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Abstract 

Mining association rules is an important research direction in the field of data mining. 

Related studies have proposed many used to efficiently find large-scale database 

association rules algorithm, but the research on maintenance problem of association 

rules is less. Especially many transaction database is always in constant updates. 

Increase or decrease occurs when the database or dataset minimum support after the 

change, how to maintain the association rules have been, it got the attention of many 

researchers. Based on IFP-Growth increment of association rules mining model and to 

modify the FP-tree, put forward the suitable for transaction data and support the tree 

model of change, at the same time under different conditions is given incremental 

association rules mining algorithm, and reduce the frequency of the original dataset 

range query and query, and in a case of massive dataset multi-level tree structure 

decomposition, dynamic allocation rule tree branches, ensure load balancing, improve 

operation efficiency. 
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1. Introduction 

Many algorithms have been proposed to efficiently mine association rules. But few 

algorithms aim to solve the problem when datasets and support are changing at the same 

time. As many of the transactional database is always in constant updates. When the 

database changed, how to maintain the association rules we have already obtain is the 

problem which got the attention of many researchers. FUP [1] is the earliest incremental 

association rules mining algorithm, the algorithm only deals with the increase in new 

transaction in the database. FUP algorithm is based on the idea of Apriori algorithm, and 

studied the optimum processing algorithm using the pruning strategy of butyl DHP. 

Algorithm firstly comes from the increasing number of records in the mining frequent 

itemsets, and compare them with original frequent itemsets. According to the results of 

the comparison of FUP algorithm to decide whether to need to scan the original database. 

FUP2 [2] is a supplement to the FUP algorithm, it can not only deal with the new dataset, 

but also can remove part of the database. UWEP [3] algorithm is to study the rules of the 

new database maintenance. The algorithm on the new dataset get to join after no longer 

frequent itemsets using a dynamic pruning strategy in advance. UWEP algorithm analyze 

on the generation of candidate set and the support is better than the previous algorithms. 

SWF [4] algorithm is mainly studied two candidate set generation problems after updating 

the database. As a result, the efficiency of the algorithm is better than Apriori and FUP2, 

which have greatly improved.  
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The incremental mining algorithm is based on Apriori, and FIUA [5] is based on 

frequent pattern tree incremental updating algorithm of association rules. FIUA exploited 

original frequent itemsets and original FP-trees to efficiently mining new frequent 

itemsets after data changed or support threshold changed. Compared with FUP algorithm, 

the performance of FIUA has improved greatly. Literature [6]
 
is to study the parallel 

incremental updating algorithm and methods to improve the efficiency of the algorithm. 

 

2. VSIFP-Growth 
 

2.1 Problem Model on the VSIFP-Tree 

Suppose that our original dataset of transaction database is , the original dataset 

transaction volume ,  is an increment dataset of transaction database, the 

increment dataset transaction volume ,  is the updated dataset, the 

updated transaction volume is . 

Given as support counts of itemsets  in dataset ,  and  are , 

 and  respectively. The following equation was 

established . Let the  be a frequent 

itemset of ,  is a frequent itemset of , and  is a frequent itemset of . 

 is the support of  in  database. By the definition of support, 

.  

When minimum support changes, the construction of VSIFP-tree can be divided into 

the following several ways:  

1) If minimum support of the new  is lower than minimum support of the original  

( ): 

(1)If  and , maybe . 

Firstly, we must determine the size of the  and . Because of 

, so . 

①If , then the support of the whole dataset is: 

②If  and , then x is a frequent 

itemset of . 

(2)If  and , then . 

Because of  and , so  and 

, then the support of the whole dataset is: 

(3)If  and , maybe . 
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On this occasion, x is a frequent itemset of , the smaller minimum support is 

still a frequent itemsets of DS. Because of , we need to determine the size of 

 and . If , then x is a frequent itemset 

of . 

(4)If  and , maybe ; 

Firstly, we must determine the size of the  and . 

①If , then x is a frequent itemset of . Because of 

, so . 

. 

②If , then x is still an infrequent itemset of . Only 

when , then x is a frequent itemset of .  

2)If minimum support of the increment dataset  is greater than minimum support of 

the original dataset  ( )，we can prove the following conclusion 

analogously: 

(1)If  and , then . 

(2)If  and , maybe . 

(3)If  and , maybe . 

(4)If  and , maybe .  

Through the above proof of algorithm of association rules in the incremental data 

sets and different support conditions, we can infer the following features of VSIFP-

tree. 

