
International Journal of Database Theory and Application

Vol.9, No.4 (2016), pp. 195-208

http://dx.doi.org/10.14257/ijdta.2016.9.4.18

ISSN: 2005-4270 IJDTA

Copyright ⓒ 2016 SERSC

Large-Scale Dataset Incremental Association Rules Mining Model

and Optimization Algorithm

Guo Yu-Dong
1
, Li Sheng-Lin

1
, Li Yong-Zhi

1
, Wang Zhao-Xia

1
 and Zeng Li

2

1
Department of military logistics information and logistics engineering, Logistics

Engineering Institute, Chongqing 401311
2
 School of Civil Engineering and Architecture, Chongqing University of Science

and Technology, Chongqing 401311

guoyudong116046122@163.com

Abstract

Mining association rules is an important research direction in the field of data mining.

Related studies have proposed many used to efficiently find large-scale database

association rules algorithm, but the research on maintenance problem of association

rules is less. Especially many transaction database is always in constant updates.

Increase or decrease occurs when the database or dataset minimum support after the

change, how to maintain the association rules have been, it got the attention of many

researchers. Based on IFP-Growth increment of association rules mining model and to

modify the FP-tree, put forward the suitable for transaction data and support the tree

model of change, at the same time under different conditions is given incremental

association rules mining algorithm, and reduce the frequency of the original dataset

range query and query, and in a case of massive dataset multi-level tree structure

decomposition, dynamic allocation rule tree branches, ensure load balancing, improve

operation efficiency.

Keywords: Data mining, Association rules, Support, Parallel computing

1. Introduction

Many algorithms have been proposed to efficiently mine association rules. But few

algorithms aim to solve the problem when datasets and support are changing at the same

time. As many of the transactional database is always in constant updates. When the

database changed, how to maintain the association rules we have already obtain is the

problem which got the attention of many researchers. FUP [1] is the earliest incremental

association rules mining algorithm, the algorithm only deals with the increase in new

transaction in the database. FUP algorithm is based on the idea of Apriori algorithm, and

studied the optimum processing algorithm using the pruning strategy of butyl DHP.

Algorithm firstly comes from the increasing number of records in the mining frequent

itemsets, and compare them with original frequent itemsets. According to the results of

the comparison of FUP algorithm to decide whether to need to scan the original database.

FUP2 [2] is a supplement to the FUP algorithm, it can not only deal with the new dataset,

but also can remove part of the database. UWEP [3] algorithm is to study the rules of the

new database maintenance. The algorithm on the new dataset get to join after no longer

frequent itemsets using a dynamic pruning strategy in advance. UWEP algorithm analyze

on the generation of candidate set and the support is better than the previous algorithms.

SWF [4] algorithm is mainly studied two candidate set generation problems after updating

the database. As a result, the efficiency of the algorithm is better than Apriori and FUP2,

which have greatly improved.

International Journal of Database Theory and Application

Vol.9, No.4 (2016)

196 Copyright ⓒ 2016 SERSC

The incremental mining algorithm is based on Apriori, and FIUA [5] is based on

frequent pattern tree incremental updating algorithm of association rules. FIUA exploited

original frequent itemsets and original FP-trees to efficiently mining new frequent

itemsets after data changed or support threshold changed. Compared with FUP algorithm,

the performance of FIUA has improved greatly. Literature [6]

is to study the parallel

incremental updating algorithm and methods to improve the efficiency of the algorithm.

2. VSIFP-Growth

2.1 Problem Model on the VSIFP-Tree

Suppose that our original dataset of transaction database is , the original dataset

transaction volume , is an increment dataset of transaction database, the

increment dataset transaction volume , is the updated dataset, the

updated transaction volume is .

Given as support counts of itemsets in dataset , and are ,

 and respectively. The following equation was

established . Let the be a frequent

itemset of , is a frequent itemset of , and is a frequent itemset of .

 is the support of in database. By the definition of support,

.

When minimum support changes, the construction of VSIFP-tree can be divided into

the following several ways:

1) If minimum support of the new is lower than minimum support of the original

():

(1)If and , maybe .

Firstly, we must determine the size of the and . Because of

, so .

