach. We have used FCM for clustering and code

coverage, execution time, test case execution history, complexity and fault detection

ratio for prioritization. But other combinations of using different clustering

technique and different metrics may produce different results. So, these results are

generally applicable if only using FCM and mentioned metrics. Also, the experiment

has been performed only with JUnit test cases based on Java applications. So, the

main threat to external validity is to use this approach with other programming

language applications and other type of test cases. The size of the dataset, that is,

the number of test cases varied from lesser to large number of test cases. So, results

can be generalized with any number of test cases.

International Journal of Database Theory and Application

Vol.9, No.4 (2016)

Copyright ⓒ 2016 SERSC 41

8. Conclusion and Future Work

Regression testing is performed at maintenance phase which is a very crucial

phase of the whole Software Development Life Cycle. So, it is important that cost

and time effective testing techniques be applied during maintenance. Test case

prioritization is an efficient way to perform the regression testing. Various test case

prioritization techniques are currently being used by many organizations. Clustering

based test case prioritization techniques are the best among others because this

technique can be used with the combination of other techniques but the existing

clustering based techniques have some shortcomings. This research work is an

attempt to improve the clustering approach of test case prioritization and used FCM

clustering technique to cluster the test cases and performed intra and inter - cluster

prioritization using the important factors like test case failure ratio, code coverage

ratio, fault detection ratio and complexity. In this approach along with other factors,

we have also considered the execution time of each test case while prioritizing them.

The main aim of this work is to obtain higher APFD value in minimum execution

time. We have calculated the APFD values of the systems under test across all their

versions using all the techniques under consideration with proposed one and it was

found that the proposed approach provides better APFD value than other

approaches. The results have been compared between clustering and non-clustering

techniques and conclusion has been drawn that including clustering in prioritization

improves result over non-clustering ones. It is also concluded that FCM performs

better than K-means when both are applied with all factors and importance of

clustering is more than considering all factors without clustering. In the proposed

approach execution time has been used as one of the factors to prioritize the test

cases. The test cases having lesser execution time will get the higher priorities and

will be executed first. So, more test cases can be run in less time. Eventually

execution time would be reduced and it was found that this approach takes least

execution time. It is also concluded that techniques including execution time to

prioritize the test cases take less time than techniques without considering execution

time factor.

In the future work this technique can be applied with applications developed in

other programming languages. This research has been performed with JUnit test

cases, which can be extended with other programming languages like C, C++ etc.

and test cases like TestNG, TSL etc. In future research, other important factors can

also be considered for prioritization and more sophisticated features can be selected

to cluster the test cases.

References

[1] K. Onoma, W. T. Tsai, M. Poonawala and H. Suganuma, “Regression testing in an industrial

environment”, Comm. of the ACM, vol. 41, no. 5, (1988), pp. 81–86.

[2] B. Beizer. “Software Testing Techniques”, Van Nostrand Reinhold, New York, NY, (1990).

[3] H. Leung and L. White, “Insights into Regression Testing”, In Proceeding of the Conf. on Software

Maintenances, (1989), pp. 60-69.

[4] G. Rothermel, R. H. Utnch, C. Chu and M. J. Harrold, “Test Case Prioritization: An Empirical Study”,

Proceedings of the International Conference on Software Maintenance, Oxford, UK, September, IEEE,

(1999).

[5] G. Rothermel, R. H. Utnch, C. Chu and M. J. Harrold, “Test Case Prioritization Technical report”, GIT-

99-28, (1999).

[6] S. Yoo and M. Harman, “Regression Testing Minimization, Selection and Prioritization”, Software

Testing, Verification and Reliability, (2007).

[7] E. Sebastian, G. M. Alexey and G. Rothermel, “Prioritizing Test Cases for Regression Testing”, ISSTA

'00, Portland, Oregon, ACM, (2000).

[8] G. Rothermel, R. H. Untch, C. Chu and M. J. Harrold, “Prioritizing Test Cases For Regression Testing”,

CSE Journal Articles. Paper 9, (2001).

International Journal of Database Theory and Application

Vol.9, No.4 (2016)

42 Copyright ⓒ 2016 SERSC

[9] E. Sebastian; A. G. Malishevsky and G. Rothermel, “Test Case Prioritization: A Family of Empirical

Studies”, CSE Journal Articles, (2002).

[10] J. J. Li, D. Weiss and H. Yee, “Code-coverage Guided Prioritized Test Generation”, Information and

Software Technology (Elsevier), (2006).

[11] K. K. Aggrawal, Y. Singh and A. Kaur, “Code Coverage Based Technique For Prioritizing Test Cases

For Regression Testing”, ACM SIGSOFT Software Engineering Notes, (2004).

[12] P. R. Srivastava, “Test Case Prioritization”, Journal of Theoretical and Applied Information Technology

©2005, (2008).

[13] R. C. Bryce and A. M. Memon, “Test Suite Prioritization by Interaction Coverage”, DoSTA’07,

September 4, 2007, Dubrovnik, Croatia, ACM, (2007).

[14] B. Jiang, Z. Zhang, W. K. Chan and T. H. Tse, “Adaptive Random Test Case Prioritization”,

IEEE/ACM International Conference on Automated Software Engineering, (2009).

[15] J. A. Jones and M. J. Harrold, “Test-Suite Reduction and Prioritization for Modified Condition/Decision

Coverage”, College of computing, Georgia Institute of Technology.

[16] D. Jeffrey and N. Gupta, “Test Case Prioritization Using Relevant Slices”, Journal of Systems and

Software, vol. 81, no. 2, (2008).