Feature 1 of VSIFP-tree, regardless of the minimum support increase or decrease, 

if the intersection of the frequent 1-itemsets of original dataset and frequent 1-

itemsets of incremental dataset is not null, then proper subset of this intersection is 

included in the frequent 1-itemsets of new dataset.  

Feature 2 of VSIFP-tree, under the condition of minimum support is unchanged, 

if the union set of the frequent 1-itemsets of original dataset and frequent 1-itemsets 

of incremental dataset is not null, then proper subset of complement set of this set in 

all items is not included in the frequent 1-itemsets of new dataset. 

 

2.2 Algorithm Description of VSIFP-Growth 

Suppose that our original dataset of transaction database is ,  is an increment 

dataset of transaction database. Given as support counts of itemsets  in dataset , 

 and  are ,  and  respectively.  

represent the number of occurrences of  in  and  represent the number of 

occurrences of  in .Suppose that we have got the frequent itemset of original 

dataset 
 
[7]. 
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In Section 2.1 we analysis different situations when the dataset increase or 

decrease, support increase or decrease of data processing. Therefore, we can control 

in the process in different cases of search datasets to generate frequent itemsets, to 

reduce unnecessary redundant search. This algorithm VSIFP-Growth can build tree 

association rules in the shortest possible time based on FP-tree. The following 

program shows how our algorithm generate the VSIFP-tree to insert branches into 

the FP-tree. 

Input:  is dimension of dataset,  is the transaction volume of dataset. 

Output: The support counts . 

Method: 

/* Calculate the support counts X in D*/ 

VSIFP-Growth _GenCounts( , ){ 

for(i=1 to ){ 

    for all transaction  do begin  //scan dataset( ) 

for all 1-itemset  do begin 

if  then  = ; 

                ; 

} 

} 

 

Input:  is an increment dataset of transaction database,  is the original 

minimum support,  is the incremental minimum support. 

Output: The frequent itemset and rules of . 

Method: 

/* Calculate the frequent itemset  and association rules  */ 

VSIFP-Growth _Gen( , , , , ){ 

for(i=1 to ){ 

    for all transaction  do begin 

if  then ; 

if  

then ; 

} 

suppose that ; 

for all k-itemset  do begin 

for all (k 1) itemset  do begin 

if  then ; break; 

    if(  is not null){ 

 = FP-Growth( , , );//invoke FP-growth algorithm 

} 

if(  ||  is not null){ 

 = GenerateRules( , ); 

else{ 

 = select Rules from Rules where Rule.support >= ; 

} 

Return , ; 
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} 

 
2.3 An Example of VSIFP-Growth 

In this paper, an effective set-based algorithm called VSIFP-growth (variable 

support incremental frequent pattern growth) is built to reduce the complexity of 

incremental tree construction. VSIFP-growth algorithm refers to the dataset and 

support change at the same time be able to generate a new association rule tree. The 

new association rule tree has different structure to the original FP-tree, but they both 

have the same mining results. VSIFP-growth can save operation time and does not 

affect the mining results compared with the original FP-tree. 

In order to explain the VSIFP-growth algorithm implementation of the process in 

case of the minimum support and incremental dataset changes at the same time , we 

use a concrete example to discuss the FP-tree based VSIFP-tree construction 

algorithm of mining association rules [8]. 

Table 1 shows an original dataset of transaction database and sets the  as 

0.6(3/5). Figure1 illustrates the original FP-tree for Table 1 and Figure2 is a new 

VSIFP-tree constructed with using original dataset and  as 0.4(2/5). 

(1) In the Figure1, subfigure a) shows the original FP-tree with the  

and frequent 1-itemsets of  is . When the 

original dataset  increased by new transaction dataset , minimum support 

reduce to  from  at the same time. In the Figure2, 

subfigure a) shows the increment FP-tree with the  and frequent 1-

itemsets of  is . 

(2) Now we want to know what items the frequent 1-itemsets  of new dataset 

 includes. 