①If , then the support of the whole dataset is:

②If and , then x is a frequent

itemset of .

(2)If and , then .

Because of and , so and

, then the support of the whole dataset is:

(3)If and , maybe .

International Journal of Database Theory and Application

Vol.9, No.4 (2016)

Copyright ⓒ 2016 SERSC 197

On this occasion, x is a frequent itemset of , the smaller minimum support is

still a frequent itemsets of DS. Because of , we need to determine the size of

 and . If , then x is a frequent itemset

of .

(4)If and , maybe ;

Firstly, we must determine the size of the and .

①If , then x is a frequent itemset of . Because of

, so .

.

②If , then x is still an infrequent itemset of . Only

when , then x is a frequent itemset of .

2)If minimum support of the increment dataset is greater than minimum support of

the original dataset ()，we can prove the following conclusion

analogously:

(1)If and , then .

(2)If and , maybe .

(3)If and , maybe .

(4)If and , maybe .

Through the above proof of algorithm of association rules in the incremental data

sets and different support conditions, we can infer the following features of VSIFP-

tree.

Feature 1 of VSIFP-tree, regardless of the minimum support increase or decrease,

if the intersection of the frequent 1-itemsets of original dataset and frequent 1-

itemsets of incremental dataset is not null, then proper subset of this intersection is

included in the frequent 1-itemsets of new dataset.

Feature 2 of VSIFP-tree, under the condition of minimum support is unchanged,

if the union set of the frequent 1-itemsets of original dataset and frequent 1-itemsets

of incremental dataset is not null, then proper subset of complement set of this set in

all items is not included in the frequent 1-itemsets of new dataset.

2.2 Algorithm Description of VSIFP-Growth

Suppose that our original dataset of transaction database is , is an increment

dataset of transaction database. Given as support counts of itemsets in dataset ,

 and are , and respectively.

represent the number of occurrences of in and represent the number of

occurrences of in .Suppose that we have got the frequent itemset of original

dataset

[7].

javascript:void(0);
javascript:void(0);

International Journal of Database Theory and Application

Vol.9, No.4 (2016)

198 Copyright ⓒ 2016 SERSC

In Section 2.1 we analysis different situations when the dataset increase or

decrease, support increase or decrease of data processing. Therefore, we can control

in the process in different cases of search datasets to generate frequent itemsets, to

reduce unnecessary redundant search. This algorithm VSIFP-Growth can build tree

association rules in the shortest possible time based on FP-tree. The following

program shows how our algorithm generate the VSIFP-tree to insert branches into

the FP-tree.

Input: is dimension of dataset, is the transaction volume of dataset.

Output: The support counts .

Method:

/* Calculate the support counts X in D*/

VSIFP-Growth _GenCounts(,){

for(i=1 to){

 for all transaction do begin //scan dataset()

for all 1-itemset do begin

if then = ;

 ;

}

}

Input: is an increment dataset of transaction database, is the original

minimum support, is the incremental minimum support.

Output: The frequent itemset and rules of .

Method:

/* Calculate the frequent itemset and association rules */

VSIFP-Growth _Gen(, , , ,){

for(i=1 to){

 for all transaction do begin

if then ;

if

then ;

}

suppose that ;

for all k-itemset do begin

for all (k 1) itemset do begin

if then ; break;

 if(is not null){

 = FP-Growth(, ,);//invoke FP-growth algorithm

}

if(|| is not null){

 = GenerateRules(,);

else{

 = select Rules from Rules where Rule.support >= ;

}

Return , ;

International Journal of Database Theory and Application

Vol.9, No.4 (2016)

Copyright ⓒ 2016 SERSC 199

}

2.3 An Example of VSIFP-Growth

In this paper, an effective set-based algorithm called VSIFP-growth (variable

support incremental frequent pattern growth) is built to reduce the complexity of

incremental tree construction. VSIFP-growth algorithm refers to the dataset and

support change at the same time be able to generate a new association rule tree. The

new association rule tree has different structure to the original FP-tree, but they both

have the same mining results. VSIFP-growth can save operation time and does not

affect the mining results compared with the original FP-tree.