[17] P. Tonella, P. Avesani and A. Susi, “Using the Case-Based Ranking Methodology for Test Case

Prioritization”.

[18] S. Yoo, M. Harman, P. Tonella and A. Susi, “Clustering Test Cases to Achieve Effective & Scalable

Prioritizations Incorporating Expert Knowledge”, ISSTA’09, July 19–23, 2009, Chicago, Illinois, USA,

ACM, (2009).

[19] J. M. Kim and A. Porter, “A History-Based Test Prioritization Technique for Regression Testing in

Resource Constrained Environments”, 1CSE'02, May 19-25, 2002, Orlando, Florida, USA. ACM,

(2002).

[20] Y. Fazlalizadeh, A. Khalilian, M. A. Azgomi and S. Parsa, “Incorporating Historical Test Case

Performance Data and Resource Constraints into Test Case Prioritization”, Springer-Verlag Berlin

Heidelberg, (2009).

[21] P. R. Srivastva and K. K. G. Raghurama, “Test Case Prioritization Based on Requirements and Risk

Factors”, ACM SIGSOFT Software Engineering Notes, vol. 33, no. 4.

[22] R. Kavitha and Dr. N. Sureshkumar, “Test Case Prioritization for Regression Testing based on Severity

of Fault”, (IJCSE) International Journal on Computer Science and Engineering, vol. 2, no. 5, (2010), pp.

1462-1466.

[23] R. Krishnamoorthi and S. A. S. A. Mary, “Factor Oriented Requirement Coverage based System Test

Case Prioritization of New and Regression Test Cases”, Information and Software Technology 51

(Elsevier), (2009).

[24] S. Kim and J. Baik, “An Effective Fault Aware Test Case Prioritization by Incorporating a Fault

Localization Technique”, ESEM’10, September 16–17, 2010, Bolzano-Bozen, Italy, ACM, (2010).

[25] Y. T. Yu and M. F. Lau, “Fault-based Test Suite Prioritization for Specification based Testing”,

Information and Software Technology 54 (Elsevier), (2012).

[26] S. Mirarab and L. Tahvildari, “A prioritization approach for software test cases based on bayesian

networks”, Proceedings of the 10th International Conference on Fundamental Approaches to Software

Engineering, Springer–Verlag, (2007), pp. 276–290.

[27] B. Korel, L. H. Tahat and M. Harman, “Test Prioritization Using System Models”.

[28] B. Korel, G. Koutsogiannakis and L. H. Tahat, “Model-Based Test Prioritization Heuristic Methods and

Their Evaluation”, AMOST'07, July 9-12, 2007, London, UK, ACM, (2007).

[29] A. G. Malishevsky, J. R. Ruthru, G. Rothermel and S. Elbaum, “Cost-cognizant Test Case

Prioritization”, Technical Report TR-UNL-CSE-2006-0004, Department of Computer Science and

Engineering, (2006).

[30] L. Zhang, S. S. Hou, C. Guo, T. Xie and H. Mei, “Time-Aware Test-Case Prioritization using Integer

Linear Programming”, ISSTA’09, July 19–23, 2009, Chicago, Illinois, USA, ACM, (2009).

[31] R. Carlson, H. Do and A. Denton, “A Clustering approach to improving Test Case Prioritization: An

Industrial Case Study”.

[32] Md. J. Arafeen and H. Do, “Test Case Prioritization Using Requirements-Based Clustering”.

[33] T. P. Jacob and T. A. Ravi, “A Novel Approach for Test Suite Prioritization”, Journal of Computer

Science, vol. 10, no. 1, (2014), pp. 138-142.

[34] J. Badwal and H. Raperia, “Test Case Prioritization using Clustering”, International Journal of Current

Engineering and Technology, vol. 3, no. 2, (2013).

[35] J. C. Bezdek, “Cluster validity with fuzzy sets”, Cybernetics, vol. 3, (1974).

[36] J. C. Bezdek, “Pattern recognition with fuzzy objective function algorithm”, Plenum Press, New York,

(1981).

[37] V. Vangala, J. Czerwonka and P. Talluri, “Test case comparison and clustering using program profiles

and static execution”, ESEC/FSE ’09, ACM.

[38] S. Elbaum, A. G. Malishevsky and G. Rothermel, “Test Case Prioritization: A family of Empirical

Studies”, CSE Journal Articles. Paper 8, (2002).

[39] Apache Ant, “http://ant.apache.org.”, accessed on 15th March, (2015).

International Journal of Database Theory and Application

Vol.9, No.4 (2016)

Copyright ⓒ 2016 SERSC 43

[40] JMeter, “http://jakarta.apache.org/jmeter”, accessed on 20th March, (2015).

[41] Software Artifact Infrastructure Repository, “http://sir.unl.edu/portal/index.php”, accessed on 10th

March, (2015).

Authors

Ms. Geetanjali Chaurasia, She is perusing M. Tech. Software

Engineering from Department of Information Technology, Indian

Institute of Information Technology, Allahabad. Her area of interest

in research includes Software Engineering, Software Testing

specially in the field of test case prioritization using machine learning

approaches. Her research topic in M. Tech. is ― A Clustering based

Novel Test Case Prioritization Approach for Regression Testing

Dr. Sonali Agarwal, is working as an Assistant Professor in the

Information Technology Department of Indian Institute of

Information Technology (IIIT), Allahabad, India. Her primary

research interests are in the areas of Data Mining and Software

Engineering. Her current focus in last few years is on the research

issues in Twin Support vector machine, Big Data Mining and Stream

Computing.

International Journal of Database Theory and Application

Vol.9, No.4 (2016)

44 Copyright ⓒ 2016 SERSC