The subfigure b) shows VSIFP-tree model as minimum support declines and 

frequent 1-itemsets of  is  

Table 1. The Original Dataset of Transaction Database ( ) 

Transaction 

ID 

Items Ordered items 

A B C D E M N S T Y Z 

001 A B C D E   S  Y  D B C 

002  B C D  M   T   D B C T 

003   C D E   S T   D   C T 

004 A B     N   Y Z    B 

005    D  M   T   D     T 



International Journal of Database Theory and Application 

Vol.9, No.4 (2016) 

 

 

200   Copyright ⓒ 2016 SERSC 

D:4

B:2

C:2

T:1T:1 T:1

C:2

B:1

Null
Frequent 

items
Frequent items 

list node pointer

D

B

C

T

 

Figure 1. The Original FP-Tree Model ( ) 

Table 2. The Increment Dataset of Transaction Database ( ) 

Transaction 

ID 

Items Ordered items 

A B C D E M N S T Y Z 

006  B    M N   Y Z B N Y Z 

007 A      N S T      N 

008  B   E     Y Z B   Y Z 

B:2

N:1

Y:1

Z:1 Z:1

Y:1

N:1

Null
Frequent 

items
Frequent items 

list node pointer

B

N

Y

Z

Figure 2. The VSIFP-Tree Model ( ) 
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a)The increment FP-tree model b)The VSIFP-tree model  

Figure 3. Tree Structure Contrast after Data Merging and Support Changing
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3. Parallel Computing for Large-Scale Dataset 
 
3.1 PVSIFP-Growth Algorithm Description Based on MapReduce 

In the practical application of large-scale dataset, the object of the association 

rule mining is often a huge centralized or distributed data sources. If the single 

machine for association rules mining, storage capacity and the mining efficiency is 

bound to become a bottleneck in the process of mining, which can't meet the needs 

of large data mining. But with the rapid development of parallel computing, using 

the method of parallel processing mass data mining problems can not only meet the 

needs of huge amounts of data mining, but also can greatly improve the mining 

efficiency. As a result, the parallel data mining has become an effective way to 

solve big data mining. On the other hand, in a lot of practical data mining 

application, often also has the problem of incremental updating. Many applications 

in the field of database are all in the constantly updated, resulting in the patterns of 

original excavated or create new pattern. In order to solve this problem, must be on 

the original model, combining with the new data mining again, namely incremental 

association rules mining processing [9]. 

For stand-alone environment cannot meet the requirements of large data mining 

problems, the researchers began to consider through the distributed parallel 

computing environment to solve the problem. Parallel programming model based on 

MapReduce by Google [10], has a strong function and a variety of advantages, and 

many studies of MapReduce cluster architecture improvement plans are put forward 

[11], to provide a good direction for the research of parallel association rules and 

platform. LI, used the MapReduce calculated model, which is applied to the FP-

Growth algorithm, and proposed an algorithm of parallel computing model based on 

MapReduce (parallel the frequent pattern Growth algorithm, PFP-Growth) [12]. For 

parallel incremental updating of association rules research, qiu-yang Chen uses 

traditional single parallel computing model, based on message passing interface 

(message passing interface, MPI) puts forward a parallel incremental updating 

association rules algorithm, the parallel pruning and fast updating, PPFUP). 

In view of the huge amounts of data mining and incremental updating problems, 

this paper designs and realizes a MapReduce and VSIFP-growth based parallel 

variable support incremental updating algorithm for mining association rules[13]. 

The algorithm model is obtained by using the MapReduce, to update VSIFP-tree 

incrementally in a distributed computing environment and optimize too much time 

consumption problem caused by scanning the original database for every time of 

incremental updating data. This algorithm can scan the original transaction database 

to a minimum and raise the efficiency of parallel computing. At the same time, we 

adopt the method of dynamic load balancing adjustment group to optimize the 

itemsets grouping problems in the process of distributed computing, making the 

whole distributed computing can achieve maximum load balancing. Finally, to 

access the performance of PVSIFP-growth, we conducted experiments to observe 

the influence of various support threshold and dataset size values in PVSIFP-

growth. 

 

3.2 PVSIFP-Growth Algorithm Modelling Procedure Based on Mapreduce 

In a distributed computing environment, to build the initial PVSIFP-tree on the 

original transaction database DB, mainly includes the following three steps.  

Step 1 Partitioned indexes construction of project support count and project. In 

Hadoop, Mapper function based on HDFS file fragmentation to process the 

transaction record for the unit, therefore, Mapper function can be used to calculate 

the support degree of each shard project counts, and build the shard of partitioned 



International Journal of Database Theory and Application 

Vol.9, No.4 (2016) 

 

 

202   Copyright ⓒ 2016 SERSC 

indexes of the project. For each shard, the Mapper function input for relative 

fragmentation at the beginning of offset and transaction records, namely the key 

value pair for . The pseudo code of this step is shown 

below. 