In order to explain the VSIFP-growth algorithm implementation of the process in

case of the minimum support and incremental dataset changes at the same time , we

use a concrete example to discuss the FP-tree based VSIFP-tree construction

algorithm of mining association rules [8].

Table 1 shows an original dataset of transaction database and sets the as

0.6(3/5). Figure1 illustrates the original FP-tree for Table 1 and Figure2 is a new

VSIFP-tree constructed with using original dataset and as 0.4(2/5).

(1) In the Figure1, subfigure a) shows the original FP-tree with the

and frequent 1-itemsets of is . When the

original dataset increased by new transaction dataset , minimum support

reduce to from at the same time. In the Figure2,

subfigure a) shows the increment FP-tree with the and frequent 1-

itemsets of is .

(2) Now we want to know what items the frequent 1-itemsets of new dataset

 includes.

The subfigure b) shows VSIFP-tree model as minimum support declines and

frequent 1-itemsets of is

Table 1. The Original Dataset of Transaction Database ()

Transaction

ID

Items Ordered items

A B C D E M N S T Y Z

001 A B C D E S Y D B C

002 B C D M T D B C T

003 C D E S T D C T

004 A B N Y Z B

005 D M T D T

International Journal of Database Theory and Application

Vol.9, No.4 (2016)

200 Copyright ⓒ 2016 SERSC

D:4

B:2

C:2

T:1T:1 T:1

C:2

B:1

Null
Frequent

items
Frequent items

list node pointer

D

B

C

T

Figure 1. The Original FP-Tree Model ()

Table 2. The Increment Dataset of Transaction Database ()

Transaction

ID

Items Ordered items

A B C D E M N S T Y Z

006 B M N Y Z B N Y Z

007 A N S T N

008 B E Y Z B Y Z

B:2

N:1

Y:1

Z:1 Z:1

Y:1

N:1

Null
Frequent

items
Frequent items

list node pointer

B

N

Y

Z

Figure 2. The VSIFP-Tree Model ()

B:5

D:2

T:1

Y:1 Y:3

D:2

Null
Frequent

items
Frequent items

list node pointer

B

D

T

Y

T:2 T:1

D:4

B:2

T:1

Y:1

T:2

B:3

Null
Frequent

items
Frequent items

list node pointer

D

B

T

Y Y:3

a)The increment FP-tree model b)The VSIFP-tree model

Figure 3. Tree Structure Contrast after Data Merging and Support Changing

International Journal of Database Theory and Application

Vol.9, No.4 (2016)

Copyright ⓒ 2016 SERSC 201

3. Parallel Computing for Large-Scale Dataset

3.1 PVSIFP-Growth Algorithm Description Based on MapReduce

In the practical application of large-scale dataset, the object of the association

rule mining is often a huge centralized or distributed data sources. If the single

machine for association rules mining, storage capacity and the mining efficiency is

bound to become a bottleneck in the process of mining, which can't meet the needs

of large data mining. But with the rapid development of parallel computing, using

the method of parallel processing mass data mining problems can not only meet the

needs of huge amounts of data mining, but also can greatly improve the mining

efficiency. As a result, the parallel data mining has become an effective way to

solve big data mining. On the other hand, in a lot of practical data mining

application, often also has the problem of incremental updating. Many applications

in the field of database are all in the constantly updated, resulting in the patterns of

original excavated or create new pattern. In order to solve this problem, must be on

the original model, combining with the new data mining again, namely incremental

association rules mining processing [9].

For stand-alone environment cannot meet the requirements of large data mining

problems, the researchers began to consider through the distributed parallel

computing environment to solve the problem. Parallel programming model based on

MapReduce by Google [10], has a strong function and a variety of advantages, and

many studies of MapReduce cluster architecture improvement plans are put forward

[11], to provide a good direction for the research of parallel association rules and

platform. LI, used the MapReduce calculated model, which is applied to the FP-

Growth algorithm, and proposed an algorithm of parallel computing model based on

MapReduce (parallel the frequent pattern Growth algorithm, PFP-Growth) [12]. For

parallel incremental updating of association rules research, qiu-yang Chen uses

traditional single parallel computing model, based on message passing interface

(message passing interface, MPI) puts forward a parallel incremental updating

association rules algorithm, the parallel pruning and fast updating, PPFUP).

In view of the huge amounts of data mining and incremental updating problems,

this paper designs and realizes a MapReduce and VSIFP-growth based parallel

variable support incremental updating algorithm for mining association rules[13].

The algorithm model is obtained by using the MapReduce, to update VSIFP-tree

incrementally in a distributed computing environment and optimize too much time

consumption problem caused by scanning the original database for every time of

incremental updating data. This algorithm can scan the original transaction database

to a minimum and raise the efficiency of parallel computing. At the same time, we

adopt the method of dynamic load balancing adjustment group to optimize the

itemsets grouping problems in the process of distributed computing, making the

whole distributed computing can achieve maximum load balancing. Finally, to

access the performance of PVSIFP-growth, we conducted experiments to observe

the influence of various support threshold and dataset size values in PVSIFP-

growth.

3.2 PVSIFP-Growth Algorithm Modelling Procedure Based on Mapreduce

In a distributed computing environment, to build the initial PVSIFP-tree on the

original transaction database DB, mainly includes the following three steps.

Step 1 Partitioned indexes construction of project support count and project. In

Hadoop, Mapper function based on HDFS file fragmentation to process the

transaction record for the unit, therefore, Mapper function can be used to calculate

the support degree of each shard project counts, and build the shard of partitioned

International Journal of Database Theory and Application

Vol.9, No.4 (2016)

202 Copyright ⓒ 2016 SERSC

indexes of the project. For each shard, the Mapper function input for relative

fragmentation at the beginning of offset and transaction records, namely the key

value pair for . The pseudo code of this step is shown

below.

 /* The Mapper procedure to count the index of the blocks*/

Class: CountingAndIndexMapper

itemBlockIndexs[] = new Array();//initialize the block indexes

blockSize = 0; // initialize the size of block indexes

/*Mapper initialization*/

Function: setup(context)

blockSize = readBlockSize(context);// read parameters

/*Mapper processing

* Build block indexes for each items in the transaction itemset

* Input: and offset of transaction records */

Function: Mapper

Foreach item in do

Callcollect ;

bockID = ;

buildBlockIndexs ; end;// build block indexes

/*Mapper clean: Write partitioned indexes to the local file system */

Function: cleanup(context)

writeToLocalFS(itemBlockIndexs)

/* The Reducer procedure */

Class: Counting Reducer

Function: reducer

Foreach item ‘1’ inList() do

C = C + 1; end;

Callcollect ;//output count

Assume that item sets in the fragmentation class is . The

block size for blockSize of partitioned indexes as is segmented into

 a block, the ceil for integer arithmetic, is

the first j block. Suppose that project in the subdivision of the fragmentation

class support count is , and it will be distributed in the m

blocks , each block count is . At this point

partitioned indexes are shown in Figure 4.

Figure 4. Block Index of the Project Iik

For each records() of project() in Mapper function of MapReduce, if the offset of

record belongs to the last block of the partitioned indexes, then the block index count

need to plus "1". If not, create a new node after the index list node, the node ID is the

serial number of blocks to record(), count to 1. After all local transaction record

processed, we can obtain partitioned indexes of local projects [14].

Project(Iik)

BlockID

International Journal of Database Theory and Application

Vol.9, No.4 (2016)

Copyright ⓒ 2016 SERSC 203

Step 2 project group. Get all the frequent itemsets by using project support count

and deposited in the table called FList. Then use a grouping scheme to divide the

project(FList) into Q group, and save each group project in table called GList.

Optimization grouping scheme must make each packet to keep a balanced load.

Load balancing is to make the time of consumption to be close to each group

while computing frequent itemsets on the VSIFP-tree. If we want to calculate the

optimal grouping, then it must build all the possible group to tree structure and

mining the tree. However, because of so many the possibility of grouping, large

amount of the process of calculation, and current balance may become unbalanced

after incremental updating, so this algorithm need to maintain the load balancing in

a dynamic environment.