 

 /* The Mapper procedure to count the index of the blocks*/ 

Class: CountingAndIndexMapper 

itemBlockIndexs[] = new Array();//initialize the block indexes 

blockSize = 0; // initialize the size of block indexes 

/*Mapper initialization*/ 

Function: setup(context)  

blockSize = readBlockSize(context);// read parameters 

/*Mapper processing  

* Build block indexes for each items in the transaction itemset 

* Input:  and offset of transaction records */ 

Function: Mapper  

Foreach item  in  do 

Callcollect ; 

bockID  =  ; 

buildBlockIndexs ; end;// build block indexes 

/*Mapper clean: Write partitioned indexes to the local file system */ 

Function: cleanup(context) 

writeToLocalFS(itemBlockIndexs) 

/* The Reducer procedure */ 

Class: Counting Reducer 

Function: reducer   

Foreach item ‘1’ inList( ) do 

C = C + 1; end; 

Callcollect ;//output count 

 

Assume that item sets in the fragmentation class  is . The 

block size for blockSize of partitioned indexes as is segmented into 

 a block, the ceil for integer arithmetic,  is 

the first j block. Suppose that project  in the subdivision of the fragmentation 

class  support count is , and it will be distributed in the m 

blocks , each block count is . At this point  

partitioned indexes are shown in Figure 4. 

 

 

Figure 4. Block Index of the Project Iik 

For each records( ) of project( ) in Mapper function of MapReduce, if the offset of 

record belongs to the last block of the  partitioned indexes, then the block index count 

need to plus "1". If not, create a new node after the index list node, the node ID is the 

serial number of blocks to record( ), count to 1. After all local transaction record 

processed, we can obtain partitioned indexes of local projects [14].  

Project(Iik) 

 

BlockID 
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Step 2 project group. Get all the frequent itemsets by using project support count 

and deposited in the table called FList. Then use a grouping scheme to divide the 

project(FList) into Q group, and save each group project in table called GList. 

Optimization grouping scheme must make each packet to keep a balanced load. 

Load balancing is to make the time of consumption to be close to each group 

while computing frequent itemsets on the VSIFP-tree. If we want to calculate the 

optimal grouping, then it must build all the possible group to tree structure and 

mining the tree. However, because of so many the possibility of grouping, large 

amount of the process of calculation, and current balance may become unbalanced 

after incremental updating, so this algorithm need to maintain the load balancing in 

a dynamic environment. 

This paper employ a dynamic load balancing strategy for grouping of project. The 

strategy is mainly to dynamically adjust the new frequent itemsets grouping using 

the last result to calculate the load of each group each time incremental updating 

data. So we can dynamically adjust the group load and make the group to reach a 

final equilibrium. But when calculate on the original transaction dataset, there is no 

incremental data for the last time incremental updating calculation, therefore we 

choose the stochastic grouping method for grouping FList. The complexity of this 

randomized computational method is O(I), which can be finished in a stand-alone 

environment. The pseudo code to build PVSIFP-tree for each grouping is shown 

below. 

 

/* The Mapper and Mapper procedure of PVSIFP-Growth*/ 

Class: PVSIFP_Growth 

GList = null; 

Function: setup(context) 

GList readGList(context) //read GList from the configuration file 

/*Mapper processing  

* Divide transaction into groups according to the GList 

* Input:  and offset of transaction records */ 

Function: mapp er  

for i = 0 to GList.size do 

if  then 

Callcollect ;// output to a specific group 

end if; end; 

/* Reducer processing  

* Build PVSIFP-tree for each group 

* Input:Group number gid and its records  */ 

Function: reducer  

localFUFPTree = null; 

foreach  in  

CallbuildPVSIFPTree ; 

end; 

CallwriteTreeToLocalFS(localFUFPTree);//writes each PVSIFP-tree into a local file 

CallFPGrowth(localFUFPTree, gid); /running FP-Growth algorithm on the tree of each 

group 

 

Step 3 Build VSIFP-tree for each group(GList). First of all, distribute the 

transactions in the database to the corresponding group according to the GList group. 

The distribution operation can be done in a Mapper function, which can output 
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multiple key value pair . At this point, all the transaction 

records which belongs to the same group will be distributed to the same Reducer. 

And then in each group of Reducer function, construct a VSIFP-tree to the 

transaction record data of the group. On this occasion, mine the frequent itemsets 

for the group, and finally combine each group of frequent itemsets to get the global 

frequent itemsets. After building each grouping VSIFP-tree, we need to store 

VSIFP-tree serialization of each group to the file system, for incremental updating. 