This paper employ a dynamic load balancing strategy for grouping of project. The

strategy is mainly to dynamically adjust the new frequent itemsets grouping using

the last result to calculate the load of each group each time incremental updating

data. So we can dynamically adjust the group load and make the group to reach a

final equilibrium. But when calculate on the original transaction dataset, there is no

incremental data for the last time incremental updating calculation, therefore we

choose the stochastic grouping method for grouping FList. The complexity of this

randomized computational method is O(I), which can be finished in a stand-alone

environment. The pseudo code to build PVSIFP-tree for each grouping is shown

below.

/* The Mapper and Mapper procedure of PVSIFP-Growth*/

Class: PVSIFP_Growth

GList = null;

Function: setup(context)

GList readGList(context) //read GList from the configuration file

/*Mapper processing

* Divide transaction into groups according to the GList

* Input: and offset of transaction records */

Function: mapp er

for i = 0 to GList.size do

if then

Callcollect ;// output to a specific group

end if; end;

/* Reducer processing

* Build PVSIFP-tree for each group

* Input:Group number gid and its records */

Function: reducer

localFUFPTree = null;

foreach in

CallbuildPVSIFPTree ;

end;

CallwriteTreeToLocalFS(localFUFPTree);//writes each PVSIFP-tree into a local file

CallFPGrowth(localFUFPTree, gid); /running FP-Growth algorithm on the tree of each

group

Step 3 Build VSIFP-tree for each group(GList). First of all, distribute the

transactions in the database to the corresponding group according to the GList group.

The distribution operation can be done in a Mapper function, which can output

International Journal of Database Theory and Application

Vol.9, No.4 (2016)

204 Copyright ⓒ 2016 SERSC

multiple key value pair . At this point, all the transaction

records which belongs to the same group will be distributed to the same Reducer.

And then in each group of Reducer function, construct a VSIFP-tree to the

transaction record data of the group. On this occasion, mine the frequent itemsets

for the group, and finally combine each group of frequent itemsets to get the global

frequent itemsets. After building each grouping VSIFP-tree, we need to store

VSIFP-tree serialization of each group to the file system, for incremental updating.

Through the above three steps, we finished the original transaction dataset of

mining frequent itemsets. We calculate not only all the frequent itemsets of the

current dataset, but also record and store the support degree of each project, each

block index record stored on the server project, project group GList data and each

grouping VSIFP-tree.

4 Experimental Results and Analysis

4.1 The Experimental Data and the Environment

In this paper, we design the experiment to analyze PVSIFP-Growth performance

by comparing the running time of PVSIFP-Growth algorithm and FP-Growth

algorithm on two datasets. PVSIFP-Growth algorithm and FP-Growth algorithm are

realized by Matlab (R2014b). This article adopted Webdocs.data as the experimental

dataset provided by http://fimi.ua.ac.be/data [15].

The parallel computing environment in this experiment is made up of four nodes

master-slave Hadoop cluster. One of the nodes as the namenode and jobtracker,

other nodes as a datanode and tasktracker. And all nodes keep isomorphism of

hardware configuration and software configuration. The processor is Intel Core duo

2.6 GHz, computer memory size is 8 GByte, the operating system is Ubuntu14.04,

and Hadoop used 2.6.0 version, which keep the default cluster configuration

parameters.

4.2 Incremental Calculation Performance Test of the PVSIFP-Growth Algorithm

Under the condition of the support threshold rise, because PVSIFP-Growth just

need to centralized seeking for new frequent pattern in frequent pattern, running

time of PVSIFP-Growth is obviously faster. Here we compare the running time of

two kinds of algorithm only when the support threshold value fall and data scale

increase [16].

The first dataset is transactional sparse dataset(Retail), and each record contains 1

to 50 transaction items, 88162 records in total.

The Figure4(a) and Figure4(b) respectively shows the running time comparison of

FP-Growth algorithm and PVSIFP-Growth algorithm. In this experiment the scale of

dataset vary from 17625 to 88126(step size 17625), and the support threshold

decreased from 0.1 to 0.05(step size 0.01). In this figure, X coordinates stand for the

dataset size(record), Y coordinates stand for the support threshold, Z coordinates is

the run time. We can conclude that the running time of PVSIFP-Growth algorithm is

less than the FP-Growth.

http://fimi.ua.ac.be/data

International Journal of Database Theory and Application

Vol.9, No.4 (2016)

Copyright ⓒ 2016 SERSC 205

(a) (b)

Figure 5. The Running Time of FP-Growth and VSIFP-Growth Algorithm on
Retail

The second dataset is transactional dense dataset (Accidents), and each record

contains 1 to 80 transaction items, 340183 records in total.

The Figure5(a) and Figure5(b) respectively shows the running time comparison of

FP-Growth algorithm and PVSIFP-Growth algorithm. In this experiment, the scale

of data set vary from 68036 to 340183(step size 68036), support threshold decreased

vary from 0.95 to 0.9(step size 0.01). The X coordinate stand for the data set size

(record), Y coordinates stand for the support threshold, Z coordinates is run time.

We may draw the conclusion that the running time of PVSIFP-Growth algorithm is

less than the FP-Growth.

(a) (b)

Figure 6. The Running Time of FP-Growth and VSIFP-Growth Algorithm on
Accidents

5. Conclusion

By incorporating the VSIFP-Growth (Improved FP-Growth) algorithm and the

parallel computing mining technique into VSIFP-Growth, we propose the PVSIFP-

Growth algorithm for frequent itemsets generation. The major advantages of VSIFP-

Growth and the parallel computing based on MapReduce are that they reduce the

need to rebuild frequent pattern tree and facilitate the task of tree construction. The

PVSIFP-Growth algorithm inherit VSIFP-Growth algorithm, which can generate

association rules when both database increase or decrease and minimum support of

dataset changed. The memory requirement of PVSIFP-Growth on a single processor

is also lower than that of FP-Growth. Experimental results showed that our PVSIFP-

Growth algorithm is more than an order of magnitude faster than the FP-Growth

algorithm. However, VSIFP-Growth incurs a potential problem in the parallel

International Journal of Database Theory and Application

Vol.9, No.4 (2016)

206 Copyright ⓒ 2016 SERSC

computing mining method. An appropriate dataset scale value and datanode count in

this method are important, because they affects the mining performance of our

algorithm. As a result, our future work will involve finding an appropriate dataset

scale value and datanode count between the conditional VSIFP-Growth algorithm

and the parallel computing mining technique in the PVSIFP-Growth mining method.

Acknowledgement

First of all, I would like to show my deepest gratitude to my doctoral supervisor,

Prof. Li Sheng-Lin, a respectable, responsible and resourceful professor. I learned a

lot of scientific research and academic, engineering projects knowledge from him,

which will become the wealth of my life. Secondly, thanks to Prof. Wang Zhao-Xia

for helping me, who has provided me with valuable guidance in every stage of the

writing of this thesis and taught me association rules algorithm and the main

technical points of the large data parallel computing. With her help, I have

conducted a follow-up design and experiment of algorithm improvement and

completed this paper. Finally, thanks for laboratory classmates, at ordinary times we

help each other overcome many difficulties. In addition, thanks to Li Chang-Lin and

Li Xue-Long, who have helped me realize part of the algorithm code design.

References

[1] W. C. David, “Maintenance of discovered association rules in large databases: An incremental updating

technique”, Data Engineering, 1996. Proceedings of the Twelfth International Conference on. IEEE,

(1996).

[2] C. D. W. Lok, S. D. Lee and B. Kao, “A General Incremental Technique for Maintaining Discovered

Association Rules”, DASFAA, vol. 6, (1997).

[3] A. N. Fazil, A. U. Tansel and E. Arkun, “An efficient algorithm to update large itemsets with early

pruning”, Proceedings of the fifth ACM SIGKDD international conference on Knowledge discovery and

data mining. ACM, (1999).

[4] L. C. Hung, C. R. Lin and M. S. Chen, “Sliding-window filtering: an efficient algorithm for incremental

mining”, Proceedings of the tenth international conference on Information and knowledge management.

ACM, (2001).

[5] Z. Y. Quan, Z. H. Sun and X. J. Ji, “Incremental updating algorithm based on frequent pattern tree for

mining association rules”, Chinese Journal of Computers-Chinese Edition, vol. 26, no. 1, (2003), pp. 91-

96.