Through the above three steps, we finished the original transaction dataset  of 

mining frequent itemsets. We calculate not only all the frequent itemsets of the 

current dataset, but also record and store the support degree of each project, each 

block index record stored on the server project, project group GList data and each 

grouping VSIFP-tree. 
 

4 Experimental Results and Analysis 

 
4.1 The Experimental Data and the Environment 

In this paper, we design the experiment to analyze PVSIFP-Growth performance 

by comparing the running time of PVSIFP-Growth algorithm and FP-Growth 

algorithm on two datasets. PVSIFP-Growth algorithm and FP-Growth algorithm are 

realized by Matlab (R2014b). This article adopted Webdocs.data as the experimental 

dataset provided by http://fimi.ua.ac.be/data [15]. 

The parallel computing environment in this experiment is made up of four nodes 

master-slave Hadoop cluster. One of the nodes as the namenode and jobtracker, 

other nodes as a datanode and tasktracker. And all nodes keep isomorphism of 

hardware configuration and software configuration. The processor is Intel Core duo 

2.6 GHz, computer memory size is 8 GByte, the operating system is Ubuntu14.04, 

and Hadoop used 2.6.0 version, which keep the default cluster configuration 

parameters. 

 

4.2 Incremental Calculation Performance Test of the PVSIFP-Growth Algorithm 

Under the condition of the support threshold rise, because PVSIFP-Growth just 

need to centralized seeking for new frequent pattern in frequent pattern, running 

time of PVSIFP-Growth is obviously faster. Here we compare the running time of 

two kinds of algorithm only when the support threshold value fall and data scale 

increase [16]. 

The first dataset is transactional sparse dataset(Retail), and each record contains 1 

to 50 transaction items, 88162 records in total. 

The Figure4(a) and Figure4(b) respectively shows the running time comparison of 

FP-Growth algorithm and PVSIFP-Growth algorithm. In this experiment the scale of 

dataset vary from 17625 to 88126(step size 17625), and the support threshold 

decreased from 0.1 to 0.05(step size 0.01). In this figure, X coordinates stand for the 

dataset size(record), Y coordinates stand for the support threshold, Z coordinates is 

the run time. We can conclude that the running time of PVSIFP-Growth algorithm is 

less than the FP-Growth.  

http://fimi.ua.ac.be/data
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(a)                                                       (b) 

Figure 5. The Running Time of FP-Growth and VSIFP-Growth Algorithm on 
Retail 

The second dataset is transactional dense dataset (Accidents), and each record 

contains 1 to 80 transaction items, 340183 records in total. 

The Figure5(a) and Figure5(b) respectively shows the running time comparison of 

FP-Growth algorithm and PVSIFP-Growth algorithm. In this experiment, the scale 

of data set vary from 68036 to 340183(step size 68036), support threshold decreased 

vary from 0.95 to 0.9(step size 0.01). The X coordinate stand for the data set size 

(record), Y coordinates stand for the support threshold, Z coordinates is run time. 

We may draw the conclusion that the running time of PVSIFP-Growth algorithm is 

less than the FP-Growth. 

 

 

(a)                                                       (b) 

Figure 6. The Running Time of FP-Growth and VSIFP-Growth Algorithm on 
Accidents 

 

5. Conclusion 

By incorporating the VSIFP-Growth (Improved FP-Growth) algorithm and the 

parallel computing mining technique into VSIFP-Growth, we propose the PVSIFP-

Growth algorithm for frequent itemsets generation. The major advantages of VSIFP-

Growth and the parallel computing based on MapReduce are that they reduce the 

need to rebuild frequent pattern tree and facilitate the task of tree construction. The 

PVSIFP-Growth algorithm inherit VSIFP-Growth algorithm, which can generate 

association rules when both database increase or decrease and minimum support of 

dataset changed. The memory requirement of PVSIFP-Growth on a single processor 

is also lower than that of FP-Growth. Experimental results showed that our PVSIFP-

Growth algorithm is more than an order of magnitude faster than the FP-Growth 

algorithm. However, VSIFP-Growth incurs a potential problem in the parallel 
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computing mining method. An appropriate dataset scale value and datanode count in 

this method are important, because they affects the mining performance of our 

algorithm. As a result, our future work will involve finding an appropriate dataset 

scale value and datanode count between the conditional VSIFP-Growth algorithm 

and the parallel computing mining technique in the PVSIFP-Growth mining method. 
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