[6] C. Qiuyang and L. Jin, “Research on optimization of parallel incremental updating algorithm for

association rules”, Jisuanji Gongcheng yu Yingyong(Computer Engineering and Applications), vol. 47,

no. 14, (2011).

[7] T. Lu, J. Hong and S. Qiuzi, “An Improved Incremental Updating Algorithm for Association Rules”,

Computer Applications and Software, vol. 29, no. 4, (2012), pp. 246-248.

[8] L. K. Chung, I. E. Liao and Z. S. Chen, “An improved frequent pattern growth method for mining

association rules”, Expert Systems with Applications, vol. 38, no. 5, (2011), pp. 5154-5161.

[9] X. L. Xin, “Research on The Optimization of Enrollment Data Resources Based on Cloud Computing

Platform”, Review of computer engineering studies, http://dx.doi.org/10.18280/rces.020203, vol. 2, no

.2, (2015), pp. 9-12.

[10] D. Jeffrey and S. Ghemawat, “MapReduce: simplified data processing on large clusters”,

Communications of the ACM, vol. 51, no. 1, (2008), pp. 107-113.

[11] J. Jing, “A new multi-master framework of MapReduce”, Journal of Beijing University of Posts and

Telecommunications, vol. 35, no. 4, (2012), pp. 89-93.

[12] L. Haoyuan, “Pfp: parallel fp-growth for query recommendation”, Proceedings of the 2008 ACM

conference on Recommender systems. ACM, (2008).

[13] R. Jin, C. Kou and R. Liu, “Bi-clustering Algorithm of Differential Co-Expression for Gene Data”,

Review of computer engineering studies, http://dx.doi.org/10.18280/rces.010102, vol. 1, no. 1, (2014),

pp. 7-12.

[14] Y. Yong and G. S. Song, “Parallel and incremental updating algorithm for association rules based on

mapReduce”, Journal of Chongqing University of Posts and Telecommunications (Natural Science

Edition), vol. 5, (2014), pp. 19.

[15] B. Goethals and M. J. Zaki, “Frequent Itemset Mining Dataset Repository”, < http://fimi.ua.ac.be/data>,

(2015).

http://dx.doi.org/10.18280/rces.020203
http://dx.doi.org/10.18280/rces.010102
http://fimi.ua.ac.be/data

International Journal of Database Theory and Application

Vol.9, No.4 (2016)

Copyright ⓒ 2016 SERSC 207

[16] Z. Chun, “The Financial Risk Analysis and Forewarning Research Based on Data Mining Technology”,

Diss. Beijing University of Chemical Technology, (2012).

Authors

Guo Yu-Dong, was born in Heilongjiang province, China, in 1987.

He has been studying for the Ph.D. degree of Military in the

Department of military logistics information and logistics engineering,

Logistics Engineering Institute. He is working on information system

integration and big data mining.

Li Sheng-Lin, received B.S. degree in Mathematics from

Southwest University, China, in 1985, and Ph.D. degree in Logistical

Engineering University of P.L.A China, in 2008. He is working on

information management engineering and computer science.

Li Yong-Zhi, was born in Hubei province, China, in 1977. He has

received B.S. degree in Oil-Gas Storage and Transportation

Engineering from Logistical Engineering University of P.L.A China.

He is working on information management engineering and computer

science.

Wang Zhao-Xia, received Ph.D. degree in Tsinghua University.

She is a master supervisor and now working in Department of

military logistics information and logistics engineering, Logistics

Engineering Institute, Chongqing. Her main research direction is data

management and information system architecture.

Zeng Li, received Bachelor of Electrical Engineering Hunan

University in 1982. She won “Excellent Teacher” honor at

Chongqing University of Science and Technology in 1993. Now she

is working in School of Civil Engineering and Architecture,

Chongqing University of Science and Technology. Her research

interests is construction facilities engineering and design of

architectural hydropower.

http://www.baidu.com/link?url=ybSY78kJjNSpcgkx40uPI6bx1_dKDDho1ZjWQMHiXJv3fYuPLMHeSb4WaXvArt3O

International Journal of Database Theory and Application

Vol.9, No.4 (2016)

208 Copyright ⓒ 2016 SERSC

